Verification of Polynomial Interrupt Timed Automata

Béatrice Bérard ${ }^{1}$, Serge Haddad ${ }^{2}$, Claudine Picaronny ${ }^{2}$,
Mohab Safey El Din ${ }^{1}$, Mathieu Sassolas ${ }^{3}$

${ }^{1}$ Université P. \& M. Curie, LIP6
${ }^{2}$ ENS Cachan, LSV
${ }^{3}$ Université Paris-Est, LACL
${ }^{4}$ CNRS, INRIA

GT ALGA, April 11th, 2016

Context: Verification of hybrid systems

Hybrid automata

Hybrid automaton $=$ finite automaton + variables
Variables evolve in states and can be tested and updated on transitions.

- Clocks are variables with slope 1 in all states
- Stopwatches are variables with slope 0 or 1

Timed automaton $=$ finite automaton + clocks with guards $x \bowtie c$ and reset [Alur, Dill 1990]

Verification problems are mostly undecidable
Decidability requires restricting either the flows [Henzinger et al. 1998] or the jumps [Alur et al. 2000] for flows $\dot{x}=A x$
Other approaches exist like bounded delay reachability or approximations by discrete transition systems.

The model of PollTA

In Polynomial Interrupt Timed Automata (PoliTA)

- variables are interrupt clocks, a restricted form of stopwatches, ordered along hierarchical levels,
- guards are polynomial constraints and variables can be updated by polynomials.

Results

Reachability is decidable in 2EXPTIME.
The result still holds for several extensions.
A restricted form of quantitative model checking is also decidable. The class PolITA is incomparable with the class SWA of Stopwatch Automata.

Interrupt clocks

Many real-time systems include interruption mechanisms (as in processors).

Several levels with exactly one active clock at each level

level 4
level 3
level 2
level 1

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \text { Exec: }\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \xrightarrow{\text { 1.5 }}\left[\begin{array}{c}
1.5 \\
0 \\
0 \\
0
\end{array}\right] \xrightarrow{2.1}\left[\begin{array}{c}
1.5 \\
0 \\
2.1 \\
0
\end{array}\right] \xrightarrow{1.7}\left[\begin{array}{l}
1.5 \\
0 \\
0 \\
0
\end{array}\right] \xrightarrow{2.2}\left[\begin{array}{c}
3.7 \\
0 \\
0 \\
0
\end{array}\right]
$$

Polynomial constraints

Landing a rocket

First stage (lasting x_{1}): from distance d, the rocket approaches the land under gravitation g;
Second stage (lasting x_{2}): the rocket approaches the land with constant deceleration $h<0$;
Third stage: the rocket must reach the land with small positive speed (less than ε).

$$
\frac{1}{2} g x_{1}^{2}+g x_{1} x_{2}+\frac{1}{2} h x_{2}^{2}=d \wedge 0 \leq g x_{1}+h x_{2}<\varepsilon
$$

```
For all g\in[7,10]
does there exist an h\in[-3, -1]
such that the rocket is landing?
```

Polynomial constraints are also used in the modeling of discrete systems.

Outline

Polynomial Interrupt Timed Automata

Reachability using cylindrical decomposition

Algorithmic issues

PollTA: syntax

$\mathcal{A}=\left(\Sigma, Q, q_{0}, X, \lambda, \Delta\right)$

- Alphabet Σ, finite set of states Q, initial state q_{0},
- set of clocks $X=\left\{x_{1}, \ldots, x_{n}\right\}$, with x_{k} for level k,
- $\lambda: Q \rightarrow\{1, \ldots, n\}$ state level, with $x_{\lambda(q)}$ the active clock in state q,
- Transitions in Δ :

- Guards: conjunctions of polynomial constraints in $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ $P \bowtie 0$ with \bowtie in $\{<, \leq,=, \geq,>\}$, and $P \in \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]$ at level k.

PollTA: updates

From level k to k^{\prime}

increasing level $k \leq k^{\prime}$

Level $i>k$: reset
Level k : unchanged or polynomial update $x_{k}:=P$ for some $P \in \mathbb{Q}\left[x_{1}, \ldots, x_{k-1}\right]$ Level $i<k$: unchanged.

$$
\begin{array}{ll}
& \left(x_{1}:=x_{1}\right) \\
x_{2}>2 x_{1}^{2}, & x_{2}:=x_{1}^{2}-x_{1} \\
\left(x_{3}:=0\right) \\
& \left(x_{4}:=0\right)
\end{array}
$$

PollTA: updates

From level k to k^{\prime}

increasing level $k \leq k^{\prime}$

Level $i>k$: reset
Level k : unchanged or polynomial update $x_{k}:=P$ for some $P \in \mathbb{Q}\left[x_{1}, \ldots, x_{k-1}\right]$ Level $i<k$: unchanged.

$$
\begin{aligned}
& \left(x_{1}:=x_{1}\right) \quad\left(x_{1}:=x_{1}\right) \\
& x_{2}>2 x_{1}^{2}, \quad \begin{array}{l}
x_{2}:=x_{1}^{2}-x_{1} \\
\left(x_{3}:=0\right)
\end{array} \\
& \left.x_{4}=3 x_{1}^{2} x_{2}+x_{3}, \quad \begin{array}{l}
\left(x_{2}:=x_{2}\right) \\
\left(x_{3}:=x_{3}\right)
\end{array}\right) \\
& \left(x_{4}:=0\right) \\
& \left(x_{4}:=0\right)
\end{aligned}
$$

Decreasing level

Level $i>k^{\prime}$: reset
Otherwise: unchanged.

Examples

\mathcal{A}_{2} in dimension 2
$\left(2 x_{1}-1\right) x_{2}^{2}>1, b$

$$
x_{1}^{2}>x_{1}+1, a^{\prime}, x_{1}:=0
$$

\mathcal{A}_{3} in dimension 3

PollTA: semantics

Clock valuation

$v=\left(v\left(x_{1}\right), \ldots, v\left(x_{n}\right)\right) \in \mathbb{R}^{n}$

A transition system $\mathcal{T}_{\mathcal{A}}=\left(S, s_{0}, \rightarrow\right)$ for $\mathcal{A}=\left(\Sigma, Q, q_{0}, X, \lambda, \Delta\right)$

- configurations $S=Q \times \mathbb{R}^{n}$, initial configuration $s_{0}=\left(q_{0}, v_{0}\right)$ with $v_{0}=\mathbf{0}$
- time steps from q at level $k:(q, v) \xrightarrow{d}\left(q, v+{ }_{k} d\right)$, only x_{k} is active, with all clock values in $v+_{k} d$ unchanged except $\left(v+{ }_{k} d\right)\left(x_{k}\right)=v\left(x_{k}\right)+d$
- discrete steps $(q, v) \xrightarrow{e}\left(q^{\prime}, v^{\prime}\right)$ for a transition $e: q \xrightarrow{g, a, u} q^{\prime}$ if v satisfies the guard g and $v^{\prime}=v[u]$.

An execution

alternates time and discrete steps $\left(q_{0}, v_{0}\right) \xrightarrow{d_{0}}\left(q_{0}, v_{0}+\lambda\left(q_{0}\right) d_{0}\right) \xrightarrow{e_{0}}\left(q_{1}, v_{1}\right) \xrightarrow{d_{1}}\left(q_{1}, v_{1}+{ }_{\lambda\left(q_{1}\right)} d_{1}\right) \xrightarrow{e_{1}} \ldots$

Semantics: example

$$
x_{1}^{2}>x_{1}+1, a^{\prime}, x_{1}:=0
$$

\mathcal{A}_{2} :

$\left(q_{0}, 0,0\right) \xrightarrow{1.2}\left(q_{0}, 1.2,0\right) \xrightarrow{a}\left(q_{1}, 1.2,0\right) \xrightarrow{0.97}\left(q_{1}, 1.2,0.97\right) \xrightarrow{b}\left(q_{2}, 1.2,0.97\right) \ldots$ Blue and green curves meet at real roots of $-2 x^{5}+x_{1}^{4}+20 x_{1}^{3}-10 x_{1}^{2}-50 x_{1}+26$.

Reachability problem for PollTA

Given $\mathcal{A}=\left(\Sigma, Q, q_{0}, X, \lambda, \Delta\right)$ and $q_{f} \in Q$

is there an execution from initial configuration $s_{0}=\left(q_{0}, \mathbf{0}\right)$ to $\left(q_{f}, v\right)$ for some valuation v ?

Build a finite quotient automaton $\mathcal{R}_{\mathcal{A}}$

time-abstract bisimilar to $\mathcal{T}_{\mathcal{A}}$:

- states of $\mathcal{R}_{\mathcal{A}}$ are of the form (q, C) for suitable sets of valuations $C \subseteq \mathbb{R}^{n}$, where polynomials of \mathcal{A} have constant sign (and number of roots),
- time abstract transitions of $\mathcal{R}_{\mathcal{A}}:(q, C) \rightarrow(q, \operatorname{succ}(C))$ where $\operatorname{succ}(C)$ is the time successor of C, consistent with time elapsing in $\mathcal{T}_{\mathcal{A}}$,
- discrete transitions of $\mathcal{R}_{\mathcal{A}}:(q, C) \xrightarrow{e}\left(q^{\prime}, C^{\prime}\right)$ for $e: q \xrightarrow{g, a, u} q^{\prime}$ in Δ if C satisfies the guard g and $C^{\prime}=C[u]$, consistent with discrete steps in $\mathcal{T}_{\mathcal{A}}$.

The sets C will be cells from a cylindrical decomposition adapted to the polynomials in \mathcal{A}.

Cylindrical decomposition: basic example

The decomposition starts from a set of polynomials and proceeds in two phases: Elimination phase and Lifting phase.

Starting from single polynomial $P_{3}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-1 \in \mathbb{Q}\left[x_{1}, x_{2}\right]\left[x_{3}\right]$

Elimination phase

Produces polynomials in $\mathbb{Q}\left[x_{1}, x_{2}\right]$ and $\mathbb{Q}\left[x_{1}\right]$ required to determine the sign of P_{3}.
First polynmial $P_{2}=x_{1}^{2}+x_{2}^{2}-1$ is produced.
If $P_{2}>0$ then P_{3} has no real root.
If $P_{2}=0$ then P_{3} has 0 as single root.
If $P_{2}<0$ then P_{3} has two real roots.
In turn the sign of $P_{2} \in \mathbb{Q}\left[x_{1}\right]\left[x_{2}\right]$ depends on $P_{1}=x_{1}^{2}-1$.

Lifting phase

Produces partitions of $\mathbb{R}, \mathbb{R}^{2}$ and \mathbb{R}^{3} organized in a tree of cells where the signs of these polynomials (in $\{-1,0,1\}$) are constant.

Lifting phase

Level 1 : partition of \mathbb{R} in 5 cells

$$
\begin{aligned}
& \left.C_{-\infty}=\right]-\infty,-1\left[, C_{-1}=\{-1\}, C_{0}=\right]-1,1[, \\
& \left.C_{1}=\{1\}, C_{+\infty}=\right] 1,+\infty[
\end{aligned}
$$

Lifting phase

Level 2 : partition of \mathbb{R}^{2}
Above $C_{-\infty}$: a single cell $C_{-\infty} \times \mathbb{R}$
Above C_{-1} : three cells
$\{-1\} \times]-\infty, 0[,\{(-1,0)\},\{-1\} \times] 0,+\infty[$

Level 1 : partition of \mathbb{R} in 5 cells

$$
\begin{aligned}
& \left.C_{-\infty}=\right]-\infty,-1\left[, C_{-1}=\{-1\}, C_{0}=\right]-1,1[, \\
& \left.C_{1}=\{1\}, C_{+\infty}=\right] 1,+\infty[
\end{aligned}
$$

Level 2 above C_{0}

Level 2 above C_{0}

Level 2 above C_{0}

$$
\begin{aligned}
& C_{0,1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,0}\left\{\begin{array}{l}
-1<x_{1}<1 \\
-\sqrt{1-x_{1}^{2}}<x_{2}<\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,-1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=-\sqrt{1-x_{1}^{2}}
\end{array}\right.
\end{aligned}
$$

Level 2 above C_{0}

$$
\begin{aligned}
& C_{0,+\infty}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}>\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
& C_{0,0}\left\{\begin{array}{l}
-1<x_{1}<1 \\
-\sqrt{1-x_{1}^{2}}<x_{2}<\sqrt{1-x_{1}^{2}} \\
C_{0,-1}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}=-\sqrt{1-x_{1}^{2}}
\end{array}\right. \\
C_{0,-\infty}\left\{\begin{array}{l}
-1<x_{1}<1 \\
x_{2}<-\sqrt{1-x_{1}^{2}}
\end{array}\right.
\end{array} . \begin{array}{l}
\text { a }
\end{array}\right. \\
& \hline
\end{aligned}
$$

The tree of cells

Building the quotient

partially, for \mathcal{A}_{3}, using the sphere case with some refinements:

Building the quotient

partially, for \mathcal{A}_{3}, using the sphere case with some refinements:

Building the quotient

partially, for \mathcal{A}_{3}, using the sphere case with some refinements:

level 1: $R_{0}=\left(x_{1}=0\right), R_{1}=\left(0<x_{1}<1\right)$,
level 2 above $R_{1}: R_{10}=\left(R_{1}, x_{2}=0\right), R_{11}=\left(R_{1}, 0<x_{2}<\sqrt{1-x_{1}^{2}}\right)$,

Building the quotient

partially, for \mathcal{A}_{3}, using the sphere case with some refinements:

level 1: $R_{0}=\left(x_{1}=0\right), R_{1}=\left(0<x_{1}<1\right)$,
level 2 above R_{1} : $R_{10}=\left(R_{1}, x_{2}=0\right), R_{11}=\left(R_{1}, 0<x_{2}<\sqrt{1-x_{1}^{2}}\right)$,
level 3 above $R_{11}: R_{110}=\left(R_{11}, x_{3}=0\right), R_{111}=\left(R_{11}, 0<x_{3}<\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right)$, $R_{112}=\left(R_{11}, x_{3}=\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right), R_{113}=\left(R_{11}, x_{3}>\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right)$,

Building the quotient

partially, for \mathcal{A}_{3}, using the sphere case with some refinements:

level 1: $R_{0}=\left(x_{1}=0\right), R_{1}=\left(0<x_{1}<1\right)$,
level 2 above R_{1} : $R_{10}=\left(R_{1}, x_{2}=0\right), R_{11}=\left(R_{1}, 0<x_{2}<\sqrt{1-x_{1}^{2}}\right)$, level 3 above $R_{11}: R_{110}=\left(R_{11}, x_{3}=0\right), R_{111}=\left(R_{11}, 0<x_{3}<\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right)$, $R_{112}=\left(R_{11}, x_{3}=\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right), R_{113}=\left(R_{11}, x_{3}>\sqrt{1-x_{1}^{2}-x_{2}^{2}}\right)$, and back to level 1

Effective construction: Elimination

From an initial set of polynomials, the elimination phase produces in 2EXPTIME a family of polynomials $\mathcal{P}=\left\{\mathcal{P}_{k}\right\}_{k \leq n}$ with $\mathcal{P}_{k} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{k}\right]$ for level k.

Some polynomials do not have always the same degree and roots. For instance, $B=\left(2 x_{1}-1\right) x_{2}^{2}-1$ is of degree 2 in x_{2} if and only if $x_{1} \neq \frac{1}{2}$.

For \mathcal{A}_{2}

Starting from $\left\{x_{1}, A\right\}$ and $\left\{x_{2}, B, C\right\}$ with $A=x_{1}^{2}-x_{1}-1$ and $C=x_{2}+x_{1}^{2}-5$ results in

$$
\begin{aligned}
& \mathcal{P}_{1}=\left\{x_{1}, A, D, E, F, G\right\}, \\
& \mathcal{P}_{2}=\left\{x_{2}, B, C\right\},
\end{aligned}
$$

with $D=2 x_{1}-1, E=x_{1}^{2}-5, F=-2 x_{1}^{5}+x_{1}^{4}+20 x_{1}^{3}-10 x_{1}^{2}-50 x_{1}+26$, $G=4\left(2 x_{1}-1\right)^{2}$

Effective construction: Lifting

To build the tree of cells in the lifting phase, we need a suitable representation of the roots of these polynomials (and the intervals between them), obtained by iteratively increasing the level.

A description like $x_{3}>\sqrt{1-x_{1}^{2}-x_{2}^{2}}$ cannot be obtained in general.

- A point is coded by "the $n^{t h}$ root of P ".
- The interval $](n, P),(m, Q)\left[\right.$ is coded by a root of $(P Q)^{\prime}$.

This lifting phase can be performed on-the-fly, producing only the reachable part of the quotient automaton $\mathcal{R}_{\mathcal{A}}$.

Conclusion

In the class PoliTA

- Reachability is decidable in 2EXPTIME.
- The untimed language of a PolITA (with final states) is regular.
- Model checking is decidable for a quantitative version of CTL using polynomial constraints on the automaton clocks.
- Guards can be extended by adding parameters, auxiliary clocks, and updates can be done at levels lower than the current level.
- PolITA and Stopwatch Automata are incomparable w.r.t. timed language acceptance.

Future work

- Experiments, thanks to Rémi Garnier and Mathieu Huot (L3 students of ENS Cachan) who developped a prototype.
- Adapt more efficient methods for quantifier elimination.
- Extension to o-minimal decidable theories.

Thank you

