

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

$$
\begin{gathered}
a:\left\{\begin{array}{l}
X_{a}:=X_{a}+1 \\
X_{b}:=X_{b}
\end{array}\right. \\
b:\left\{\begin{array}{l}
X_{a}:=X_{a} \\
X_{b}:=X_{b}+1
\end{array}\right.
\end{gathered}
$$

A first example

Given a word $w \in\{a, b\}^{*}$, compute $\left\{|w|_{a},|w|_{b}\right\}$.

$$
\begin{aligned}
a: & \left\{\begin{array}{l}
X_{a}:=X_{a}+1 \\
X_{b}:=X_{b}
\end{array}\right. \\
& b:\left\{\begin{array}{l}
X_{a}:=X_{a} \\
x_{b}:=X_{b}+1
\end{array}\right.
\end{aligned}
$$

Question: How many values do we need to keep in memory?

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $\left(\mathcal{P}_{f}(G), \cup, \cdot\right)$, with (G, \cdot) a group

Weight of a run $\rho: \omega(\rho)=$ product of the weights of the transitions
Function: $w \mapsto\{\omega(\rho) \quad \mid \rho$ accepting run labelled by $w \quad\}$

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $\left(\mathcal{P}_{f}(G), \cup, \cdot\right)$, with (G, \cdot) a group + an function t from the final states to G.

Weight of a run $\rho: \omega(\rho)=$ product of the weights of the transitions
Function: $w \mapsto\{\omega(\rho) t(q) \mid \rho$ accepting run labelled by w ending in $q\}$

Weighted automata (in a restricted case)

Non deterministic finite automaton whose transitions are weighted by elements of a semiring \longrightarrow here $\left(\mathcal{P}_{f}(G), \cup, \cdot\right)$, with (G, \cdot) a group + an function t from the final states to G.

Weight of a run $\rho: \omega(\rho)=$ product of the weights of the transitions
Function: $w \mapsto\{\omega(\rho) t(q) \mid \rho$ accepting run labelled by w ending in $q\}$

$$
\begin{aligned}
& (\mathbb{Z},+) \\
& \llbracket \mathcal{W} \rrbracket(w)=\begin{array}{l}
\left\{|w|_{a},|w|_{a}+1\right\} \\
\text { if } w \text { ends with an } a
\end{array} \\
& \llbracket \mathcal{W} \rrbracket(w)=\left\{\begin{array}{l}
\left\{|w|_{b}\right\} \\
\text { if } w \text { ends with a } b
\end{array}\right.
\end{aligned}
$$

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function
Register updates: $X:=Y \alpha$ with $\alpha \in G$.

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function Register updates: $X:=Y \alpha$ with $\alpha \in G$.

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function
Register updates: $X:=Y \alpha$ with $\alpha \in G$.

Cost register automata (in a restricted case too)

Deterministic finite state machine with registers + an output function
Register updates: $X:=Y \alpha$ with $\alpha \in G$.

The question

Over an infinitary group, characterise (effectively) the register complexity of a function computed by
a finite-valued weighted automaton.

The question

for all $\alpha, \beta, \gamma \in G$ such that $\alpha \beta \gamma \neq \beta,\left|\left\{\alpha^{n} \beta \gamma^{n} \mid n \in \mathbb{N}\right\}\right|=+\infty$ ex: $(\mathbb{Z},+),(\mathbb{R}, \times)$, free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by
a finite-valued weighted automaton.

The question

for all $\alpha, \beta, \gamma \in G$ such that $\alpha \beta \gamma \neq \beta,\left|\left\{\alpha^{n} \beta \gamma^{n} \mid n \in \mathbb{N}\right\}\right|=+\infty$ ex: $(\mathbb{Z},+),(\mathbb{R}, \times)$, free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

> Minimal number of registers
> needed to compute the function by a CRA special case in [Alur, Raghothaman]

The question

for all $\alpha, \beta, \gamma \in G$ such that $\alpha \beta \gamma \neq \beta,\left|\left\{\alpha^{n} \beta \gamma^{n} \mid n \in \mathbb{N}\right\}\right|=+\infty$ ex: $(\mathbb{Z},+),(\mathbb{R}, \times)$, free group generated by a finite alphabet

Over an infinitary group, characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

There is ℓ s.t. for all words $w,|f(w)| \leqslant \ell$
ℓ-valued $=\ell$-ambiguous
[Filiot, Gentilini, Raskin]

Minimal number of registers
needed to compute the function by a CRA special case in [Alur, Raghothaman]

The question

for all $\alpha, \beta, \gamma \in G$ such that $\alpha \beta \gamma \neq \beta,\left|\left\{\alpha^{n} \beta \gamma^{n} \mid n \in \mathbb{N}\right\}\right|=+\infty$ ex: $(\mathbb{Z},+),(\mathbb{R}, \times)$, free group generated by a finite alphabet

Over an infinitary group,
characterise (effectively) the register complexity of a function computed by a finite-valued weighted automaton.

There is ℓ s.t. for all words $w,|f(w)| \leqslant \ell$
ℓ-valued $=\ell$-ambiguous
[Filiot, Gentilini, Raskin]

Minimal number of registers
needed to compute the function by a CRA special case in [Alur, Raghothaman]

Why infinitary group ?... See later !

A very very simple example
$w \mapsto\left\{|w|_{a},|w|_{a}+1\right\}$ in $(\mathbb{Z},+)$

A very very simple example

$$
w \mapsto\left\{|w|_{a},|w|_{a}+1\right\} \text { in }(\mathbb{Z},+)
$$

- Definition

Given $\alpha, \beta \in G$, the delay between α and β is $\alpha^{-1} \beta$. It is denoted by delay (α, β).

Twinning property [Choffrut]

- Definition

A weighted automaton satisfies the twinning property if for all initial states p, p^{\prime} and co-accessible states q, q^{\prime}, for all words u, v such that:

$$
\begin{gathered}
p \xrightarrow{u: \alpha} q \xrightarrow{v: \beta} q \\
p^{\prime} \xrightarrow{\mathrm{u}: \alpha^{\prime}} q^{\prime} \xrightarrow{\mathrm{v}: \beta^{\prime}} q^{\prime}
\end{gathered}
$$

then $\operatorname{delay}\left(\alpha, \alpha^{\prime}\right)=\operatorname{delay}\left(\alpha \beta, \alpha^{\prime} \beta^{\prime}\right)$

A weighted automaton \mathcal{W} satisfies the twinning property iff $\llbracket \mathcal{W} \rrbracket$ has register complexity 1
iff $\llbracket \mathcal{W} \rrbracket$ is computed by a deterministic weighted automaton

Generalisation

Theorem
Let \mathcal{W} be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.
The following assertions are equivalent:
. \mathcal{W} satisfies the twinning property of order k,

- $\llbracket \mathcal{W} \rrbracket$ has register complexity k.

Twinning Property of order k

The weighted automaton satisfies the twinning property of order k if for all $q_{0, j}$ initial and $q_{k, j}$ co-accessible such that:

there are $j \neq j^{\prime}$ such that for all $i \in\{1, \ldots, k\}$,

$$
\operatorname{delay}\left(\alpha_{1, j} \cdots \alpha_{i, j}, \alpha_{1, j^{\prime}} \cdots \alpha_{i, j^{\prime}}\right)=\operatorname{delay}\left(\alpha_{1, j} \cdots \alpha_{i, j} \beta_{i, j}, \alpha_{1, j^{\prime}} \cdots \alpha_{i, j^{\prime}} \beta_{i, j^{\prime}}\right)
$$

Twinning property of order k

- Commutative case Vs non commutative case
- Decidability
- Infinitary here !!!

Main result

- Theorem

Let \mathcal{W} be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.
The following assertions are equivalent:

- \mathcal{W} satisfies the twinning property of order k,
- $\llbracket \mathcal{W} \rrbracket$ has register complexity k,

And everything is effective...

Main result

- Theorem

Let \mathcal{W} be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.
The following assertions are equivalent:

- \mathcal{W} satisfies the twinning property of order k,
- $\llbracket \mathcal{W} \rrbracket$ has register complexity k,
- 【W \rrbracket satisfies the k-bounded variation property.

And everything is effective...

Bounded variation property Special case

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property Special case

A function $f: A^{+} \rightarrow G$ satisfies the 1-bounded variation prop if:

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property Special case

A function $f: A^{+} \rightarrow G$ satisfies the 1-bounded variation prop if: for all n,

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property Special case

A function $f: A^{+} \rightarrow G$ satisfies the 1-bounded variation prop if: for all n, there is N

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property Special case

A function $f: A^{+} \rightarrow G$ satisfies the 1-bounded variation prop if: for all n , there is N such that for all $w_{0}, w_{1} \in A^{+}$,

$$
d\left(w_{0}, w_{1}\right) \leqslant n
$$

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property Special case

A function $f: A^{+} \rightarrow G$ satisfies the 1-bounded variation prop if: for all n , there is N such that for all $w_{0}, w_{1} \in A^{+}$,

$$
d\left(w_{0}, w_{1}\right) \leqslant n \Longrightarrow d^{\prime}\left(f\left(w_{0}\right), f\left(w_{1}\right)\right) \leqslant N
$$

A^{+}- distance d

G - distance d^{\prime}

Bounded variation property

A function $f: A^{+} \rightarrow \mathcal{P}_{f}(G)$ satisfies the k-bounded variation if: for all n , there is N such that for all $w_{0}, \ldots, w_{k} \in A^{+}$and all $\alpha_{0} \in f\left(w_{0}\right), \ldots, \alpha_{k} \in f\left(w_{k}\right)$, for all $i, j, d\left(w_{i}, w_{j}\right) \leqslant n \Longrightarrow$ there are $i \neq j, d^{\prime}\left(f\left(w_{i}\right), f\left(w_{j}\right)\right) \leqslant N$

Main result

Theorem

Let \mathcal{W} be a finite-valued weighted automaton over an infinitary group, and k be a positive integer.
The following assertions are equivalent:
. \mathcal{W} satisfies the twinning property of order k,

- $\llbracket \mathcal{W} \rrbracket$ has register complexity k,
- $\llbracket \mathcal{W} \rrbracket$ satisfies the k-bounded variation property.

Also true for transducers !!! but no time to explain it...

Conclusion

