The Complexity of Rational Synthesis

Rodica Bozianu Condurache^(1,2), Emmanuel Filiot⁽²⁾, Raffaella Gentilini⁽³⁾ and Jean-François Raskin⁽²⁾

(1) LACL, Université Paris-Est Créteil
(2) Université Libre de Bruxelles
(3) University of Perugia, Italy

GT ALGA, 12th April 2016

• Classical reactive system synthesis:

- One system and one antagonist environment
- Synthesize a system to ensure the specification

- Synthesis \approx two-player zero-sum game
- Rational synthesis:
 - Multi-component environment
 - Non-antagonist objectives
 - Rational synthesis \approx multiplayer turn-based game

Multiplayer Games

• $\mathcal{G} = \langle \Omega, V, (V_i)_{i \in \Omega}, E, v_0, (\mathcal{O}_i)_{i \in \Omega} \rangle$ where $\Omega = \{0, 1, ..., k\}$ and $\mathcal{O}_i \subseteq V^{\omega}$

• $S_0 = \{v_0, v_1, \stackrel{\smile}{,} \stackrel{\smile}{,}\}$ $S_1 = \{v_0, v_1, v_2, \stackrel{\smile}{,}\}$ $S_2 = \{v_0, v_2, \stackrel{\smile}{,}\}$

• $\mathcal{O}_i = (S_i)^{\omega}, \ 0 \leq i \leq 2$

Strategies and Nash Equilibria

- Strategy of Player $i : \sigma_i : V^* V_i \to V$
- Strategy profile $\bar{\sigma} = (\sigma_i)_{i \in \Omega}$,
- $pay(\bar{\sigma}) \in \{0,1\}^n$ s.t. $pay(\bar{\sigma})[i] = 1$ iff $out(\bar{\sigma}) \in \mathcal{O}_i$

Strategies and Nash Equilibria

- Strategy of Player $i : \sigma_i : V^* V_i \to V$
- Strategy profile $\bar{\sigma} = (\sigma_i)_{i \in \Omega}$,
- $pay(\bar{\sigma}) \in \{0,1\}^n$ s.t. $pay(\bar{\sigma})[i] = 1$ iff $out(\bar{\sigma}) \in \mathcal{O}_i$

Definition (Nash Equilibrium (Nash51))

 $\bar{\sigma}$ is Nash Equilibrium iff no incentive to deviate

 $pay(\bar{\sigma}_{-i}, \tau_i)[i] \leq pay(\bar{\sigma})[i] \ \forall i \in \Omega \text{ and } \tau_i \text{ strategy of Player } i$

• $\bar{\sigma}$ is 0-fixed Nash Equilibrium iff

 $pay(\bar{\sigma}_{-i}, \tau_i)[i] \leq pay(\bar{\sigma})[i] \quad \forall i \in \Omega \setminus \{0\} \text{ and } \tau_i \text{ strategy of Player } i$

• Rational synthesis = find winning strategy for the system (Player 0) against an multi-component environment (Players 1, ..., k) with rational behavior.

Definition (Rational Synthesis Problems)

Given as input a game \mathcal{G} with winning objectives $(\mathcal{O}_i)_{i\in\Omega}$, the two settings: **cooperative:**¹ Is there a 0-fixed Nash equilibrium $\bar{\sigma}$ such that $pay(\bar{\sigma})[0] = 1$? **non-cooperative:**² Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

¹D. Fisman, O. Kupferman, and Y. Lustig. Rational synthesis. CoRR, abs/0907.3019, 2009.

Rational Synthesis with LTL Objectives[Kupferman et al.]

 $\bar{\sigma}$ is 0-fixed NE iff $\psi_{0Nash}(\bar{\sigma}) \coloneqq \bigwedge_{i=1}^{k} \llbracket \tau_i \rrbracket \left(\flat(\bar{\sigma}_{-i}, \tau_i)\varphi_i \to \flat(\bar{\sigma})\varphi_i \right)$ holds

• Reduce to Model Checking of SL[NG] formulas with depth 1:

Cooperative:
$$\psi_{cRS} \coloneqq \langle\!\langle \sigma_0 \rangle\!\rangle \langle\!\langle \sigma_1 \rangle\!\rangle ... \langle\!\langle \sigma_k \rangle\!\rangle (\psi_{0Nash}(\bar{\sigma}) \land \varphi_0)$$

non-Cooperative: $\psi_{noncRS} \coloneqq \langle\!\langle \sigma_0 \rangle\!\rangle [\![\sigma_1]\!] ... [\![\sigma_k]\!] (\psi_{0Nash}(\bar{\sigma}) \to \varphi_0)$

Theorem (Cooperative and non-cooperative rational-synthesis complexity)

The cooperative and non-cooperative rational-synthesis problems are 2EXPTIME-complete.

Rational Synthesis with Particular Objectives

	Cooperative		Non-Cooperative	
	Unfixed k	Fixed k	Unfixed k	Fixed k
Safety	NP-c	Ptime-c	PSPACE-c	Ptime-c
Reachability	NP-c	Ptime-c	PSPACE-c	Ptime-c
Büchi	PTIME-c ³	PTIME-c ³	PSPACE-c	Ptime-c
co-Büchi	NP-c ³	Ptime-c	PSPACE-c	Ptime-c
Parity	NP-c ³	$UP \cap co - UP$, parity-h	EXPTIME, PSPACE-h	PSPACE, NP-h, coNP-h
Streett	NP-c ³	NP ³ , NP-hard	EXPTIME, PSPACE-h	PSPACE-c
Rabin	<i>P^{NP}</i> , NP-h, coNP-h	<i>P^{NP}</i> , coNP−h	EXPTIME, PSPACE-h	PSPACE-c
Muller	PSPACE-c	PSPACE-c	EXPTIME, PSPACE-h	PSPACE-c
LTL	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²

Table: Complexity of rational synthesis for k players.

 $\begin{aligned} &\text{Safe}(S) = \{\pi \in V^{\omega} \mid \forall n \ge 0 : \pi(n) \in S\} & \text{Büchi} (F) = \{\pi \in V^{\omega} \mid \inf(\pi) \cap F \neq \emptyset\} \\ &\text{Reach}(T) = \{\pi \in V^{\omega} \mid \exists n \ge 0 : \pi(n) \in T\} & \text{Muller}(\mu) = \{\pi \in V^{\omega} \mid \inf(\pi) \models \mu\} \\ &\text{If } p : V \to \mathbb{N}, \text{ Parity}(p) = \{\pi \in V^{\omega} \mid \min\{p(\pi(n)) \mid n \ge 0 \text{ and } \pi(n) \in \inf(\pi)\} \text{ is even } \} \end{aligned}$

R.Bozianu, E.Filiot, R.Gentilini, J.F.Raskin

²O. Kupferman, G. Perelli, and M. Y. Vardi. Synthesis with rational environments. In Multi-Agent Systems - 12th European Conference, EUMAS 2014

LTL Characterization of 0-fixed Nash Equilibria For Safety, Reachability and tail objectives

- Compute W_i : the set of states from which Player i has a winning strategy
- If \mathcal{O}_i are either all reachability or all tail objectives definable by LTL formula φ_i :

$$\phi_{\mathsf{0Nash}}^{\mathcal{G}} = \bigwedge_{i=1}^{k} (\neg \varphi_i \to \Box \neg W_i^{\mathcal{G}})$$

• If $\mathcal{O}_i = \text{Safe}(S_i)$ for some $S_i \subseteq V$:

$$\phi_{\mathsf{ONash}}^{\mathcal{G}} = \bigwedge_{i=1}^{k} ((\neg W_{i}^{\mathcal{G}} \ \mathcal{U} \ \neg S_{i}) \lor \Box S_{i})$$

Lemma (Characterization of 0-fixed Nash Equilibria)

Let \mathcal{G} be a multiplayer game with either all safety, all reachability, or all tail objectives, definable in LTL[\mathcal{G}]. Then, the following hold:

- For all π ∈ Plays(G), if π ⊨ φ^G_{0Nash}, then ∃σ̄ a 0-fixed Nash equilibrium in G s.t. out(σ̄) = π,
- **2** For all 0-fixed Nash equilibrium $\bar{\sigma}$ in \mathcal{G} , $out(\bar{\sigma}) \models \phi_{0Nash}^{\mathcal{G}}$.

Lemma

There is a solution to the cooperative synthesis problem iff there exists a path $\pi \in Plays(\mathcal{G})$ such that $\pi \models \phi_{0Nash}^{\mathcal{G}} \land \varphi_0$.

• If it exists such π , it exists $\pi = x(y)^{\omega}$ with |xy| polynomial in \mathcal{G}

Theorem

The CRSP is

- PTIME for Büchi objectives (by Ummels).
- NP-COMPLETE for Safety, Reachability, co-Büchi, Parity and Streett objectives
- PSPACE, NP-h and co-NP-hard for Rabin objectives
- PSpace-complete for Muller objectives

non-cooperative: Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

• First attempt: two player zero-sum game with objective

$$\mathcal{O} = \{\pi \mid \pi \vDash \phi^{\mathcal{G}}_{\mathsf{0Nash}} \to \varphi_{\mathsf{0}}\}$$

non-cooperative: Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

• First attempt: two player zero-sum game with objective

$$\mathcal{O} = \{\pi \mid \pi \vDash \phi^{\mathcal{G}}_{\mathsf{0Nash}} \to \varphi_{\mathsf{0}}\}$$

(Counterexample!)

Reachability objectives: $R_0 = \{2\}, R_1 = \{3\}$ $W_1 = \{3\}$ Zero-sum game objective: $(\Box \neg 3 \rightarrow \Box \neg 3) \rightarrow \Diamond 2 \equiv \Diamond 2$

non-cooperative: Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

• First attempt: two player zero-sum game with objective

$$\mathcal{O} = \{\pi \mid \pi \vDash \phi^{\mathcal{G}}_{\mathsf{0Nash}} \to \varphi_{\mathsf{0}}\}$$

(Counterexample!)

Reachability objectives: $R_0 = \{2\}, R_1 = \{3\}$ $W_1 = \{3\}$ Zero-sum game objective: $(\Box \neg 3 \rightarrow \Box \neg 3) \rightarrow \Diamond 2 \equiv \Diamond 2$

non-cooperative: Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

• First attempt: two player zero-sum game with objective

$$\mathcal{O} = \{\pi \mid \pi \vDash \phi^{\mathcal{G}}_{\mathsf{0Nash}} \to \varphi_{\mathsf{0}}\}$$

(Counterexample!)

Reachability objectives: $R_0 = \{2\}, R_1 = \{3\}$ $W_1 = \{3\}$ Zero-sum game objective: $(\Box \neg 3 \rightarrow \Box \neg 3) \rightarrow \Diamond 2 \equiv \Diamond 2$

non-cooperative: Is there a strategy σ_0 for Player 0 such that for any 0-fixed Nash equilibrium $\bar{\sigma} = \langle \sigma_0, \dots, \sigma_k \rangle$, we have $pay(\bar{\sigma})[0] = 1$?

• First attempt: two player zero-sum game with objective

$$\mathcal{O} = \{\pi \mid \pi \vDash \phi^{\mathcal{G}}_{\mathsf{0Nash}} \to \varphi_{\mathsf{0}}\}$$

(Counterexample!)

Reachability objectives: $R_0 = \{2\}, R_1 = \{3\}$ $W_1 = \{3\}$ Zero-sum game objective: $(\Box \neg 3 \rightarrow \Box \neg 3) \rightarrow \Diamond 2 \equiv \Diamond 2$

イロト イポト イヨト イヨト

Fix σ_0 . Only 0-fixed NE w.r.t. σ_0 should be considered !!!

R.Bozianu, E.Filiot, R.Gentilini, J.F.Raskin

GT ALGA 2016 11 / 19

NCRSP Solution

• Desired objective: find σ_0 s.t. $\forall \pi$ in $\mathcal{G}[\sigma_0]$,

$$\pi \vDash \phi_{\mathsf{ONash}}^{\mathcal{G}[\sigma_0]} \to \varphi_0$$

• May be difficult to compute $W_i^{\mathcal{G}[\sigma_0]}$!

Solution:

• Encode $\sigma_0: V^* V_0 \rightarrow V$ as a $(V \cup \{*_i \mid 1 \le i \le k\})$ -labelled V-tree t_{σ_0}

Define a nondeterministic tree automaton \mathcal{T} s.t.

 $\mathcal{L}(\mathcal{T}) = \{ t_{\sigma_0} \mid \sigma_0 \text{ is solution to NCRSP} \}$

イロト イヨト イヨト イヨト

• \mathcal{T} guesses sufficient states in $W_i^{\mathcal{G}[\sigma_0]}$

Nondeterministic Tree automaton ${\mathcal T}$

$\mathcal{T}=\mathcal{C}\times\mathcal{U}$

- Deterministic Safety tree automaton C:
 - accepts only proper encodings of strategies σ_0 of Player 0
 - polynomial size in ${\cal G}$
- Nondeterministic tree automaton ${\cal U}$
 - for each branch π of t_{σ_0} compatible to σ_0 , check that:
 - $\pi \in \mathcal{O}_0$ or
 - guess at least one player that wants to deviate from π and check he has a winning strategy under σ_0
 - exponential size in \mathcal{G}

Nondeterministic Tree automaton $\ensuremath{\mathcal{U}}$

• States:
$$q = (W, D, v) \in 2^{\Omega} \times 2^{\Omega} \times V$$

- W : the set of players that have winning strategy from v
- D: the set of players that have a winning deviation from the current prefix

•
$$\delta(q, v') = ((W, D, v'), v')$$
 for $q = (W, D, v)$

- $\delta(q, *_i)$ for q = (W, D, v) :
 - 1. $i \in \overline{W} \cap \overline{D}$: either do not guess anything or guess that Player i has a winning strategy
 - 2. $i \in W \cap \overline{D}$: guess the next move according to the winning strategy
 - 3. $i \in \overline{W} \cap D$: just propagate the sets D and W
 - 4. $i \in D \cap W$: never reachable by construction

Nondeterministic Tree automaton \mathcal{U}

• On each branch η of a run in \mathcal{U} , (W, D) is monotone w.r.t.

$$(W,D) \subseteq (W',D')$$
 iff $D \subseteq D'$ and $W \cup D \subseteq W' \cup D'$

- D and W stabilize on $\lim_{D}(\eta)$ and $\lim_{W}(\eta)$
- Accepting condition: branches η s.t.

$$\left(\eta|_{V} \in \mathcal{O}_{0} \lor \bigvee_{i=1}^{k} \left(\eta|_{V} \notin \mathcal{O}_{i} \land \varphi_{\exists dev}(i,\eta)\right)\right) \land \bigwedge_{i \in \lim_{W} (\eta)} \eta|_{V} \in \mathcal{O}_{i}$$

- $\forall i \in lim_W(\eta)$, Player *i* wins
- and
 - either Player 0 wins
 - or $\exists i \in \Omega$ s.t. Player *i* loses but has a winning deviation ($i \in lim_D(\eta)$ for tail objectives)

${\mathcal T}$ as a two-player game ${\mathcal G}_{{\mathcal T}}$

- Two-player zero-sum game $\mathcal{G}_\mathcal{T}$:
 - $\bullet\,$ Eve: constructs a tree and a run in ${\cal T}$ on this tree
 - guesses σ_0 , W_i and constructs winning strategy for Player *i* from states in W_i
 - Adam: prove the run is not accepting by choosing directions in the tree
 - plays for environment components (players 1...k)
- \bullet Eve's objective: the accepting condition of ${\cal T}$

Solve $\mathcal{G}_{\mathcal{T}}$ for particular objectives

- Safety, Reachability, Büchi, co-Büchi: reduce to finite-duration game $\mathcal{G}_{\mathcal{T}}^f$
 - The plays of the game $\mathcal{G}_{\mathcal{T}}^{f}$ are of polynomial length in the size of the initial game \mathcal{G} .
 - \bullet Solve $\mathcal{G}_{\mathcal{T}}^{\mathit{f}}$ on-the-fly by a PTIME alternating algorithm
- Muller: reduce to a two-player zero-sum parity game with an exponential number of states but a polynomial number of priorities
 - use Last Appearance Record (LAR) construction
 - solve in EXPTIME in number of priorities

Solve $\mathcal{G}_{\mathcal{T}}$ for particular objectives

Theorem

For each $\mathcal{X} \in \{\text{Reach}, \text{Safe}, \text{Buchi}, \text{coBuchi}, \text{Street}, \text{Rabin}, \text{Parity}, \text{Muller}\}$, the non-cooperative rational synthesis problem in multiplayer \mathcal{X} -games is PSPACE-HARD.

Proof by reduction from QBF.

・ロト ・回ト ・ヨト ・

	Cooperative		Non-Cooperative	
	Unfixed k	Fixed k	Unfixed k	Fixed k
Safety	NP-c	Ptime-c	PSPACE-c	Ptime-c
Reachability	NP-c	Ptime-c	PSPACE-c	Ptime-c
Büchi	PTIME-c ³	PTIME-c ³	PSPACE-c	Ptime-c
co-Büchi	NP-c ³	Ptime-c	PSPACE-c	Ptime-c
Parity	NP-c ³	<i>UP</i> ∩ <i>co</i> – <i>UP</i> , parity-h	EXPTIME, PSPACE-h	PSPACE, NP-h, coNP-h
Streett	NP-c ³	NP ³ , NP-hard	EXPTIME, PSPACE-h	PSPACE-c
Rabin	<i>P^{NP}</i> , NP-h, coNP-h	<i>P[№]</i> , coNP-h	EXPTIME, PSPACE-h	PSPACE-c
Muller	PSPACE-c	PSPACE-c	EXPTIME, PSPACE-h	PSPACE-c
LTL	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²

Table: Complexity of rational synthesis for k players.

◆□ > ◆□ > ◆臣 > ◆臣 >

	Cooperative		Non-Cooperative	
	Unfixed k	Fixed k	Unfixed k	Fixed k
Safety	NP-c	Ptime-c	PSPACE-c	Ptime-c
Reachability	NP-c	Ptime-c	PSPACE-c	Ptime-c
Büchi	PTIME-c ³	PTIME-c ³	PSPACE-c	Ptime-c
co-Büchi	NP-c ³	Ptime-c	PSPACE-c	Ptime-c
Parity	NP-c ³	<i>UP</i> ∩ <i>co</i> – <i>UP</i> , parity-h	EXPTIME, PSPACE-h	PSPACE, NP-h, coNP-h
Streett	NP-c ³	NP ³ , NP-hard	EXPTIME, PSPACE-h	PSPACE-c
Rabin	<i>P^{NP}</i> , NP-h, coNP-h	<i>₽[№]</i> , coNP-h	EXPTIME, PSPACE-h	PSPACE-c
Muller	PSPACE-c	PSPACE-c	EXPTIME, PSPACE-h	PSPACE-c
LTL	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²	2Exptime-c ²

Table: Complexity of rational synthesis for k players.

• Future work: other notions of rationality, e.g. secure equilibria, doomsday equilibria or subgame perfect equilibria

Thank you!