Verification of Polynomial Interrupt Timed Automata

<u>Béatrice Bérard</u>¹, Serge Haddad², Claudine Picaronny², Mohab Safey El Din¹, Mathieu Sassolas³

> ¹Université P. & M. Curie, LIP6 ²ENS Cachan, LSV ³Université Paris-Est, LACL ⁴CNRS, INRIA

GT ALGA, April 11th, 2016

◆□ → ◆□ → ◆ 三 → ◆ 三 · ⑦ Q ⑦ 1/21

Context: Verification of hybrid systems

Hybrid automata

Hybrid automaton = finite automaton + variables

Variables evolve in states and can be tested and updated on transitions.

- Clocks are variables with slope 1 in all states
- Stopwatches are variables with slope 0 or 1

Timed automaton = finite automaton + clocks with guards $x \bowtie c$ and reset [Alur, Dill 1990]

Verification problems are mostly undecidable

- Decidability requires restricting either the flows [Henzinger et al. 1998] or the jumps [Alur et al. 2000] for flows $\dot{x} = Ax$
- Other approaches exist like bounded delay reachability or approximations by discrete transition systems.

The model of PolITA

In Polynomial Interrupt Timed Automata (POLITA)

- variables are interrupt clocks, a restricted form of stopwatches, ordered along hierarchical levels,
- guards are polynomial constraints and variables can be updated by polynomials.

Results

- Reachability is decidable in 2EXPTIME.
- The result still holds for several extensions.
- A restricted form of quantitative model checking is also decidable.
- The class POLITA is incomparable with the class SWA of Stopwatch Automata.

Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Polynomial constraints

Landing a rocket

- First stage (lasting x₁): from distance d, the rocket approaches the land under gravitation g;
- Second stage (lasting x_2): the rocket approaches the land with constant deceleration h < 0;
- Third stage: the rocket must reach the land with small positive speed (less than ε).

Polynomial constraints are also used in the modeling of discrete systems.

Outline

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition

Algorithmic issues

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ • ○ Q ○ 6/21

PolITA: syntax

$\mathcal{A} = (\Sigma, Q, q_0, X, \lambda, \Delta)$

Transitions in Δ:

- ► Alphabet Σ , finite set of states Q, initial state q_0 ,
- ▶ set of clocks $X = \{x_1, ..., x_n\}$, with x_k for level k,
- ▶ $\lambda: Q \to \{1, \ldots, n\}$ state level, with $x_{\lambda(q)}$ the active clock in state q,

▶ Guards: conjunctions of polynomial constraints in $\mathbb{Q}[x_1, \ldots, x_n]$ $P \bowtie 0$ with \bowtie in $\{<, \le, =, \ge, >\}$, and $P \in \mathbb{Q}[x_1, \ldots, x_k]$ at level k.

$$(q, 3) \xrightarrow{2x_1^2x_2x_3^2 - \frac{1}{3}x_2x_1^3 + x_1 + 1 > 0, a, u}$$

PolITA: updates

From level k to k'

increasing level $k \leq k'$

Level i > k: reset Level k: unchanged or polynomial update $x_k := P$ for some $P \in \mathbb{Q}[x_1, \ldots, x_{k-1}]$ Level i < k: unchanged.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 - の � () 8/21

$$(x_1 := x_1) x_2 > 2x_1^2, \quad \begin{array}{c} (x_1 := x_1) \\x_2 := x_1^2 - x_1 \\ (x_3 := 0) \\ (x_4 := 0) \end{array}$$

PolITA: updates

From level k to k'

increasing level $k \leq k'$

Level i > k: reset

Level k: unchanged or polynomial update $x_k := P$ for some $P \in \mathbb{Q}[x_1, \ldots, x_{k-1}]$ Level i < k: unchanged.

Decreasing level

Level i > k': reset Otherwise: unchanged.

Examples

PolITA: semantics

Clock valuation

 $v = (v(x_1), \ldots, v(x_n)) \in \mathbb{R}^n$

A transition system $\mathcal{T}_{\mathcal{A}} = (S, s_0, \rightarrow)$ for $\mathcal{A} = (\Sigma, Q, q_0, X, \lambda, \Delta)$

- configurations $S = Q \times \mathbb{R}^n$, initial configuration $s_0 = (q_0, v_0)$ with $v_0 = \mathbf{0}$
- ▶ time steps from q at level k: $(q, v) \xrightarrow{d} (q, v +_k d)$, only x_k is active, with all clock values in $v +_k d$ unchanged except $(v +_k d)(x_k) = v(x_k) + d$
- **discrete steps** $(q, v) \xrightarrow{e} (q', v')$ for a transition $e : q \xrightarrow{g,a,u} q'$ if v satisfies the guard g and v' = v[u].

An execution

alternates time and discrete steps $(q_0, v_0) \xrightarrow{d_0} (q_0, v_0 +_{\lambda(q_0)} d_0) \xrightarrow{e_0} (q_1, v_1) \xrightarrow{d_1} (q_1, v_1 +_{\lambda(q_1)} d_1) \xrightarrow{e_1} \dots$

Semantics: example

 $(q_0, 0, 0) \xrightarrow{1.2} (q_0, 1.2, 0) \xrightarrow{a} (q_1, 1.2, 0) \xrightarrow{0.97} (q_1, 1.2, 0.97) \xrightarrow{b} (q_2, 1.2, 0.97) \dots$ Blue and green curves meet at real roots of $-2x^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26$.

Reachability problem for PolITA

Given $\mathcal{A} = (\Sigma, Q, q_0, X, \lambda, \Delta)$ and $q_f \in Q$

is there an execution from initial configuration $s_0 = (q_0, \mathbf{0})$ to (q_f, v) for some valuation v ?

Build a finite quotient automaton $\mathcal{R}_{\mathcal{A}}$

time-abstract bisimilar to $\mathcal{T}_{\mathcal{A}}$:

- ▶ states of \mathcal{R}_A are of the form (q, C) for suitable sets of valuations $C \subseteq \mathbb{R}^n$, where polynomials of A have constant sign (and number of roots),
- ▶ time abstract transitions of $\mathcal{R}_{\mathcal{A}}$: $(q, C) \rightarrow (q, succ(C))$ where succ(C) is the time successor of C, consistent with time elapsing in $\mathcal{T}_{\mathcal{A}}$,
- b discrete transitions of R_A: (q, C) ^e→ (q', C') for e : q ^{g,a,u}→ q' in Δ if C satisfies the guard g and C' = C[u], consistent with discrete steps in T_A.

The sets *C* will be cells from a cylindrical decomposition adapted to the polynomials in A.

Cylindrical decomposition: basic example

The decomposition starts from a set of polynomials and proceeds in two phases: Elimination phase and Lifting phase.

Starting from single polynomial $P_3 = x_1^2 + x_2^2 + x_3^2 - 1 \in \mathbb{Q}[x_1, x_2][x_3]$

Elimination phase

Produces polynomials in $\mathbb{Q}[x_1, x_2]$ and $\mathbb{Q}[x_1]$ required to determine the sign of P_3 .

- First polynmial $P_2 = x_1^2 + x_2^2 1$ is produced.
 - If $P_2 > 0$ then P_3 has no real root.
 - If $P_2 = 0$ then P_3 has 0 as single root.
 - If $P_2 < 0$ then P_3 has two real roots.

In turn the sign of $P_2 \in \mathbb{Q}[x_1][x_2]$ depends on $P_1 = x_1^2 - 1$.

Lifting phase

Produces partitions of \mathbb{R} , \mathbb{R}^2 and \mathbb{R}^3 organized in a tree of cells where the signs of these polynomials (in $\{-1, 0, 1\}$) are constant.

Lifting phase

Level 1 : partition of
$$\mathbb{R}$$
 in 5 cells
 $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

Lifting phase

Level 2 : partition of \mathbb{R}^2 Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$ Above C_{-1} : three cells $\{-1\}\times]-\infty, 0[, \{(-1,0)\}, \{-1\}\times]0, +\infty[$

Level 1 : partition of \mathbb{R} in 5 cells $C_{-\infty} =] - \infty, -1[, C_{-1} = \{-1\}, C_0 =] - 1, 1[, C_1 = \{1\}, C_{+\infty} =]1, +\infty[$

◆□▶◆□▶◆ミ▶◆ミ▶ ミ のへで 14/21

Level 2 above C₀

Level 2 above C_0

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 • ⑦ � � 15/21

Level 2 above C₀

$$C_{0,1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,0} \quad \begin{cases} -1 < x_1 < 1 \\ -\sqrt{1 - x_1^2} < x_2 < \sqrt{1 - x_1^2} \end{cases}$$

$$C_{0,-1} \quad \begin{cases} -1 < x_1 < 1 \\ x_2 = -\sqrt{1 - x_1^2} \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ○ ⊇ の Q ○ 15/21

Level 2 above C_0

(□) (□) (□) (15/21)

The tree of cells

partially, for A_3 , using the sphere case with some refinements:

partially, for A_3 , using the sphere case with some refinements:

partially, for A_3 , using the sphere case with some refinements:

level 2 above R_1 : $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$,

partially, for A_3 , using the sphere case with some refinements:

 $x_1^2 + x_2^2 < 1$ q_2, R_{110} q_2, R_{113} $q_1, 2$ $0 < x_1 < x_1 < x_1 := 0/2$ q_1, R_{10} q_1, R_{11} $0 < x_1 <$ $x_1^2 + x_2^2 + x_3^2 > 1$ q_0, R_0 q_0, R_1 q_0 , level 1: $R_0 = (x_1 = 0), R_1 = (0 < x_1 < 1),$ level 2 above R_1 : $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$, level 3 above R_{11} : $R_{110} = (R_{11}, x_3 = 0)$, $R_{111} = (R_{11}, 0 < x_3 < \sqrt{1 - x_1^2 - x_2^2})$, $R_{112} = (R_{11}, x_3 = \sqrt{1 - x_1^2 - x_2^2}), R_{113} = (R_{11}, x_3 > \sqrt{1 - x_1^2 - x_2^2}),$

partially, for A_3 , using the sphere case with some refinements:

 $x_1^2 + x_2^2 < 1$ q_2, R_{110} q_2, R_{113} $q_1, 2$ $0 < x_1 < 1$ $x_1 := 0/2$ q_1, R_{10} q_1, R_{11} $0 < x_1 < 0$ $x_1^2 + x_2^2 + x_3^2 > 1$ q_0, R_0 q_0, R_1 $q_0, 1$ level 1: $R_0 = (x_1 = 0), R_1 = (0 < x_1 < 1),$ level 2 above R_1 : $R_{10} = (R_1, x_2 = 0)$, $R_{11} = (R_1, 0 < x_2 < \sqrt{1 - x_1^2})$, level 3 above R_{11} : $R_{110} = (R_{11}, x_3 = 0)$, $R_{111} = (R_{11}, 0 < x_3 < \sqrt{1 - x_1^2 - x_2^2})$, $R_{112} = (R_{11}, x_3 = \sqrt{1 - x_1^2 - x_2^2}), R_{113} = (R_{11}, x_3 > \sqrt{1 - x_1^2 - x_2^2}),$ and back to level 1

Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a family of polynomials $\mathcal{P} = \{\mathcal{P}_k\}_{k \leq n}$ with $\mathcal{P}_k \subseteq \mathbb{Q}[x_1, \dots, x_k]$ for level k.

Some polynomials do not have always the same degree and roots. For instance, $B = (2x_1 - 1)x_2^2 - 1$ is of degree 2 in x_2 if and only if $x_1 \neq \frac{1}{2}$.

For \mathcal{A}_2

Starting from $\{x_1, A\}$ and $\{x_2, B, C\}$ with $A = x_1^2 - x_1 - 1$ and $C = x_2 + x_1^2 - 5$ results in

▶
$$\mathcal{P}_1 = \{x_1, A, D, E, F, G\},$$

▶ $\mathcal{P}_2 = \{x_2, B, C\},$
with $D = 2x_1 - 1$, $E = x_1^2 - 5$, $F = -2x_1^5 + x_1^4 + 20x_1^3 - 10x_1^2 - 50x_1 + 26,$
 $G = 4(2x_1 - 1)^2$

Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of the roots of these polynomials (and the intervals between them), obtained by iteratively increasing the level.

A description like $x_3 > \sqrt{1 - x_1^2 - x_2^2}$ cannot be obtained in general.

- ▶ A point is coded by "the *n*th root of *P*".
- ▶ The interval](n, P), (m, Q)[is coded by a root of (PQ)'.

This lifting phase can be performed on-the-fly, producing only the reachable part of the quotient automaton $\mathcal{R}_{\mathcal{A}}$.

Conclusion

In the class POLITA

- Reachability is decidable in 2EXPTIME.
- ▶ The untimed language of a POLITA (with final states) is regular.
- Model checking is decidable for a quantitative version of CTL using polynomial constraints on the automaton clocks.
- Guards can be extended by adding parameters, auxiliary clocks, and updates can be done at levels lower than the current level.
- POLITA and Stopwatch Automata are incomparable w.r.t. timed language acceptance.

Future work

- Experiments, thanks to Rémi Garnier and Mathieu Huot (L3 students of ENS Cachan) who developped a prototype.
- Adapt more efficient methods for quantifier elimination.
- Extension to o-minimal decidable theories.

Thank you

< □ → < □ → < Ξ → < Ξ → Ξ の Q ↔ 21/21