Regular transformations of data words

through origin information

Antoine Durand-Gasselin and Peter Habermehl

LIF, Aix-Marseille Université & IRIF, Univ Paris Diderot

12-04-2016

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 1/22

Formal Languages: Qualitative properties on words

Qualitative properties over words
(over finite alphabet)
p: X" — {0,1}

Regular Languages

LogW WUtational model

MSO formulas Finite state automata

Formal Languages: Qualitative properties on words

Qualitative properties over words
(over finite alphabet)
p: X" —{0,1}

Regular Languages

LogW WUtational model

MSO formulas Finite state automata

_/

Equivalence [Biichi, 1962]

Formal Languages: Qualitative properties on words

Qualitative properties over words
(over finite alphabet)
p: X" —{0,1}

Regular Languages

LogW WUtational model

MSO formulas Finite state automata

\/

Equivalence [Biichi, 1962]

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 2/22

Word Transformations

Words Transformations
DI T

Regular Word transformations

LOW WUtational models

MSO transductions Streaming String Transducers
2way det. Transducers (2DFT)

Word Transformations

Words Transformations
DI T

Regular Word transformations

LOW WUtational models
[Alur et al. 10's]

MSO transductions Streaming String Transducers
[Courcelle 90'] [EHo1] 2way det. Transducers (2DFT)

Word Transformations

Words Transformations
DI T

Regular Word transformations

LOW wutational models
[Alur et al. 10's]

MSO transductions Streaming String Transducers
[Courcelle 90's] [EHo1] dway det. Transducers (2DFT)

Key fact: equivalence between a logical definition and
two deterministic computational models, one way and two way

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 3/22

Word Transformations

Words Transformations
DI T

Regular Word transformations

LOW wutational models
[Alur et al. 10's]

MSO transductions Streaming String Transducers
' \
[Courcelle 90's] [EHo1] dway det. Transducers (2DFT)

Key fact: equivalence between a logical definition and
two deterministic computational models, one way and two way

Our contribution
An extension of this picture to the setting of data words. J

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 3/22

Contribution

Data word transformations
i (Ex A = (Ex A

Contribution

Data word transformations
i (Ex A = (Ex A

Logical definition

Contribution

Data word transformations
i (Ex A = (Ex A

Logical definition

Two-way machine

Contribution

Data word transformations
i (Ex A = (Ex A

/ Logical definition

Two-way machine

Contribution

Data word transformations
i (Ex A = (Ex A

/ Logical definition

Two-way machine

One-way machine

Contribution

Data word transformations
i (Ex A = (Ex A

/ Logical definition

Two-way machine One-way machine

\/

Contribution

Data word transformations
i (Ex A = (Ex A

Logical definition

Two-way machine One-way machine

_/

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 4 /22

Contents

© Logical definition
Logical definition

2-way machine 1-way machine

_/

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Definition of finite words transformations

MSO transductions
@ Definition by Courcelle
@ Words can be seen as (node-labeled) graphs
@ MSO graph transductions

A graph is an interpreted structure
MSO interpretation of such structures
Introduction of a fixed finite number of copies of the “input” structure

@ Restriction to words

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 6 /22

Running example

input: a b ¢ b b # a a b #

Definition of an MSO transduction
@ input and output alphabets ¥ =T = {a, b, #}

Running example

b
o o
o o

input: a b ¢ b b # a b #
copyl: o o o o o o o o
copy2: o o o o o o o o

Definition of an MSO transduction
@ input and output alphabets ¥ =T = {a, b, #}
o finite set C of copies (here C = {1,2})

@ formula @indom

Running example

input: a b ¢ b b # a b #
copyl: o o o o o o o
copy2: o o o o o o o o

Definition of an MSO transduction
@ input and output alphabets ¥ =T = {a, b, #}
o finite set C of copies (here C = {1,2})
@ formula @indom

o formulas (¢S,,)cec

Running example

input: a b ¢ b b # a a b #
copyl: a b ¢ b b a a b

copy2: a b ¢ b b # a a b #

Definition of an MSO transduction
@ input and output alphabets ¥ =T = {a, b, #}
finite set C of copies (here C = {1,2})

formula ©jingom

formulas (¢S,m)cec

formulas (¢)yer

Running example

input: a b ¢ b b # a a b # ¢ c¢c a a # b

Y
copy 1: [a<—b<—c<—b<—b ‘ |:a<—a<—2) ‘ [c<—c<—a<—a

copy 2: »a—>b—>c—>b—b—># >a—>a—>b—># >c—>c—>a—>a—>H#—>b

Definition of an MSO transduction
@ input and output alphabets ¥ =T = {a, b, #}
finite set C of copies (here C = {1,2})

formula ©jingom

formulas (¢S,m)cec

formulas (¢)yer

’
formulas (02)c.crec

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 7/22

Properties [Courcelle 90's]

Output linearly larger

Regular input domain

Any MSO formula over v can be translated to an MSO formula over u
MSO Typechecking

Functional composition

Functional equivalence is decidable

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 8 /22

Data words
Definition
@ A data word is a word over alphabet © x A (X finite, A infinite)

@ We see a data word as a finite word and a mapping from pos. to A

v

Example (cont'd)

input: a a a
put: 2 b 2 b b # 3

~o
wo
~3k
oo
o

O

o
$H
wo

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 9 /22

Data words

Definition
@ A data word is a word over alphabet ¥ x A (X finite, A infinite)

@ We see a data word as a finite word and a mapping from pos. to A

Example (cont'd)
input: a b a b b # a a b # b b a a # b

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 9 /22

Data words

Definition
@ A data word is a word over alphabet ¥ x A (X finite, A infinite)
@ We see a data word as a finite word and a mapping from pos. to A

v

Example (cont'd)

input: a b a b b # a a b # b b a a # b

¥ ¥
copy 1: [akbkakbkb [akakb [bkbkaka

copy 2: a—b—>a—>b—>b—F# a—>a—>b—# “b—>b—>a—a—>+#—b

@ We give formulas ¢¢, (x, y) stating that x in copy ¢ has the same data
value as y

@ We impose functionality of ¢¢,, (can be done in MSO)

Data words

Definition
@ A data word is a word over alphabet ¥ x A (X finite, A infinite)
@ We see a data word as a finite word and a mapping from pos. to A

v

Example (cont'd)

input: a. b a

copy 1: |:a<—b<— a<— b~b :

[a<—a<—Z> ‘ |:

@ We give formulas ¢¢, (x, y) stating that x in copy ¢ has the same data
value as y

@ We impose functionality of ¢¢,, (can be done in MSO)

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 9 /22

Contents

© Two-way model
Logical definition

2-way machine 1-way machine

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Two-way model

Two way DFT
@ Two way deterministic automaton with transitions labeled over [*

@ The image is defined if the run is successful as the concatenation of
labels of transitions taken along the run

Theorem

Two way deterministic transducers capture MSO transductions of finite
words over finite alphabet

With registers
@ We add a set of registers R that store data values

@ Their value is updated deterministically from data values and the
current data value

e Transitions are labeled by words in (I' x R)*

v

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 11 /22

Our example

Example (cont'd)

input: a.{_»b a b }_b "#'».a a b #b b a

copy 1 [a<—b<—a<—b<—b

copy 2:

‘ [a‘_a<—}3 ‘ [,
A ba bbb b L

a,b

T~
™

o af(a.R)/< af(a,R)/c
Y9 b6}

#/S = curr/< @ #, e/ @

\/

#/(#, R = curr)/1>

&0

_)@ a,b/R = curr/>

4 /e/<

-~

af(a, curr) /> a,b/e/<

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 12 / 22

Contents

Logical definition
9 From logic to two-way

2-way machine 1-way machine

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Example (cont'd)
input: a.}__b a b b # a a b # b b b

copy 1 [a&bfafbfb i [a&a&t) i [:
oy B | g s el e g s el = e e g i

v

The algorithm

@ The two-way model is closed by composition [Chytil & Jakl 1977]
@ We relabel the word by adding the information of (k+3)-types

i.e. the set of MSO formulas of quantifier depth at most (k+3) that
are satisfied by the prefix and by the suffix

@ We will output symbols at the corresponding position
This already handles the fine word part [EHO1]

@ At any moment the data values that are stored are those which are
used left and appear right or vice versa

That’s only a finite number of data values to store

V.

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 14 / 22

Contents

Logical definition

@ One-way model 2-way machine 1-way machine

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Streaming string transducers

Finite part

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Streaming string transducers

Finite part

What to store in string variables

1
input: a— b—a—b—b—#—a—a—b—#—b—b—a—a—4—b

N/ ¥

copy 1: [a*b«a*b*b ‘[a«r—b ‘ b~—b<~—a<a
m

copy 2: a—>b—>a—>b—>b—># >a—>a—>b—F# Sb—>b—a—>a—>#—b

v

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 16 / 22

How to handle data values
@ We need data registers

@ and data parameters
v

Data registers and data parameters

X = X X = X
alY =Y (ar) b|Y =Y. (bp)
7= .7 — .
T (a,r)-Z-(a,r) Z .= (b,p)-Z-(b,p)
X := X - Z[p < curr] - (#, curr)
#1Y =¢
Z:=¢
r := current F(q) =X - Y][p «+ curr]

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 17 / 22

Contents

Logical definition

2-way machine 1-way machine

\/

© From two-way to one-way

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

From two-way to one-way

A one-way cannot go back !
@ A valid run of a two way never visits a position more than |Q| times
@ In which state does the two-way first reach / 7

@ At position i, from state g in which state does the 2way first reach
position i+1 7

How to build the one-way ? (Shepherdson)
At position i

Easy to keep track of what happened until the 2way first reached i

String variable Xy will contain what the two-way produces from
position / in state g until it first reaches position i+1 ...

. with content of data registers “being” fresh parameters

rr,q at position i will contain (if it exists) the last data value stored
by the 2way in register R from state g in position i until it reaches
position i+1

V.
ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 19 / 22

Contents

Logical definition

2-way machine 1-way machine

\/

@ One-way to logic

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

A semantic restriction for SST's

Restriction on copying
@ Automaton + String variables + variables update function
@ And the following semantic restriction:

The content of some register may not flow more than once in the
output

One-way to Logic

The expressive power of MSO allows quite naturally to describe the
behaviour of such a finite-state system.

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 21 /22

Conclusion

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

Conclusion

Extension of string transformations to data strings

@ Equivalence between 3 models:

Logical definition using MSO
Extension of 2DFT with data registers
Extension of SST with data registers and data parameters

@ Determistic models

@ Typechecking and functionnal equivalence are decidable

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 22 /22

Conclusion

Extension of string transformations to data strings

@ Equivalence between 3 models:

Logical definition using MSO
Extension of 2DFT with data registers
Extension of SST with data registers and data parameters

@ Determistic models

@ Typechecking and functionnal equivalence are decidable

Future work

@ Challenges for extension to testing input data values:

Deterministic computational models
Equivalence with a logical framework

o Efficient conversions

@ Transformations of other classes of objects

@ Canonical objects, minimization

v

ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 22 /22

Conclusion

Extension of string transformations to data strings

@ Equivalence between 3 models:

Logical definition using MSO
Extension of 2DFT with data registers
Extension of SST with data registers and data parameters

@ Determistic models

@ Typechecking and functionnal equivalence are decidable

Future work

@ Challenges for extension to testing input data values:

Deterministic computational models
Equivalence with a logical framework

o Efficient conversions

@ Transformations of other classes of objects

@ Canonical objects, minimization

v

ataYa AL far vinir_ attantinnl
ADG & Habermehl ({L,IR}IF) Regular transformations of data words 12-04-2016 22 /22

Biichi, J. R. (1962).
On a decision method in restricted second-order arithmetic.

In Int. Congr. for Logic Methodology and Philosophy of Science, pages 1-11.
Standford University Press, Stanford.

ADG & Habermehl ({L,IR}IF) Regular transformations of data words

	Logical definition
	Two-way model
	From logic to two-way
	One-way model
	From two-way to one-way
	One-way to logic

