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Key fact: equivalence between a logical definition and
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Our contribution
An extension of this picture to the setting of data words. J
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Definition of finite words transformations

MSO transductions
@ Definition by Courcelle
@ Words can be seen as (node-labeled) graphs
@ MSO graph transductions

A graph is an interpreted structure
MSO interpretation of such structures
Introduction of a fixed finite number of copies of the “input” structure

@ Restriction to words
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Running example

input: a b ¢ b b # a a b # ¢ c¢c a a # b

Y
copy 1: [a<—b<—c<—b<—b ‘ |:a<—a<—2) ‘ [c<—c<—a<—a
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finite set C of copies (here C = {1,2})

formula ©jingom

formulas (¢S,m)cec

formulas (¢ )yer

’
formulas (02 )c.crec
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Properties [Courcelle 90's]

Output linearly larger

Regular input domain

Any MSO formula over v can be translated to an MSO formula over u
MSO Typechecking

Functional composition

Functional equivalence is decidable
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Data words
Definition
@ A data word is a word over alphabet © x A (X finite, A infinite)

@ We see a data word as a finite word and a mapping from pos. to A

v

Example (cont'd)

input:  a a a
put: 2 b 2 b b # 3

~o
wo
~3k
oo
o

O

o
$H
wo
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Two-way model

Two way DFT
@ Two way deterministic automaton with transitions labeled over [*

@ The image is defined if the run is successful as the concatenation of
labels of transitions taken along the run

Theorem

Two way deterministic transducers capture MSO transductions of finite
words over finite alphabet

With registers
@ We add a set of registers R that store data values

@ Their value is updated deterministically from data values and the
current data value

e Transitions are labeled by words in (I' x R)*

v
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Our example

Example (cont'd)

input: a.{_»b a b }_b "#'».a a b #b b a

copy 1 [a<—b<—a<—b<—b

copy 2:

‘ [a‘_a<—}3 ‘ [ ,
A ba bbb b L

a,b

T~
™

o af(a.R)/<  af(a,R)/c
Y9 b6}

#/S = curr/< @ #, e/ @

\/

#/(#, R = curr)/1>

&0

_)@ a,b/R = curr/>

4 /e/<

-~

af(a, curr) /> a,b/e/<
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Example (cont'd)
input: a.}__b a b b # a a b # b b b

copy 1 [a&bfafbfb i [a&a&t) i [ :
oy B | g s el e g s el = e e g i

v

The algorithm

@ The two-way model is closed by composition [Chytil & Jakl 1977]
@ We relabel the word by adding the information of (k+3)-types

i.e. the set of MSO formulas of quantifier depth at most (k+3) that
are satisfied by the prefix and by the suffix

@ We will output symbols at the corresponding position
This already handles the fine word part [EHO1]

@ At any moment the data values that are stored are those which are
used left and appear right or vice versa

That’s only a finite number of data values to store

V.
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Streaming string transducers

Finite part
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Streaming string transducers

Finite part

What to store in string variables

1
input:  a— b—a—b—b—#—a—a—b—#—b—b—a—a—4—b

N/ ¥

copy 1: [a*b«a*b*b ‘[a«r—b ‘ b~—b<~—a<a
m

copy 2: a—>b—>a—>b—>b—># >a—>a—>b—F# Sb—>b—a—>a—>#—b

v
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How to handle data values
@ We need data registers

@ and data parameters
v

Data registers and data parameters

X = X X = X
alY =Y (ar) b|Y =Y. (bp)
7= .7 — .
T (a,r)-Z-(a,r) Z .= (b,p)-Z-(b,p)
X := X - Z[p < curr] - (#, curr)
#1Y =¢
Z:=¢
r := current F(q) =X - Y][p «+ curr]
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From two-way to one-way

A one-way cannot go back !
@ A valid run of a two way never visits a position more than |Q| times
@ In which state does the two-way first reach / 7

@ At position i, from state g in which state does the 2way first reach
position i+1 7

How to build the one-way ? (Shepherdson)
At position i

Easy to keep track of what happened until the 2way first reached i

String variable Xy will contain what the two-way produces from
position / in state g until it first reaches position i+1 ...

. with content of data registers “being” fresh parameters

rr,q at position i will contain (if it exists) the last data value stored
by the 2way in register R from state g in position i until it reaches
position i+1

V.
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A semantic restriction for SST's

Restriction on copying
@ Automaton + String variables + variables update function
@ And the following semantic restriction:

The content of some register may not flow more than once in the
output

One-way to Logic

The expressive power of MSO allows quite naturally to describe the
behaviour of such a finite-state system.
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Conclusion

Extension of string transformations to data strings

@ Equivalence between 3 models:
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@ Determistic models

@ Typechecking and functionnal equivalence are decidable
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