Compilation of CNF-formulas: new algorithms and lower bounds

Florent Capelli

Based on results elaborated with Simone Bova, Johan Brault-Baron, Stefan Mengel, Friedrich Slivovsky

Journées du GT ALGA, 12 Avril 2016.

Knowledge compilation

- lacktriangleright F a CNF-formulas represents some knowledge on a system
- we want to query this knowledge many times
- Compilation = translate F into a good data structure that supports queries in PTIME

Knowledge compilation

- F a CNF-formulas represents some knowledge on a system
- we want to query this knowledge many times
- Compilation = translate F into a good data structure that supports queries in PTIME

Without compilation:

Is F satisfiable? Please wait, an NP-complete problem is being solved... Yes $\#F[x\mapsto 0,y\mapsto 1]$? Please wait even longer... 237 Enumerate $\exists x.F$: Please wait again... 01100110110 Are you bored?... 01100111111

With compilation :

Please wait, we are compiling F. Is F satisfiable? YES $\#F[x\mapsto 0,y\mapsto 1]$? 237 Enumerate $\exists x.F$? 01100110110 01100111111 01100111101

. .

Which kind of data structure?

- Rich literature on the subject, numerous target languages exist
- In this talk: only (deterministic) DNNF, one of the most general

Which kind of data structure?

- Rich literature on the subject, numerous target languages exist
- In this talk: only (deterministic) DNNF, one of the most general

A DNNF D is a boolean circuit with gates \land, \lor such that:

- inputs are labeled by literal $x, \neg x$
- \wedge are decomposable: if α and β are the input of an \wedge -gate then $var(D_{\alpha}) \cap var(D_{\beta}) = \emptyset$

Supported PTIME queries

Given a DNNF D, we can in PTIME:

- Find $\tau \in \operatorname{sat}(D)$ in time O(|D|)
- Enumerate sat(D) with delay $O(|D| \cdot |var(D)|)$
- Project *D* on partial assignments: $D[x \mapsto 0, y \mapsto 1]$.
- **E**xistentially project $D: \exists x.D$

Supported PTIME queries

Given a DNNF D, we can in PTIME:

- Find $\tau \in sat(D)$ in time O(|D|)
- Enumerate sat(D) with delay $O(|D| \cdot |var(D)|)$
- Project *D* on partial assignments: $D[x \mapsto 0, y \mapsto 1]$.
- **E**xistentially project $D: \exists x.D$

What about counting?

- #P-hard
- Main problem: overlap in the solution of ∨-gates

Deterministic DNNF

- V-gate with children α, β is deterministic if $D_{\alpha} \wedge D_{\beta}$ is UNSAT, i.e. $sat(D_{\alpha}) \cap sat(D_{\beta}) = \emptyset$.
- **deterministic DNNF** = all ∨-gates are deterministic
- \blacksquare support model counting in PTIME: replace \vee by + and \wedge by \times

- When can we compile CNF-formula into DNNFs?
- Inspiration: algorithms for #SAT based on the structure of the formula
- Idea: restrict the variables-clauses interaction

- When can we compile CNF-formula into DNNFs?
- Inspiration: algorithms for #SAT based on the structure of the formula
- Idea: restrict the variables-clauses interaction

$$(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \neg x_5) \land (x_1 \lor x_5 \lor x_6) \land (x_1 \lor \neg x_3 \lor x_5 \lor \neg x_7)$$

- When can we compile CNF-formula into DNNFs?
- Inspiration: algorithms for #SAT based on the structure of the formula
- Idea: restrict the variables-clauses interaction

$$(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \neg x_5) \land (x_1 \lor x_5 \lor x_6) \land (x_1 \lor \neg x_3 \lor x_5 \lor \neg x_7)$$

- When can we compile CNF-formula into DNNFs?
- Inspiration: algorithms for #SAT based on the structure of the formula
- Idea: restrict the variables-clauses interaction

$$(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \neg x_5) \land (x_1 \lor x_5 \lor x_6) \land (x_1 \lor \neg x_3 \lor x_5 \lor \neg x_7)$$

- When can we compile CNF-formula into DNNFs?
- Inspiration: algorithms for #SAT based on the structure of the formula
- Idea: restrict the variables-clauses interaction

$$(x_1 \lor x_2 \lor x_3) \land (x_3 \lor x_4 \lor \neg x_5) \land (x_1 \lor x_5 \lor x_6) \land (x_1 \lor \neg x_3 \lor x_5 \lor \neg x_7)$$

Structural tractability of #SAT

A class of graphs $\mathcal C$ is tractable for $\#\mathsf{SAT}$ if:

- Given F, one can decide if the graph of F is in C
- If so, one can output #F in polynomial time

Structural tractability of #SAT

A class of graphs C is tractable for #SAT if:

- Given F, one can decide if the graph of F is in C
- If so, one can output #F in polynomial time

Examples:

- #SAT is tractable on trees
- #SAT is tractable on bounded treewidth graphs
-

Structural tractability of #SAT

#SAT and knowledge compilation

Existing tools for #SAT based on exhaustive DPLL:

$$\#F = \#F[x \mapsto 0] + \#F[x \mapsto 1]$$

- + caching + heuristics for choosing variables
- Implicitely construct a deterministic DNNF (Huang, Darwiche)

#SAT and knowledge compilation

Existing tools for #SAT based on exhaustive DPLL:

$$\#F = \#F[x \mapsto 0] + \#F[x \mapsto 1]$$

- + caching + heuristics for choosing variables
- Implicitely construct a deterministic DNNF (Huang, Darwiche)
- The same is true for structural restriction based algorithms:

Theorem (Bova, C., Mengel, Slivovsky)

Every known structure-based algorithm for #SAT may be seen as an implicit compilation of the formula into deterministic DNNF.

In particular, we can: count (with weights), enumerate, projects, find minimal assignments ...

Limitations of structure-based algorithm

- Known (structure-based) algorithms for #SAT = compilation into DNNF
- Hard instances for #SAT = lower bound on the size of equivalent DNNF

Limitations of structure-based algorithm

- Known (structure-based) algorithms for #SAT = compilation into DNNF
- Hard instances for #SAT = lower bound on the size of equivalent DNNF

Question

Can we always compile a CNF into a small DNNF?

- If NP ⊈ P/poly, no...
- Can we prove it unconditionally?

Communication complexity

General model:

- $f: \{0,1\}^A \times \{0,1\}^B \to \{0,1\}, |A| \simeq |B|$
- Alice: $\bar{a} \in \{0,1\}^A$, Bob: $\bar{b} \in \{0,1\}^B$
- Complexity of f: how many bits Alice and Bob have to exchange in order to compute $f(\bar{a}, \bar{b})$?

Communication complexity

General model:

- $f: \{0,1\}^A \times \{0,1\}^B \to \{0,1\}, |A| \simeq |B|$
- Alice: $\bar{a} \in \{0,1\}^A$, Bob: $\bar{b} \in \{0,1\}^B$
- Complexity of f: how many bits Alice and Bob have to exchange in order to compute $f(\bar{a}, \bar{b})$?

Variations:

- **1** Complexity of f for a fixed partition A, B.
- **2** Complexity of f for the best partition A,B with $|A|=|B|\pm 1$

Communication complexity

General model:

- $f: \{0,1\}^A \times \{0,1\}^B \to \{0,1\}, |A| \simeq |B|$
- Alice: $\bar{a} \in \{0,1\}^A$, Bob: $\bar{b} \in \{0,1\}^B$
- Complexity of f: how many bits Alice and Bob have to exchange in order to compute $f(\bar{a}, \bar{b})$?

Variations:

- 1 Complexity of f for a fixed partition A, B.
- 2 Complexity of f for the best partition A,B with $|A|=|B|\pm 1$
- 3 Multipartition complexity of f where: an oracle sees the input \bar{c} and choose the best partition A, B with $|A| \simeq |B|$

Lifting lower bounds

DNNF have small multipartition complexity

Theorem (Bova, C., Mengel, Slivovsky)

Let D be a DNNF. The multipartition complexity of the function computed by D is at most $\log |D|$.

Lifting lower bounds

DNNF have small multipartition complexity

Theorem (Bova, C., Mengel, Slivovsky)

Let D be a DNNF. The multipartition complexity of the function computed by D is at most $\log |D|$.

Known lower bound on the multipartition complexity:

Theorem (Jukna, Schnigter)

There exists a family of 3-CNF having multipartition complexity $\Omega(n+m)$, and thus no DNNF of size smaller than $2^{\Omega(m+n)}$.

■ We can actually construct a hard family of *monotone* 2-CNF

Conclusion

- Structural restrictions of CNF-formulas = restrict variables-clauses interaction
- Efficient algorithms for #SAT can often be lifted to knowledge compilation
- Hard instances for these algorithms = lower bound for knowledge compilation