A Generalised Twinning Property for Minimisation of Cost Register Automata

Laure Daviaud LIP, ENS Lyon

Joint work with P-A.Reynier and J-M.Talbot LIF, Aix-Marseille Université

Journées ALGA, 11-12/04/16

Given a word $w \in \{a, b\}^*$, compute $\{|w|_a, |w|_b\}$.

Question: How many values do we need to keep in memory?

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $(\mathcal{P}_f(G), \cup, \cdot)$, with (G, \cdot) a group

Weight of a run ρ : $\omega(\rho)=$ product of the weights of the transitions Function: $w\mapsto\{\omega(\rho)~|~\rho~\text{accepting run labelled by }w$

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $(\mathcal{P}_f(G), \cup, \cdot)$, with (G, \cdot) a group + an function t from the final states to G.

Weight of a run ρ : $\omega(\rho) = \text{product of the weights of the transitions}$ Function: $w \mapsto \{\omega(\rho)t(q) \mid \rho \text{ accepting run labelled by } w \text{ ending in } q\}$

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $(\mathcal{P}_f(G), \cup, \cdot)$, with (G, \cdot) a group + an function t from the final states to G.

Weight of a run ρ : $\omega(\rho) = \text{product of the weights of the transitions}$

Function: $w \mapsto \{\omega(\rho)t(q) \mid \rho \text{ accepting run labelled by } w \text{ ending in } q\}$

$$(\mathbb{Z},+)$$

$$\llbracket \mathcal{W} \rrbracket (w) = \{ |w|_a, |w|_a + 1 \}$$
 if w ends with an a

$$\llbracket \mathcal{W} \rrbracket (w) = \{ |w|_b \}$$
 if w ends with a b

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

for all $\alpha,\beta,\gamma\in {\it G}$ such that $\alpha\beta\gamma\neq\beta$, $|\{\alpha^n\beta\gamma^n\mid n\in\mathbb{N}\}|=+\infty$ ex: $(\mathbb{Z},+)$, (\mathbb{R},\times) , free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

for all $\alpha, \beta, \gamma \in G$ such that $\alpha\beta\gamma \neq \beta$, $|\{\alpha^n\beta\gamma^n \mid n \in \mathbb{N}\}| = +\infty$ ex: $(\mathbb{Z}, +)$, (\mathbb{R}, \times) , free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

Minimal number of registers needed to compute the function by a CRA special case in [Alur, Raghothaman]

for all $\alpha, \beta, \gamma \in G$ such that $\alpha\beta\gamma \neq \beta$, $|\{\alpha^n\beta\gamma^n \mid n \in \mathbb{N}\}| = +\infty$ ex: $(\mathbb{Z}, +)$, (\mathbb{R}, \times) , free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

There is ℓ s.t. for all words w, $|f(w)| \leq \ell$ ℓ -valued = ℓ -ambiguous [Filiot, Gentilini, Raskin]

Minimal number of registers needed to compute the function by a CRA special case in [Alur, Raghothaman]

for all $\alpha, \beta, \gamma \in G$ such that $\alpha\beta\gamma \neq \beta$, $|\{\alpha^n\beta\gamma^n \mid n \in \mathbb{N}\}| = +\infty$ ex: $(\mathbb{Z}, +)$, (\mathbb{R}, \times) , free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

There is ℓ s.t. for all words w, $|f(w)| \leq \ell$ ℓ -valued = ℓ -ambiguous [Filiot, Gentilini, Raskin]

Minimal number of registers needed to compute the function by a CRA special case in [Alur, Raghothaman]

Why infinitary group ?... See later !

A very very simple example

A very very simple example

Definition

Given α , $\beta \in G$, the **delay** between α and β is $\alpha^{-1}\beta$. It is denoted by $delay(\alpha, \beta)$.

Twinning property [Choffrut]

Definition

A weighted automaton satisfies the **twinning property** if for all initial states p, p' and co-accessible states q, q', for all words u, v such that:

$$p \xrightarrow{u:\alpha} q \xrightarrow{v:\beta} q$$
$$p' \xrightarrow{u:\alpha'} q' \xrightarrow{v:\beta'} q'$$

then $delay(\alpha, \alpha') = delay(\alpha\beta, \alpha'\beta')$

A weighted automaton $\mathcal W$ satisfies the twinning property iff $\llbracket \mathcal W \rrbracket$ has register complexity 1 iff $\llbracket \mathcal W \rrbracket$ is computed by a deterministic weighted automaton

Generalisation

Theorem

Let $\mathcal W$ be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.

The following assertions are equivalent:

- $oldsymbol{\cdot} \mathcal{W}$ satisfies the twinning property of order k,
- $[\![\mathcal{W}]\!]$ has register complexity k.

Twinning Property of order k

The weighted automaton satisfies the **twinning property of order** k if for all $q_{0,j}$ initial and $q_{k,j}$ co-accessible such that:

there are $j \neq j'$ such that for all $i \in \{1, \dots, k\}$,

$$delay(\alpha_{1,j}\cdots\alpha_{i,j},\alpha_{1,j'}\cdots\alpha_{i,j'})=delay(\alpha_{1,j}\cdots\alpha_{i,j}\beta_{i,j},\alpha_{1,j'}\cdots\alpha_{i,j'}\beta_{i,j'})$$

Twinning property of order *k*

- Commutative case Vs non commutative case
- Decidability
- . Infinitary here !!!

Main result

Theorem

Let $\mathcal W$ be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.

The following assertions are equivalent:

- ${\cal W}$ satisfies the twinning property of order k,
- $[\![\mathcal{W}]\!]$ has register complexity k,

And everything is effective...

Main result

Theorem

Let \mathcal{W} be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.

The following assertions are equivalent:

- $m{\cdot}$ \mathcal{W} satisfies the twinning property of order k,
- $[\![\mathcal{W}]\!]$ has register complexity k,
- $[\![\mathcal{W}]\!]$ satisfies the *k*-bounded variation property.

And everything is effective...

A function $f: A^+ \to G$ satisfies the 1-bounded variation prop if:

A function $f: A^+ \to G$ satisfies the 1-bounded variation prop if: for all n,

A function $f:A^+\to G$ satisfies the 1-bounded variation prop if: for all n, there is N

A function $f: A^+ \to G$ satisfies the 1-bounded variation prop if: for all n, there is N such that for all $w_0, w_1 \in A^+$,

$$d(w_0, w_1) \leqslant n$$

 A^+ - distance d

G - distance d'

A function $f: A^+ \to G$ satisfies the 1-bounded variation prop if: for all n, there is N such that for all $w_0, w_1 \in A^+$,

$$d(w_0, w_1) \leqslant n \implies d'(f(w_0), f(w_1)) \leqslant N$$

 A^+ - distance d

G - distance d'

Bounded variation property

A function $f: A^+ \to \mathcal{P}_f(G)$ satisfies the k-bounded variation if: for all n, there is N such that for all $w_0, \ldots, w_k \in A^+$ and all $\alpha_0 \in f(w_0), \ldots, \alpha_k \in f(w_k)$, for all $i, j, d(w_i, w_j) \leq n \implies$ there are $i \neq j, d'(f(w_i), f(w_j)) \leq N$

Main result

Theorem

Let $\mathcal W$ be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.

The following assertions are equivalent:

- ${\cal W}$ satisfies the twinning property of order k,
- $[\![\mathcal{W}]\!]$ has register complexity k,
- $[\![\mathcal{W}]\!]$ satisfies the k-bounded variation property.

Also true for transducers !!! but no time to explain it...

Conclusion

