
Compilation of CNF-formulas: new algorithms
and lower bounds

Florent Capelli

Based on results elaborated with Simone Bova, Johan
Brault-Baron, Stefan Mengel, Friedrich Slivovsky

Journées du GT ALGA,
12 Avril 2016.

Knowledge compilation

F a CNF-formulas represents some knowledge on a system

we want to query this knowledge many times

Compilation = translate F into a good data structure that
supports queries in PTIME

Without compilation :
Is F satisfiable?
Please wait, an NP-complete
problem is being solved... Yes
#F [x 7→ 0, y 7→ 1]?
Please wait even longer... 237
Enumerate ∃x.F:
Please wait again... 01100110110
Are you bored?... 01100111111

With compilation :
Please wait, we are compiling F .
Is F satisfiable? YES
#F [x 7→ 0, y 7→ 1]? 237
Enumerate ∃x.F ?
01100110110
01100111111
01100111101
. . .

Knowledge compilation

F a CNF-formulas represents some knowledge on a system

we want to query this knowledge many times

Compilation = translate F into a good data structure that
supports queries in PTIME

Without compilation :
Is F satisfiable?
Please wait, an NP-complete
problem is being solved... Yes
#F [x 7→ 0, y 7→ 1]?
Please wait even longer... 237
Enumerate ∃x.F:
Please wait again... 01100110110
Are you bored?... 01100111111

With compilation :
Please wait, we are compiling F .
Is F satisfiable? YES
#F [x 7→ 0, y 7→ 1]? 237
Enumerate ∃x.F ?
01100110110
01100111111
01100111101
. . .

Which kind of data structure?

Rich literature on the subject, numerous target languages exist

In this talk: only (deterministic) DNNF, one of the most
general

A DNNF D is a boolean circuit with gates ∧,∨ such that:

inputs are labeled by literal x ,¬x
∧ are decomposable: if α and β are the input of an ∧-gate
then var(Dα) ∩ var(Dβ) = ∅

∨

∧ ∧ ∧

x1 x2 x3 ¬x1 ¬x2

(x1 ∧ x2)∨ (x2 ∧ x3)∨ (¬x1 ∧¬x2)

Which kind of data structure?

Rich literature on the subject, numerous target languages exist

In this talk: only (deterministic) DNNF, one of the most
general

A DNNF D is a boolean circuit with gates ∧,∨ such that:

inputs are labeled by literal x ,¬x
∧ are decomposable: if α and β are the input of an ∧-gate
then var(Dα) ∩ var(Dβ) = ∅

∨

∧ ∧ ∧

x1 x2 x3 ¬x1 ¬x2

(x1 ∧ x2)∨ (x2 ∧ x3)∨ (¬x1 ∧¬x2)

Supported PTIME queries

Given a DNNF D, we can in PTIME:

Find τ ∈ sat(D) in time O(|D|)
Enumerate sat(D) with delay O(|D| · |var(D)|)
Project D on partial assignments: D[x 7→ 0, y 7→ 1].

Existentially project D: ∃x .D

What about counting?

#P-hard

Main problem: overlap in the solution of ∨-gates

Supported PTIME queries

Given a DNNF D, we can in PTIME:

Find τ ∈ sat(D) in time O(|D|)
Enumerate sat(D) with delay O(|D| · |var(D)|)
Project D on partial assignments: D[x 7→ 0, y 7→ 1].

Existentially project D: ∃x .D

What about counting?

#P-hard

Main problem: overlap in the solution of ∨-gates

Deterministic DNNF

∨-gate with children α, β is deterministic if Dα ∧ Dβ is
UNSAT, i.e. sat(Dα) ∩ sat(Dβ) = ∅.
deterministic DNNF = all ∨-gates are deterministic

support model counting in PTIME: replace ∨ by + and ∧ by
×

∨

∧ ∧

x3 ¬x3 ∨

∧∧

x2 x1 ¬x1 ¬x2

Structure based-algorithms

When can we compile CNF-formula into DNNFs?

Inspiration: algorithms for #SAT based on the structure of
the formula

Idea: restrict the variables-clauses interaction

Structure based-algorithms

When can we compile CNF-formula into DNNFs?
Inspiration: algorithms for #SAT based on the structure of
the formula
Idea: restrict the variables-clauses interaction

x1

x2

x3

x4

x5

x6

x7

C1

C2

C3

C4

Figure:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ x5 ∨ x6) ∧ (x1 ∨ ¬x3 ∨ x5 ∨ ¬x7)

Structure based-algorithms

When can we compile CNF-formula into DNNFs?
Inspiration: algorithms for #SAT based on the structure of
the formula
Idea: restrict the variables-clauses interaction

x1

x2

x3

x4

x5

x6

x7

C1

C2

C3

C4

Figure:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ x5 ∨ x6) ∧ (x1 ∨ ¬x3 ∨ x5 ∨ ¬x7)

Structure based-algorithms

When can we compile CNF-formula into DNNFs?

Inspiration: algorithms for #SAT based on the structure of
the formula

Idea: restrict the variables-clauses interaction

x1 x2 x3

x4

x5

x6

x7

Figure:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ x5 ∨ x6) ∧ (x1 ∨ ¬x3 ∨ x5 ∨ ¬x7)

Structure based-algorithms

When can we compile CNF-formula into DNNFs?
Inspiration: algorithms for #SAT based on the structure of
the formula
Idea: restrict the variables-clauses interaction

x1 x2 x3

x4

x5

x6

x7

x1 x2 x3

x4

x5

x6

x7

Figure:
(x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x4 ∨ ¬x5) ∧ (x1 ∨ x5 ∨ x6) ∧ (x1 ∨ ¬x3 ∨ x5 ∨ ¬x7)

Structural tractability of #SAT

A class of graphs C is tractable for #SAT if:

Given F , one can decide if the graph of F is in C
If so, one can output #F in polynomial time

Examples:

#SAT is tractable on trees

#SAT is tractable on bounded treewidth graphs

. . .

Structural tractability of #SAT

A class of graphs C is tractable for #SAT if:

Given F , one can decide if the graph of F is in C
If so, one can output #F in polynomial time

Examples:

#SAT is tractable on trees

#SAT is tractable on bounded treewidth graphs

. . .

Structural tractability of #SAT

γ-acyclicity

disjoint branches

β-acyclicity

α-acyclicity

PS-width

Incidence
MIM-width

Incidence
clique-width

Modular inci-
dent treewidth

Neighborhood
diversity

Signed incidence
clique-width

Incidence
treewidth

Primal treewidth

β-hypertreewidth

Hypertreewidth

PTIME or FPT (i.e. f(k) · poly(n))
XP and W[1]-hard

(i.e. O(nf(k)))

Intractable

W[1]-hard

#SAT and knowledge compilation

Existing tools for #SAT based on exhaustive DPLL:

#F = #F [x 7→ 0] + #F [x 7→ 1]

+ caching + heuristics for choosing variables

Implicitely construct a deterministic DNNF (Huang, Darwiche)

The same is true for structural restriction based algorithms:

Theorem (Bova, C., Mengel, Slivovsky)

Every known structure-based algorithm for #SAT may be seen as
an implicit compilation of the formula into deterministic DNNF.

In particular, we can: count (with weights), enumerate,
projects, find minimal assignments ...

#SAT and knowledge compilation

Existing tools for #SAT based on exhaustive DPLL:

#F = #F [x 7→ 0] + #F [x 7→ 1]

+ caching + heuristics for choosing variables

Implicitely construct a deterministic DNNF (Huang, Darwiche)

The same is true for structural restriction based algorithms:

Theorem (Bova, C., Mengel, Slivovsky)

Every known structure-based algorithm for #SAT may be seen as
an implicit compilation of the formula into deterministic DNNF.

In particular, we can: count (with weights), enumerate,
projects, find minimal assignments ...

Limitations of structure-based algorithm

Known (structure-based) algorithms for #SAT = compilation
into DNNF

Hard instances for #SAT = lower bound on the size of
equivalent DNNF

Question

Can we always compile a CNF into a small DNNF?

If NP 6⊆ P/poly, no...

Can we prove it unconditionally?

Limitations of structure-based algorithm

Known (structure-based) algorithms for #SAT = compilation
into DNNF

Hard instances for #SAT = lower bound on the size of
equivalent DNNF

Question

Can we always compile a CNF into a small DNNF?

If NP 6⊆ P/poly, no...

Can we prove it unconditionally?

Communication complexity

General model:

f : {0, 1}A × {0, 1}B → {0, 1}, |A| ' |B|
Alice: ā ∈ {0, 1}A, Bob: b̄ ∈ {0, 1}B
Complexity of f : how many bits Alice and Bob have to
exchange in order to compute f (ā, b̄)?

Variations:

1 Complexity of f for a fixed partition A,B.

2 Complexity of f for the best partition A,B with |A| = |B| ± 1

3 Multipartition complexity of f where: an oracle sees the input
c̄ and choose the best partition A, B with |A| ' |B|

Communication complexity

General model:

f : {0, 1}A × {0, 1}B → {0, 1}, |A| ' |B|
Alice: ā ∈ {0, 1}A, Bob: b̄ ∈ {0, 1}B
Complexity of f : how many bits Alice and Bob have to
exchange in order to compute f (ā, b̄)?

Variations:

1 Complexity of f for a fixed partition A,B.

2 Complexity of f for the best partition A,B with |A| = |B| ± 1

3 Multipartition complexity of f where: an oracle sees the input
c̄ and choose the best partition A, B with |A| ' |B|

Communication complexity

General model:

f : {0, 1}A × {0, 1}B → {0, 1}, |A| ' |B|
Alice: ā ∈ {0, 1}A, Bob: b̄ ∈ {0, 1}B
Complexity of f : how many bits Alice and Bob have to
exchange in order to compute f (ā, b̄)?

Variations:

1 Complexity of f for a fixed partition A,B.

2 Complexity of f for the best partition A,B with |A| = |B| ± 1

3 Multipartition complexity of f where: an oracle sees the input
c̄ and choose the best partition A, B with |A| ' |B|

Lifting lower bounds

DNNF have small multipartition complexity

Theorem (Bova, C., Mengel, Slivovsky)

Let D be a DNNF. The multipartition complexity of the function
computed by D is at most log |D|.

Known lower bound on the multipartition complexity:

Theorem (Jukna, Schnigter)

There exists a family of 3-CNF having multipartition complexity
Ω(n + m), and thus no DNNF of size smaller than 2Ω(m+n).

We can actually construct a hard family of monotone 2-CNF

Lifting lower bounds

DNNF have small multipartition complexity

Theorem (Bova, C., Mengel, Slivovsky)

Let D be a DNNF. The multipartition complexity of the function
computed by D is at most log |D|.

Known lower bound on the multipartition complexity:

Theorem (Jukna, Schnigter)

There exists a family of 3-CNF having multipartition complexity
Ω(n + m), and thus no DNNF of size smaller than 2Ω(m+n).

We can actually construct a hard family of monotone 2-CNF

Conclusion

Structural restrictions of CNF-formulas = restrict
variables-clauses interaction

Efficient algorithms for #SAT can often be lifted to
knowledge compilation

Hard instances for these algorithms = lower bound for
knowledge compilation

	Structural restrictions for knowledge compilation

