Transfinite Lyndon words

Luc Boasson and Olivier Carton

LIAFA - CNRS and Université Paris Diderot

ALGA-2016 Marseille

Outline

History

Finite words

Transfinite words

History

Lyndon words: introduced by Lyndon in 1954.
Their enumeration gives the Witt's formula for the dimension of the homogeneous component $\mathcal{L}_{n}(A)$ of the free Lie algebra. If $\psi_{k}(d)$ is the number of such words of length d over an alphabet of size k, then

$$
\sum_{d \mid n} d \psi_{k}(d)=k^{n}
$$

By the Möbius inversion formula,

$$
\psi_{k}(n)=\frac{1}{n} \sum_{d \mid n} \mu(d) k^{\frac{n}{d}}
$$

Conjugacy

Definition (Conjugacy)

$$
\begin{gathered}
\quad w=\frac{u}{v} \\
\text { Two words } w \text { and } w^{\prime} \text { are }
\end{gathered}
$$

- conjugates if $w=u v$ and $w^{\prime}=v u$ for $u, v \in A^{*}$.
- proper conjugates if $w=u v$ and $w^{\prime}=v u$ for $u, v \in A^{+}$.

Conjugacy class: $[w]=\{v u: w=u v\}$.
Examples
$a a b a b$ and $a b a a b$ are conjugates.
$[a a b a b]=\{a a b a b, a b a b a, b a b a a, a b a a b, b a a b a\}$.
$a b a b$ is a proper conjugate of itself $a b a b$ $a a b a b$ is not a proper conjugate of itself

Primitivity and lexicographic ordering

Definition (Primitive word)

$$
w \neq \begin{array}{|l|l|l|}
\hline u & u & u \\
\hline
\end{array}
$$

The word w is primitive if it not equal to u^{k} for $k \geqslant 2$.
Examples
$a a b a b$ is primitive but $a b a b$ is not primitive.
Definition (Lexicographic ordering)

$$
w<w^{\prime} \quad \text { if } \quad\left\{\begin{array}{l}
w=u a v \text { and } w^{\prime}=u b v^{\prime} \text { for } a<b \\
w=u \text { and } w^{\prime}=u v
\end{array}\right.
$$

Lyndon words

Definition (Lyndon word)
A word $w \in A^{*}$ is Lyndon if w is strictly smaller for the lexicographic ordering than all its proper conjugates.

Examples

- a and b are Lyndon: no proper conjugate
- aabab is Lyndon: aabab < abaab<ababa<baaba<babaa
- $a b a b$ is not Lyndon: $a b a b=a b a b$
- $b a$ is not Lyndon: $a b<b a$

Alternative definitions

Proposition

The word w is Lyndon iff w is primitive and smaller that all its conjugates.

Examples

- aabab is Lyndon: aabab < abaab < ababa < baaba < babaa
- $a b a b$ is not Lyndon: $a b a b=(a b)^{2}$ is not primitive
- $b a$ is not Lyndon: $a b<b a$

Proposition

The word w is Lyndon iff w is (strictly) smaller that all its proper suffixes.

Examples

- aabab is Lyndon: aabab $<a b<a b a b<b<b a b$
- $b a$ is not Lyndon: $a<b a$

Factorization

Theorem (Lyndon 1954)
Each word $w \in A^{*}$ has a unique factorization $w=u_{1} \cdots u_{n}$ where each u_{i} is Lyndon and $u_{1} \geqslant u_{2} \geqslant \cdots \geqslant u_{n}$ (non-increasing).
D.E. Knuth suggested to call Lyndon words prime words.

Examples

$$
\begin{aligned}
a a b a b & =a a b a b \\
a b a b a & =a b \cdot a b \cdot a \\
b a b a a & =b \cdot a b \cdot a \cdot a \\
a b a a b & =a b \cdot a a b \\
b a a b a & =b \cdot a a b \cdot a
\end{aligned}
$$

Theorem (Duval 1980)
This factorization can be computed in linear time.

Ingredients

- Existence
- Each word has a (maybe increasing) factorization in Lyndon words, namely $u=a_{1} \cdot a_{2} \cdots a_{k}$ where $a_{i} \in A$.
- Fact: If u and v Lyndon and $u<v$ then $u v$ is also Lyndon:

$$
\begin{aligned}
a b a a b & =a \cdot b \cdot a \cdot a \cdot b \\
a b a a b & =a b \cdot a \cdot a \cdot b \\
a b a a b & =a b \cdot a \cdot a b \\
a b a a b & =a b \cdot a a b
\end{aligned}
$$

- Unicity

If $u=u_{1} \cdots u_{n}$ is a factorization in Lyndon words such that $u_{1} \geqslant u_{2} \geqslant \cdots \geqslant u_{n}$, then

- u_{1} is the longest prefix which is a Lyndon word,
- u_{n} is the smallest suffix for the lexicographic ordering.

Transfinite words

Definition

A transfinite word is a sequence $\left(a_{\beta}\right)_{\beta<\alpha}$ of symbols indexed by ordinals less than a given ordinal α called its length.

Definition (alternative for countable ones)
The class of transfinite words is the smallest class of "words"

- containing the symbols a, b, \ldots
- closed under finite concatenation and ω-concatenation: $\left(x, y \mapsto x y\right.$ and $\left.x_{0}, x_{1}, x_{2}, \ldots \mapsto x_{0} x_{1} x_{2} \cdots\right)$

Examples

- finite words like a, $a a b a b, \ldots$ of length 1 and 5
- infinite words like $a b^{\omega},(a b)^{\omega}$ and $a b a^{2} b a^{3} b \cdots$ of length ω
- $a b^{\omega} b$ and $a b^{\omega}(a b)^{\omega} a b a$ of length $\omega+1$ and $\omega \cdot 2+3$
- $\left(a b^{\omega}\right)^{\omega} a$ and $a b^{\omega} a^{2} b^{\omega} a^{3} b^{\omega} \cdots$ of length $\omega^{2}+1$ and ω^{2}.
- and many more like $(a b)^{\omega^{\omega}}$ of length ω^{ω},

Transfinite Lyndon words

Definition

A transfinite word is Lyndon iff it is primitive (not equal to u^{α} for $\alpha \geqslant 2$) and smaller than all its proper suffixes.

Examples

- aabab is Lyndon
- $a b^{\omega}$ is Lyndon: $a b^{\omega}<b^{\omega}=b^{\omega}=\cdots$
- $a b a b^{2} a b^{3} \cdots$ is Lyndon: $a b a b^{2} \cdots<a b^{2} a b^{3} \cdots<$
- $(a b)^{\omega} b$ is Lyndon: $(a b)^{\omega} b<b<(b a)^{\omega} b$

This word is equal to its proper suffix $(a b)^{-1}\left[(a b)^{\omega} b\right]$.

- $(a b)^{\omega}$ is not Lyndon: not primitive
- $a b a^{2} b a^{3} b \cdots$ is not Lyndon: $a^{2} b a^{3} b a^{4} b \cdots<a b a^{2} b a^{3} b \cdots$

Factorizations

$$
\begin{aligned}
(a b)^{\omega} & =a b \cdot a b \cdot a b \cdots \\
a b a^{2} a^{3} b \cdots & =a b \cdot a^{2} b \cdot a^{3} b \cdots
\end{aligned}
$$

Problem

$$
a b a^{2} a^{3} b \cdots b=a b \cdot a^{2} b \cdot a^{3} b \cdots b \text { is wrong because } a b<b
$$

Factorization theorem

Theorem

Any transfinite word x has a unique locally non-increasing factorization $x=\prod_{\beta<\alpha} u_{\beta}$ in Lyndon words.

- Locally non-increasing a is a relaxation of non-increasing.
- It only allows increase at limits where cofinally strict decreases occur before.

Examples

- $a b a^{2} b a^{3} b \cdots=a b \cdot a^{2} b \cdot a^{3} b \cdots: a b>a^{2} b>a^{3} b \cdots$
- $a b a^{2} b a^{3} b \cdots b=a b \cdot a^{2} b \cdot a^{3} b \cdots b: a b>a^{2} b>\cdots<b$ is locally non-increasing
- $(a b)^{\omega}=a b \cdot a b \cdots=(a b)^{\omega}$
- $(a b)^{\omega} b$ is Lyndon: $a b=a b=\cdots<b$ is not locally non-increasing
- $(b a)^{\omega}=b \cdot a b \cdot a b \cdots=b \cdot(a b)^{\omega}: a b=a b \cdots<b$
- $(b a)^{\omega} b=b \cdot(a b)^{\omega} b: b>(a b)^{\omega} b$

Rational words

Definition (Rational words)
The class of rational words is the smallest class of "words"

- containing the symbols a, b, \ldots
- closed under finite concatenation and ω-iteration:

$$
\left(x, y \mapsto x y \text { and } x \mapsto x x x \cdots=x^{\omega}\right)
$$

Examples

- finite words like a, aabab
- ultimately periodic infinite words like $(b b a)^{\omega}$
- $a b a^{2} b a^{3} b \cdots$ is not rational
- $\left(a^{\omega} b\right)^{\omega} a^{\omega}$

Factorization of rational words

Theorem

For any rational word x, there exists a finite decreasing sequence of rational prime words $u_{1}>\cdots>u_{n}$ and ordinals $\alpha_{1}, \ldots, \alpha_{n}$ less than ω^{ω} such that $x=u_{1}^{\alpha_{1}} \cdots u_{n}^{\alpha_{n}}$.

Examples

- $\left(a^{\omega} b\right)^{\omega} a^{\omega}=a^{\omega} b \cdot a^{\omega} b \cdots a \cdot a \cdot a \cdots=\left(a^{\omega} b\right)^{\omega} \cdot a^{\omega}$ $=\left|\left(a^{\omega} b \mid\right)^{\omega}\right|(a \mid)^{\omega} \mid$
- $(b b a)^{\omega}=b \cdot b \cdot a b b \cdot a b b \cdots=b^{2}(a b b)^{\omega}$

$$
=|b| b\left|a(b b \mid a)^{\omega}\right|
$$

- $\left(b^{\omega} a^{\omega}\right)^{\omega}=b \cdot b \cdot b \cdots a^{\omega} b^{\omega} \cdot a^{\omega} b^{\omega} \cdot a^{\omega} b^{\omega} \cdots=b^{\omega} \cdot\left(a^{\omega} b^{\omega}\right)^{\omega}$ $=\left|(b \mid)^{\omega}\right|\left(a^{\omega} b^{\omega} \mid\right)^{\omega} \mid$

Computation of this factorization

Definition (Transformation τ)

$$
\begin{aligned}
\tau(a) & =a \\
\tau\left(e e^{\prime}\right) & =\tau(e) \tau\left(e^{\prime}\right) \\
\tau\left(e^{\omega}\right) & =\tau(e) \tau(e)^{\omega}
\end{aligned}
$$

Examples

$$
\begin{aligned}
\tau\left((b b a)^{\omega}\right) & =b b a(b b a)^{\omega} \\
\tau\left(\left(a^{\omega} b\right)^{\omega} a^{\omega}\right) & =a a^{\omega} b\left(a a^{\omega} b\right)^{\omega} a a^{\omega}
\end{aligned}
$$

Theorem
The factorization of a rational word x given by an expression e can described by inserting $\|$ and \mid in $\tau(e)$ and these insertions can be computed in cubic time in the size of $\tau(e)$.

