
A Generalised Twinning Property
for Minimisation

of Cost Register Automata

Laure Daviaud
LIP, ENS Lyon

Joint work with P-A.Reynier and J-M.Talbot
LIF, Aix-Marseille Université

Journées ALGA, 11-12/04/16

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Given a word w ∈ {a, b}∗, compute {|w |a, |w |b}.

union

a : +1

b : +0

a : +0

b : +1

{Xa,Xb}

a :

{
Xa := Xa + 1
Xb := Xb

b :

{
Xa := Xa

Xb := Xb + 1

Question: How many values do we need to keep in memory?

2/15

A first example

Non deterministic finite automaton whose transitions are weighted by
elements of a semiring −→ here (Pf (G),∪, ·), with (G , ·) a group

+ an function t from the final states to G .

Weight of a run ρ: ω(ρ) = product of the weights of the transitions

Function: w 7→ {ω(ρ)

t(q)

| ρ accepting run labelled by w

ending in q

}

0

1

a : 1

b : 0

a : 0

b : 1

a
: 1

b : 1

a : 1 (Z,+)

[[W]](w) = {|w |a, |w |a + 1}
if w ends with an a

[[W]](w) = {|w |b}
if w ends with a b

3/15

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by
elements of a semiring −→ here (Pf (G),∪, ·), with (G , ·) a group
+ an function t from the final states to G .

Weight of a run ρ: ω(ρ) = product of the weights of the transitions

Function: w 7→ {ω(ρ)t(q) | ρ accepting run labelled by w ending in q}

0

1

a : 1

b : 0

a : 0

b : 1

a
: 1

b : 1

a : 1 (Z,+)

[[W]](w) = {|w |a, |w |a + 1}
if w ends with an a

[[W]](w) = {|w |b}
if w ends with a b

3/15

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by
elements of a semiring −→ here (Pf (G),∪, ·), with (G , ·) a group
+ an function t from the final states to G .

Weight of a run ρ: ω(ρ) = product of the weights of the transitions

Function: w 7→ {ω(ρ)t(q) | ρ accepting run labelled by w ending in q}

0

1

a : 1

b : 0

a : 0

b : 1

a
: 1

b : 1

a : 1 (Z,+)

[[W]](w) = {|w |a, |w |a + 1}
if w ends with an a

[[W]](w) = {|w |b}
if w ends with a b

3/15

Weighted automata (in a restricted case)

Deterministic finite state machine with registers + an output function

Register updates: X := Yα with α ∈ G .

{Xa, Xa + 1}

{Xb}

xxxxxxxxxxxxxxxxxx a

:

{
Xa := Xa + 1
Xb := Xb

xxxxxxxxxxxxxxxxxx b

:

{
Xa := Xa
Xb := Xb + 1

a

:

{ Xa := Xa + 1

Xb := Xb

b

:

{
Xa := XaXb := Xb + 1

a

:

{
Xa := Xa + 1
Xb := Xb

{
Xa := Xa
Xb := Xb + 1

:

b

4/15

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function

Register updates: X := Yα with α ∈ G .

{Xa, Xa + 1}

{Xb}

xxxxxxxxxxxxxxxxxx a

:

{
Xa := Xa + 1
Xb := Xb

xxxxxxxxxxxxxxxxxx b

:

{
Xa := Xa
Xb := Xb + 1

a

:

{ Xa := Xa + 1

Xb := Xb

b

:

{
Xa := XaXb := Xb + 1

a

:

{
Xa := Xa + 1
Xb := Xb

{
Xa := Xa
Xb := Xb + 1

:

b

4/15

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function

Register updates: X := Yα with α ∈ G .

{Xa, Xa + 1}

{Xb}

xxxxxxxxxxxxxxxxxx a :

{
Xa := Xa + 1
Xb := Xb

xxxxxxxxxxxxxxxxxx b :

{
Xa := Xa
Xb := Xb + 1

a :

{ Xa := Xa + 1

Xb := Xb

b :

{
Xa := XaXb := Xb + 1

a :

{
Xa := Xa + 1
Xb := Xb

{
Xa := Xa
Xb := Xb + 1

: b

4/15

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function

Register updates: X := Yα with α ∈ G .

{Xa, Xa + 1}

{Xb}

xxxxxxxxxxxxxxxxxx a :

{
Xa := Xa + 1
Xb := Xb

xxxxxxxxxxxxxxxxxx b :

{
Xa := Xa
Xb := Xb + 1

a :

{ Xa := Xa + 1

Xb := Xb

b :

{
Xa := XaXb := Xb + 1

a :

{
Xa := Xa + 1
Xb := Xb

{
Xa := Xa
Xb := Xb + 1

: b

4/15

Cost register automata (in a restricted case too)

Over an infinitary group,
characterise (effectively) the register complexity

of a function computed by
a finite-valued weighted automaton.

for all α, β, γ ∈ G such that αβγ 6= β, |{αnβγn | n ∈ N}| = +∞
ex: (Z,+), (R,×), free group generated by a finite alphabet

Minimal number of registers
needed to compute

the function by a CRA
special case in [Alur, Raghothaman]

There is ` s.t. for all
words w , |f (w)| 6 `
`-valued = `-ambiguous
[Filiot, Gentilini, Raskin]

Why infinitary group ?... See later !

5/15

The question

Over an infinitary group,
characterise (effectively) the register complexity

of a function computed by
a finite-valued weighted automaton.

for all α, β, γ ∈ G such that αβγ 6= β, |{αnβγn | n ∈ N}| = +∞
ex: (Z,+), (R,×), free group generated by a finite alphabet

Minimal number of registers
needed to compute

the function by a CRA
special case in [Alur, Raghothaman]

There is ` s.t. for all
words w , |f (w)| 6 `
`-valued = `-ambiguous
[Filiot, Gentilini, Raskin]

Why infinitary group ?... See later !

5/15

The question

Over an infinitary group,
characterise (effectively) the register complexity

of a function computed by
a finite-valued weighted automaton.

for all α, β, γ ∈ G such that αβγ 6= β, |{αnβγn | n ∈ N}| = +∞
ex: (Z,+), (R,×), free group generated by a finite alphabet

Minimal number of registers
needed to compute

the function by a CRA
special case in [Alur, Raghothaman]

There is ` s.t. for all
words w , |f (w)| 6 `
`-valued = `-ambiguous
[Filiot, Gentilini, Raskin]

Why infinitary group ?... See later !

5/15

The question

Over an infinitary group,
characterise (effectively) the register complexity

of a function computed by
a finite-valued weighted automaton.

for all α, β, γ ∈ G such that αβγ 6= β, |{αnβγn | n ∈ N}| = +∞
ex: (Z,+), (R,×), free group generated by a finite alphabet

Minimal number of registers
needed to compute

the function by a CRA
special case in [Alur, Raghothaman]

There is ` s.t. for all
words w , |f (w)| 6 `
`-valued = `-ambiguous
[Filiot, Gentilini, Raskin]

Why infinitary group ?... See later !

5/15

The question

Over an infinitary group,
characterise (effectively) the register complexity

of a function computed by
a finite-valued weighted automaton.

for all α, β, γ ∈ G such that αβγ 6= β, |{αnβγn | n ∈ N}| = +∞
ex: (Z,+), (R,×), free group generated by a finite alphabet

Minimal number of registers
needed to compute

the function by a CRA
special case in [Alur, Raghothaman]

There is ` s.t. for all
words w , |f (w)| 6 `
`-valued = `-ambiguous
[Filiot, Gentilini, Raskin]

Why infinitary group ?... See later !
5/15

The question

w 7→ {|w |a, |w |a + 1} in (Z,+)

0

0

a : 1

b : 0

a : 1

b : 0

a : 1,
b : 0

a : 2, b : 1

Given α, β ∈ G , the delay between α and β is α−1β. It is denoted
by delay(α, β).

Definition

6/15

A very very simple example

w 7→ {|w |a, |w |a + 1} in (Z,+)

0

0

a : 1

b : 0

a : 1

b : 0

a : 1,
b : 0

a : 2, b : 1

Given α, β ∈ G , the delay between α and β is α−1β. It is denoted
by delay(α, β).

Definition

6/15

A very very simple example

A weighted automaton satisfies the twinning property if for all
initial states p, p′ and co-accessible states q, q′, for all words u, v
such that:

p u:α−−→ q v :β−−→ q

p′ u:α′
−−→ q′ v :β′

−−→ q′

then delay(α, α′) = delay(αβ, α′β′)

Definition

A weighted automaton W satisfies the twinning property
iff [[W]] has register complexity 1
iff [[W]] is computed by a deterministic weighted automaton

7/15

Twinning property [Choffrut]

LetW be a finite-valued weighted automaton over an infinitary
group, and k be a positive integer.
The following assertions are equivalent:
� W satisfies the twinning property of order k,
� [[W]] has register complexity k.

Theorem

8/15

Generalisation

The weighted automaton satisfies the twinning property of order k if for all
q0,j initial and qk,j co-accessible such that:

q0,0 q1,0 q2,0 qk,0
u1|α1,0 u2|α2,0

v1|β1,0 v2|β2,0 vk |βk,0

q0,1 q1,1 q2,1 qk,1
u1|α1,1 u2|α2,1

v1|β1,1 v2|β2,1 vk |βk,1

q0,k q1,k q2,k qk,k
u1|α1,k u2|α2,k

v1|β1,k v2|β2,k vk |βk,k

k
+
1
ru
ns

there are j 6= j ′ such that for all i ∈ {1, . . . , k},
delay(α1,j · · ·αi,j , α1,j′ · · ·αi,j′) = delay(α1,j · · ·αi,jβi,j , α1,j′ · · ·αi,j′βi,j′)

9/15

Twinning Property of order k

0

0

a : 1

b : 0

a : 1

b : 0

a : 1,
b : 0

a : 2, b : 1

� Commutative case Vs non commutative case
� Decidability
� Infinitary here !!!

10/15

Twinning property of order k

LetW be a finite-valued weighted automaton over an infinitary
group, and k be a positive integer.
The following assertions are equivalent:
� W satisfies the twinning property of order k,
� [[W]] has register complexity k,

� [[W]] satisfies the k-bounded variation property.

Theorem

And everything is effective...

11/15

Main result

LetW be a finite-valued weighted automaton over an infinitary
group, and k be a positive integer.
The following assertions are equivalent:
� W satisfies the twinning property of order k,
� [[W]] has register complexity k,
� [[W]] satisfies the k-bounded variation property.

Theorem

And everything is effective...

11/15

Main result

A function f : A+ → G satisfies the 1-bounded variation prop if:
for all n, there is N such that for all w0,w1 ∈ A+,

d(w0,w1) 6 n

=⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n • •

f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → G satisfies the 1-bounded variation prop if:

for all n, there is N such that for all w0,w1 ∈ A+,
d(w0,w1) 6 n

=⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n • •

f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → G satisfies the 1-bounded variation prop if:
for all n,

there is N such that for all w0,w1 ∈ A+,
d(w0,w1) 6 n

=⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n • •

f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → G satisfies the 1-bounded variation prop if:
for all n, there is N

such that for all w0,w1 ∈ A+,
d(w0,w1) 6 n

=⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n • •

f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → G satisfies the 1-bounded variation prop if:
for all n, there is N such that for all w0,w1 ∈ A+,

d(w0,w1) 6 n

=⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n

• •
f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → G satisfies the 1-bounded variation prop if:
for all n, there is N such that for all w0,w1 ∈ A+,

d(w0,w1) 6 n =⇒ d ′(f (w0), f (w1)) 6 N

A+ - distance d G - distance d ′

• •
w0 w16 n • •

f (w0) f (w1)6 N

12/15

Bounded variation property Special case

A function f : A+ → Pf (G) satisfies the k-bounded variation if:
for all n, there is N such that
for all w0, . . . ,wk ∈ A+ and all α0 ∈ f (w0), . . . , αk ∈ f (wk),
for all i , j , d(wi ,wj) 6 n =⇒ there are i 6= j , d ′(f (wi), f (wj)) 6 N

•
wi

•
wj6 n

•
w0

6
n6

n

•
wk

6
n

6
n

6
n

• •
αi αj6 N

α0•

α1• αk•

13/15

Bounded variation property

LetW be a finite-valued weighted automaton over an infinitary
group, and k be a positive integer.
The following assertions are equivalent:
� W satisfies the twinning property of order k,
� [[W]] has register complexity k,
� [[W]] satisfies the k-bounded variation property.

Theorem

Also true for transducers !!! but no time to explain it...

14/15

Main result

� TPk ⇔ BVk ⇔ Register complexity k
for infinitary groups and transducers... (at least)
� Minimisation of cost register automata

Conclusion

