
Reachability of subclasses of
(branching) vector addition

systems

Michael Blondin (Montréal)
Alain Finkel (Cachan)
Christoph Haase (Cachan)
Pierre McKenzie (Montréal)
Ranko Lazic (Warwick)
Patrick Totzke (Warwick)

Stefan Göller
LSV, CNRS & ENS Cachan, France

based joint works with

PART 1: Vector addition systems

PART 2: Branching vector addition systems

PART 1: Vector addition systems

PART 2: Branching vector addition systems

Vector addition systems

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

Formal verification of
concurrent systems

Formal verification of
concurrent systems

Too complex to reason about!

Predicate abstraction via
Boolean programs

Predicate abstraction via
Boolean programs

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

[German,Sistla, 92; Basler 10]

Thread 1

Predicate abstraction via
Boolean programs

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

[German,Sistla, 92; Basler 10]

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

Thread 1 Thread 2

Predicate abstraction via
Boolean programs

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

[German,Sistla, 92; Basler 10]

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

Thread 1 Thread 2 Thread 3

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

Many threads execute
this Boolean program

i

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

Many threads execute
this Boolean program

#threads with PC=1 #threads with PC=2 #threads with PC=3

q1

#threads with PC=0

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

Many threads execute
this Boolean program

#threads with PC=1 #threads with PC=2 #threads with PC=3

i

#threads with PC=0

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

Many threads execute
this Boolean program

#threads with PC=1 #threads with PC=2 #threads with PC=3

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

i q0

#threads with PC=0

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

Many threads execute
this Boolean program

#threads with PC=1 #threads with PC=2 #threads with PC=3

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

#threads with PC=0

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0)

An execution:

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0) (1, 0, 0, 0) (2, 0, 0, 0)

An execution:

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0) (1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

An execution:

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0) (1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1)

(1, 0, 1, 0)

An execution:

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0) (1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

An execution:

Mathematical modeling
decl s := 0;

0: goto 1;

1: s := 1;

2: s := 0;

3: assert (!s);

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(0, 0, 0, 0) (1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

An execution:

Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

Vector addition systems
 with states

A vector addition system with states (d-VASS) is a finite
automaton that consists of

a finite set of control states andQ

A 4-VASS

A vector addition system with states (d-VASS) is a finite
automaton that consists of

a set of transitions . .

a finite set of control states andQ

T ✓ Q⇥ Zd ⇥Q

A 4-VASS

Vector addition systems
 with states

A vector addition system with states (d-VASS) is a finite
automaton that consists of

a set of transitions . .

a finite set of control states andQ

T ✓ Q⇥ Zd ⇥Q

Example of a 4-VASS:

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

A 4-VASS

Vector addition systems
 with states

Underlying infinite system
Each d-VASS defines the infinite system/graphV = (Q,T)

with vertices
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

A 4-VASS

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

q3(0, 2, 2, 7)

A 4-VASS Underlying infinite system

q1(1, 0, 0, 0)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

q3(0, 2, 2, 7)

A 4-VASS Underlying infinite system

q2(0, 5, 1, 4)
q1(1, 0, 0, 0)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

q3(0, 2, 2, 7)

A 4-VASS Underlying infinite system

q2(0, 4, 3, 1)

q2(0, 5, 1, 4)
q1(1, 0, 0, 0)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

q3(0, 2, 2, 7)

A 4-VASS Underlying infinite system

q2(0, 4, 3, 1)

q2(0, 5, 1, 4)
q1(1, 0, 0, 0)

q1(2, 0, 0, 0)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

Underlying infinite system
Each d-VASS defines the infinite system/graph

(1, 0, 0, 0)

q2q1

q3

(�1, 4, 3, 1)

(�1, 2
, 2, 7

) (0, 3,�1,�3)

(1, 1, 2, 3)
(�1,�2, 3,�4)

V = (Q,T)

q3(0, 2, 2, 7)

A 4-VASS Underlying infinite system

q2(0, 4, 3, 1)

q2(1, 5, 5, 4)

q2(0, 5, 1, 4)

· · ·

· · ·

· · ·

· · ·· · ·

q1(1, 0, 0, 0)

q1(2, 0, 0, 0)

q1(3, 0, 0, 0)

with vertices/configurations
transitions/edges if (p,~v � ~u, q) 2 Tp(~u) ! q(~v)

q(~u) 2 Q⇥ Nd

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems

(0, 0, 0, 0)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?(7, 8, 3, 4)

(1, 2, 3, 4)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?(7, 8, 3, 4)

(1, 2, 3, 4)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?

Coverability:
(0, 0, 0, 0)Can
(u, v, x, y)reach ?
x, y � 1with ? ?

(7, 8, 3, 4)

(1, 2, 3, 4)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?

Coverability:
(0, 0, 0, 0)Can
(u, v, x, y)reach ?
x, y � 1with ? ?

(7, 8, 3, 4)

(1, 2, 3, 4)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?

Coverability:
(0, 0, 0, 0)Can
(u, v, x, y)reach ?
x, y � 1with ? ?

Boundedness:
(0, 0, 0, 0)Can

reach only finitely
many config.? ?

(7, 8, 3, 4)

(1, 2, 3, 4)

(1, 0, 0, 0)

(0, 0, 0, 0)

(0, 0,�1, 1)

(�1, 1, 0, 0)

(0,�1, 1, 0)

(0, 0,�1, 1)

(0,�1, 1, 0)

(�1, 1, 0, 0)

i q0 q1

(1, 0, 0, 0) (2, 0, 0, 0)

(2, 0, 0, 0) (1, 1, 0, 0)

(1, 0, 0, 1) (0, 1, 0, 1)

(1, 0, 1, 0)

(0, 0, 1, 1)

Decision problems
Reachability:

Can(0, 0, 0, 0)
reach ? ?

Coverability:
(0, 0, 0, 0)Can
(u, v, x, y)reach ?
x, y � 1with ? ?

Boundedness:
(0, 0, 0, 0)Can

reach only finitely
many config.? ?

(7, 8, 3, 4)

(1, 2, 3, 4)

Vector addition systems
in computer science

Verification:
Concurrent and recursive programs
Heap-manipulating programs

C.A. Petri

Vector addition systems
in computer science

Verification:
Concurrent and recursive programs

Modeling:
Heap-manipulating programs

Workflow modeling
Business processes C.A. Petri

Vector addition systems
in computer science

Verification:
Concurrent and recursive programs

Modeling:

Mathematical and computational logic:

Heap-manipulating programs

Hilbert’s 10th problem
Data logics

Workflow modeling
Business processes C.A. Petri

The reachability problem
for VASSundecidable

VASS with zero tests
Minsky 1961

The reachability problem
for VASSundecidable

decidable
VASS with zero tests
Minsky 1961
VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

The reachability problem
for VASSundecidable

decidable
VASS with zero tests
Minsky 1961
VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

F!3

The reachability problem
for VASSundecidable

decidable

22
n

time

VASS with zero tests
Minsky 1961

2-VASS
Howell, Rosier, Huynh & Yen 1986

VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

F!3

The reachability problem
for VASSundecidable

decidable

22
n

time

NP

VASS with zero tests
Minsky 1961

2-VASS
Howell, Rosier, Huynh & Yen 1986

1-VASS
Haase,Kreutzer, Ouaknine & Worrell 2009

VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

F!3

The reachability problem
for VASSundecidable

decidable

22
n

time

polynomial
space

NP

VASS with zero tests
Minsky 1961

2-VASS
Howell, Rosier, Huynh & Yen 1986

1-VASS
Haase,Kreutzer, Ouaknine & Worrell 2009

2-VASS
BFGHM 2015: PSPACE-complete
(Our main result)

VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

F!3

The reachability problem
for VASSundecidable

decidable

22
n

time

polynomial
space

NP

VASS with zero tests
Minsky 1961

1-VASS
Haase,Kreutzer, Ouaknine & Worrell 2009

2-VASS
BFGHM 2015: PSPACE-complete
(Our main result)

2-VASS
Howell, Rosier, Huynh & Yen 1986

VASS
Mayr 1981,Kosaraju 1982
Leroux 2009-2014
Leroux/Schmitz 2015

F!3

Vector addition systems
and Presburger Arithmetic

q2q1

(0, 3)

(12, 0)

(�6,�2)

(2, 2) q3

Vector addition systems
and Presburger Arithmetic

q2q1

(0, 3)

(12, 0)

(�6,�2)

(2, 2)

q3(u, v) can reachq1

q3

(x, y)

if, and only if,

(y � 2 = v + 3 · i� 2j)

(u, v, x, y) |= 9i, j : (x� 2 = u+ 12� 6j)^

Vector addition systems
and Presburger Arithmetic

q2q1

(0, 3)

(12, 0)

(�6,�2)

(2, 2)

q3(u, v) can reachq1

q3

(x, y)

if, and only if,

(y � 2 = v + 3 · i� 2j)

(u, v, x, y) |= 9i, j : (x� 2 = u+ 12� 6j)^

Presburger Arithmetic

M. Presburger

= Th(N, <,+)

Presburger reachability
Example. (without proof)
The reachability relation of the following 3-VASS is not definable in
Presburger Arithmetic.

q2q1

(0, 1,�1)

(1, 0, 0)

(0, 0, 0)

(0,�1, 2)

Presburger reachability

Proposition.
V = (Q,T)The reachability relation of a VASS is

Presburger definable if can be described by a
bounded language over .

Example. (without proof)
The reachability relation of the following 3-VASS is not definable in
Presburger Arithmetic.

q2q1

(0, 1,�1)

(1, 0, 0)

(0, 0, 0)

(0,�1, 2)

T

Presburger reachability

V = (Q,T)The reachability relation of a VASS is
Presburger definable if can be described by a
bounded language over .

Example. (without proof)
The reachability relation of the following 3-VASS is not definable in
Presburger Arithmetic.

q2q1

(0, 1,�1)

(1, 0, 0)

(0, 0, 0)

(0,�1, 2)

T

↵0�
⇤
1↵1 · · ·�⇤

k↵kfinite unions of
=

Proposition.

Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

Overview

Some background

Vector addition systems / Presburger reachability

2VASS reachability: Our main result

2-VASS history
Theorem. (Hopcroft & Pansiot 1979)
Given a 2-VASS and an initial configuration one can effectively a
Presburger Arithmetic presentation of the reachable configurations.

2-VASS history
Theorem. (Hopcroft & Pansiot 1979)
Given a 2-VASS and an initial configuration one can effectively a
Presburger Arithmetic presentation of the reachable configurations.

Theorem. (Howell, Rosier, Huynh & Yen 1986)
Reachability in 2-VASS can be decided in doubly-exponential time.

2-VASS history
Theorem. (Hopcroft & Pansiot 1979)
Given a 2-VASS and an initial configuration one can effectively a
Presburger Arithmetic presentation of the reachable configurations.

Theorem. (Howell, Rosier, Huynh & Yen 1986)
Reachability in 2-VASS can be decided in doubly-exponential time.

Theorem. (Leroux & Sutre 2004)
The reachability relation of 2-VASS is effectively Presburger definable.

Theorem. (Hopcroft & Pansiot 1979)
Given a 2-VASS and an initial configuration one can effectively a
Presburger Arithmetic presentation of the reachable configurations.

Theorem. (Howell, Rosier, Huynh & Yen 1986)
Reachability in 2-VASS can be decided in doubly-exponential time.

Theorem. (Leroux & Sutre 2004)
The reachability relation of 2-VASS is effectively Presburger definable.

Theorem.
The reachability relation of 2-VASS is computable in exponential space.
The reachability problem for 2-VASS is PSPACE-complete.

2-VASS history

(Blondin, Finkel. G, Haase & McKenzie 2015)

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

The following is computable in exponential space:

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that

The following is computable in exponential space:

p(u1, u2) �!⇤ q(v1, v2)
if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

The following is computable in exponential space:

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

The following is computable in exponential space:

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

``Reachability is witnessed by a small bounded language´´

The following is computable in exponential space:

2-D projection of runs

0 first counter value

se
co

nd
 c

ou
nt

er
 v

al
ue q0 (71,55)

q1 (60,25)

q1 (45,50)q1 (10,50)

(10,10)q2

(25,25)q0

q4 (40,7)
q1 (80,16)

Proof strategy

Type 1 runs
q (u,v)

q (x,y)

Starting and ending sufficiently large
in same control state q

following Leroux&Sutre 2004

Proof strategy

Type 1 runs
q (u,v)

q (x,y)

Starting and ending sufficiently large
in same control state q

Type 2 runs

q (x,y)

Staying sufficiently large all the time

(u,v)p

following Leroux&Sutre 2004

Proof strategy

Type 1 runs
q (u,v)

q (x,y)

Starting and ending sufficiently large
in same control state q

Type 2 runs

q (x,y)

Staying sufficiently large all the time

Type 3 runs

q (x,y)

(u,v)p

Staying sufficiently small all the time
(u,v)p

following Leroux&Sutre 2004

Proof strategy

Type 1 runs

``Type 1,2,3 runs can be captured by a small bounded language´´

q (u,v)

q (x,y)

Starting and ending sufficiently large
in same control state q

Type 2 runs

q (x,y)

Staying sufficiently large all the time

Type 3 runs

q (x,y)

(u,v)p

Staying sufficiently small all the time
(u,v)p

following Leroux&Sutre 2004

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

The following is computable in exponential space:

``Reachability is witnessed by a small bounded language´´

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

The following is computable in exponential space:

How to get PSPACE

for reachability?

``Reachability is witnessed by a small bounded language´´

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

bounded by (|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

``Reachability is witnessed by a small bounded language´´

The following is computable in exponential space:

How to get PSPACE

for reachability?

Outlook & Future Work

Unary 2-VASS reachability: NL …. NP

Outlook & Future Work

Unary 2-VASS reachability: NL-complete

Englert, Lazic, Totzke 2016

Outlook & Future Work

Unary 2-VASS reachability: NL-complete

Deciding semi-linearity of the reachability relation of VASS

Englert, Lazic, Totzke 2016

Outlook & Future Work

Unary 2-VASS reachability: NL-complete

3-VASS
Deciding semi-linearity of the reachability relation of VASS

Englert, Lazic, Totzke 2016

Outlook & Future Work

Unary 2-VASS reachability: NL-complete

Model checking reachability logics
3-VASS
Deciding semi-linearity of the reachability relation of VASS

Englert, Lazic, Totzke 2016

PART 1: Vector addition systems

PART 2: Branching vector addition systems

PART 1: Vector addition systems

PART 2: Branching vector addition systems

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

Q

Branching vector addition
 systems with states

a finite set of states and

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

a set of transitions

a finite set of states andQ

T

Branching vector addition
 systems with states

✓ Q⇥ Zd ⇥Q [Q3

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

a set of transitions

a finite set of states andQ

T

Branching vector addition
 systems with states

✓ Q⇥ Zd ⇥Q [Q3

unary rules
z }| {

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

a set of transitions

a finite set of states andQ

T

Branching vector addition
 systems with states

✓ Q⇥ Zd ⇥Q [Q3

unary rules
z }| {

binary/branching rules

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

a set of transitions

a finite set of states andQ

T

Branching vector addition
 systems with states

✓ Q⇥ Zd ⇥Q [Q3

binary/branching rules

(q1, q2, q3) 2 T displayed as q1

q2

q3

unary rules
z }| {

branching rule

A branching vector addition system with states (d-BVASS)
is a finite automaton that consists of

a set of transitions

a finite set of states andQ

T

Branching vector addition
 systems with states

✓ Q⇥ Zd ⇥Q [Q3

binary/branching rules

(q1, q2, q3) 2 T displayed as q1

q2

q3

a set of final states F ✓ Q

unary rules
z }| {

branching rule

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

+1

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)q2(4)q2(4)

is reachableq(0)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)
q1(2) q1(2)q1(2)q1(2)

q2(4)
q1(2) q1(2)

q2(4)
q1(2) q1(2)

q(0)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)
q1(2)

q0(1) q0(1)

q1(2)

q0(1) q0(1)

q1(2)

q0(1) q0(1)

q1(2)

q0(1) q0(1)

q2(4)
q1(2)

q0(1) q0(1)

q1(2)

q0(1) q0(1)

q2(4)
q1(2)

q0(1) q0(1)

q1(2)

q0(1) q0(1)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

Leaves must be
configurations from
F⇥{0}

Example for a 1-BVASS

q q4 q3 q2 q1 q0
0 �1 qf

Reachability for a configuration is witnessed by a tree

+1

q(0)

q(1)
...

q(16)

q4(16)

q3(8) q3(8)

q2(4) q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q2(4)
q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

q1(2)

q0(1)

qf (0)

q0(1)

qf (0)

Leaves must be
configurations from
F⇥{0}

 `` is reachable´´q(0)

Some context
BVASS were introduced in the context of computational
linguistics
(Rambow ’94)

Some context
BVASS were introduced in the context of computational
linguistics
(Rambow ’94)

Reachability in BVASS is equivalent to provability in
multiplicative exponential linear logic.
(de Groote, Guillaume, Salvati ’04)

Some context
BVASS were introduced in the context of computational
linguistics
(Rambow ’94)

Reachability in BVASS is equivalent to provability in
multiplicative exponential linear logic.
(de Groote, Guillaume, Salvati ’04)

Reachability of an extension of BVASS is equivalent to
 on data trees.
(Jacquemard, Segoufin, Dimono,’16)
FO2(<,+1,⇠)

Reachability in BVASS
Coverability in BVASS is

2EXPTIME-complete (bottom-up variant)
(Demri, Jurdziński, Lachish, Lazic ’13)

leaves
root

INPUT
conf. q(~n)

-
� q(~n)

F ⇥ {0}

Reachability in BVASS
Coverability in BVASS is

TOWER-complete (top-down variant)

2EXPTIME-complete (bottom-up variant)

(Schmitz, Lazic ’14)

(Demri, Jurdziński, Lachish, Lazic ’13)
leaves
root

root
leaves

INPUT
conf. q(~n)

q(~n)

-

-

� q(~n)

F ⇥ {0}

F ⇥ N

Reachability in BVASS
Coverability in BVASS is

TOWER-complete (top-down variant)

2EXPTIME-complete (bottom-up variant)

(Schmitz, Lazic ’14)

(Demri, Jurdziński, Lachish, Lazic ’13)
leaves
root

root
leaves

INPUT

Reachability in BVASS

conf. q(~n)

q(~n)

is TOWER-hard (Schmitz, Lazic ’14)

-

-

� q(~n)

F ⇥ {0}

F ⇥ N

Reachability in BVASS
Coverability in BVASS is

TOWER-complete (top-down variant)

2EXPTIME-complete (bottom-up variant)

(Schmitz, Lazic ’14)

(Demri, Jurdziński, Lachish, Lazic ’13)
leaves
root

root
leaves

INPUT

Reachability in BVASS

conf. q(~n)

q(~n)

is TOWER-hard (Schmitz, Lazic ’14)
not known to be decidable

-

-

� q(~n)

F ⇥ {0}

F ⇥ N

Exponentiality in
1-BVASS reachability

q q1 q0
0 �1 qf

+1

qn …
there is precisely one reachability tree for .

In the 1-BVASS

q(0)

Exponentiality in
1-BVASS reachability

q q1 q0
0 �1 qf

+1

qn …
there is precisely one reachability tree for .

In the 1-BVASS

q(0)

It has 2n+2 nodes and
2n + n+ 3 different configurations.

Exponentiality in
1-BVASS reachability

q q1 q0
0 �1 qf

+1

qn …
there is precisely one reachability tree for .

In the 1-BVASS

q(0)

It has 2n+2 nodes and
2n + n+ 3 different configurations.

Proposition. The following problem in NP-hard:

Exponentiality in
1-BVASS reachability

q q1 q0
0 �1 qf

+1

qn …
there is precisely one reachability tree for .

In the 1-BVASS

q(0)

It has 2n+2 nodes and
2n + n+ 3 different configurations.

Proposition.
INPUT:1-BVASS with unary updates and configuration

The following problem in NP-hard:
q(n)

QUESTION:

in binary

Is q(n) reachable?

Exponentiality in
1-BVASS reachability

q q1 q0
0 �1 qf

+1

qn …
there is precisely one reachability tree for .

In the 1-BVASS

q(0)

It has 2n+2 nodes and
2n + n+ 3 different configurations.

Proposition.
INPUT:1-BVASS with unary updates and configuration

The following problem in NP-hard:
q(n)

QUESTION:

in binary

Is q(n) reachable? From SUBSET SUM

Reachability in 1-BVASS
Theorem.

Reachability in 1-BVASS (updates in unary) is PTIME-complete.
(G, Haase, Lazic, Totzke 2016)

Reachability in 1-BVASS
Theorem.

Reachability in 1-BVASS (updates in unary) is PTIME-complete.
(G, Haase, Lazic, Totzke 2016)

Lower bound: Obvious reduction from Circuit Value

Reachability in 1-BVASS
Theorem.

Reachability in 1-BVASS (updates in unary) is PTIME-complete.
(G, Haase, Lazic, Totzke 2016)

Lower bound: Obvious reduction from Circuit Value

Residue reachability for unary 1-BVASS is in PTIME.
INPUT:

(Q,T, F) q(n), configuration d � 1,
QUESTION:

1-BVASS

9m � n s.t. q(m) is reachable and m ⌘ n mod d ?

1)

Upper bound strategy:

Reachability in 1-BVASS
Theorem.

Reachability in 1-BVASS (updates in unary) is PTIME-complete.
(G, Haase, Lazic, Totzke 2016)

Lower bound: Obvious reduction from Circuit Value

Residue reachability for unary 1-BVASS is in PTIME.
INPUT:

(Q,T, F) q(n), configuration d � 1,
QUESTION:

1-BVASS

9m � n s.t. q(m) is reachable and m ⌘ n mod d ?

Reachability 1-BVASS Residue reachability 1-BVASS.P
T

1)

2)

Upper bound strategy:

Bounded reachability is in PTIME

INPUT:
(Q,T, F) q(n), configuration

QUESTION:

1-BVASS

Is there a reachability tree for in whichq(n)

all configurations have counter value ?

The following problem is in PTIME: Proposition.

 b

b 2 N,
all numbers in unary.

Bounded reachability is in PTIME

INPUT:
(Q,T, F) q(n), configuration

QUESTION:

1-BVASS

Is there a reachability tree for in whichq(n)

all configurations have counter value ?

The following problem is in PTIME: Proposition.

Simple saturation by Dynamic Programming.
Proof.

 b

b 2 N,
all numbers in unary.

Residue reachability (1/4)
INPUT:

(Q,T, F) q(n), configuration d � 1,
QUESTION:

1-BVASS

9m � n s.t. q(m) is reachable and m ⌘ n mod d ?

Residue reachability (1/4)
INPUT:

(Q,T, F) q(n), configuration d � 1,
QUESTION:

1-BVASS

9m � n s.t. q(m) is reachable and m ⌘ n mod d ?

Corollary.
The set -bounded reach. tree

for
is computable in PTIME.

S
def
= {p(m) | 9(n+ |Q| · d)

p(m)}

bz}|{

Residue reachability (1/4)
INPUT:

(Q,T, F) q(n), configuration d � 1,
QUESTION:

1-BVASS

9m � n s.t. q(m) is reachable and m ⌘ n mod d ?

Corollary.
The set -bounded reach. tree

for
is computable in PTIME.

S
def
= {p(m) | 9(n+ |Q| · d)

p(m)}

What about reachability trees that involve
counter values > ?

bz}|{

b

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

p(m)
They look like this:

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

p(m)
They look like this:

…
< b< b

< b

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

p(m)
They look like this:

q1(n1)

q2(n2)

… q`(n`)

< b< b
< b

>b

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

p(m)
They look like this:

q1(n1)

q2(n2)

… q`(n`)

< b< b
< b

>b

Let us collect these residue classes:
q(n)

< bR0
def
= {q(n mod d) | } ✓ Q⇥ Zd

Residue reachability (2/4)
What about reachability trees that involve
counter values > ?b

p(m)
They look like this:

q1(n1)

q2(n2)

… q`(n`)

< b< b
< b

>b

Let us collect these residue classes:
q(n)

< bR0
def
= {q(n mod d) | } ✓ Q⇥ Zd

Computable in PTIME!

Residue reachability (3/4)
Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (3/4)

Ri+1
def
= Ri

Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (3/4)

[T (Ri)Ri+1
def
= Ri

Residue classes obtainable
from by applying a unary rule. Ri

Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (3/4)

[T (Ri)Ri+1
def
= Ri [T (Ri, S/Zd)

Residue classes obtainable
from by applying a unary rule. Ri

Residue classes obtainable
by applying binary rule:
Left child from
Right child from

Ri

S/Zd

Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (3/4)

[T (Ri)Ri+1
def
= Ri [T (Ri, S/Zd)

[T (S/Zd, Ri)
Residue classes obtainable
from by applying a unary rule. Ri

Residue classes obtainable
by applying binary rule:
Left child from
Right child from

Ri

S/Zd

Left child from
Right child

S/Zd

Ri

binary rule

Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (3/4)

[T (Ri)Ri+1
def
= Ri [T (Ri, S/Zd)

[T (S/Zd, Ri)
Residue classes obtainable
from by applying a unary rule. Ri

Residue classes obtainable
by applying binary rule:
Left child from
Right child from

Ri

S/Zd

Left child from
Right child

S/Zd

Ri

Observation.
The fixed point is computable in PTIME.

binary rule

R
def
=

[
{Ri | i � 0}

Define Ri ✓ Q⇥ Zd for each i � 1

Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if

Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if

q(r) 2 R (deals with proof trees having at
least one counter value >)b

or

Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if

q(r) 2 R

or

9m 2 [n, n+ |Q| · d] m ⌘ n mod d, q(m) 2 Sand

(deals with proof trees having at
least one counter value >)b

z}|{b

(deals with proof trees having all
counter values <)b

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0) Assume it must involve a

configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

s.t.

configurations
have small values

p(m+ d) 1  d  |Q|

p(m)

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

s.t.

configurations
have small values

{

Can be
pumped

p(m+ d) 1  d  |Q|

p(m)

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Pumping parts
non-overlapping!

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Pumping parts
non-overlapping!

Positive instance of
residue reachability!

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Pumping parts
non-overlapping!

Positive instance of
residue reachability!

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Pumping parts
non-overlapping!

Positive instance of
residue reachability!

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0)

configurations
have small values

Pumping parts
non-overlapping!

Positive instance of
residue reachability!

Assume it must involve a
configuration with a `big´
counter value (first time)

1-BVASS:
 Reachability residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0) Assume it must involves a

configuration with a `big´
counter value (first time)

configurations
have small values

Pumping parts
non-overlapping!

residue reachability
Alternating logspace machine guesses tree and instances

oracle.to suitably guessed instance of

Positive instance of
residue reachability!

Outlook & Future Work

• Reachability for BVASS

Montag, 11. April 16

Outlook & Future Work

• Reachability for BVASS

• Binary 1-BVASS: PTIME...EXPTIME

Montag, 11. April 16

Outlook & Future Work

• Is reachability for 2-BVASS decidable?

• Reachability for BVASS

• Binary 1-BVASS: PTIME...EXPTIME

Montag, 11. April 16

Outlook & Future Work

• Is reachability for 2-BVASS decidable?

• Is reachability for 2-BVASS semilinear?

• Reachability for BVASS

• Binary 1-BVASS: PTIME...EXPTIME

Montag, 11. April 16

Thank you for your attention!

Type 1 runs

q (u,v)

q (x,y)

Starting and ending sufficiently large in same control state q

Type 1 runs

q (u,v)

Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles

p

Idea:

⇡
p

q (x,y)

Type 1 runs

q (u,v)

q (x,y)

Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles

p

Idea:

⇡
Each cycle has an effect ⇡ �(⇡) 2 Z2

p

Type 1 runs

q (u,v)

q (x,y)

Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles

p

Idea:

⇡
�(

Example:
⇡) 2 N⇥ N�

``points in the right direction´´

Each cycle has an effect ⇡ �(⇡) 2 Z2

p

Type 1 runs
Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles
Idea:

⇡1�() ⇡2�(), 2 N⇥ N�

Each cycle has an effect ⇡ �(⇡) 2 Z2

Restrict to two cycles and ⇡1 ⇡2

q (u,v)

q (x,y)

p

Idea:

p

r
r

⇡2

⇡1

``that point in the right direction´´

Type 1 runs
Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles
Idea:

⇡1�() ⇡2�(), 2 N⇥ N�

Each cycle has an effect ⇡ �(⇡) 2 Z2

Restrict to two cycles and ⇡1 ⇡2

q (u,v)

q (x,y)

p

Idea:

⇡1

``that point in the right direction´´

p

p
⇡1

r
r⇡2 r⇡2 r⇡2

�

�

↵

Type 1 runs
Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles
Idea:

⇡1�() ⇡2�(), 2 N⇥ N�

Each cycle has an effect ⇡ �(⇡) 2 Z2

Restrict to two cycles and ⇡1 ⇡2

q (u,v)

q (x,y)

p

Idea:

⇡1

``that point in the right direction´´

p

p
⇡1

r
r⇡2 r⇡2 r⇡2

↵

�

�

Use bounded language

↵

� �⇡⇤
1 ⇡⇤

2

small

Type 2 runs

q (x,y)

Staying sufficiently large all the time

(u,v)p

⇡

Type 2 runs

q (x,y)

Staying sufficiently large all the time

(u,v)p

Idea:

Each run can be factorized as

⇡

⇡

↵0 �1 �`↵1 ↵`· · ·=⇡

Type 2 runs

q (x,y)

Staying sufficiently large all the time

(u,v)p

Idea:

Each run can be factorized as

⇡

⇡

↵0 �1 �`↵1 ↵`· · ·=⇡

cycles starting and ending sufficiently large (i.e. Type 1)

`  |Q|

Type 3 runs

Type 3 runs

q (x,y)

Staying sufficiently small all the time

⇡

D

(u,v)p

Type 3 runs

Idea:

Treat each run as a run in a big 1-VASS (with states) ⇡

Type 3 runs

q (x,y)

Staying sufficiently small all the time

⇡

D

|Q|· D

(u,v)p

Type 3 runs

Idea:

Treat each run as a run in a big 1-VASS (with states) ⇡

Type 3 runs

q (x,y)

Staying sufficiently small all the time

⇡

D

|Q|· D

↵ � �⇡⇤
1 ⇡⇤

2

Run can be factorized as

=⇡

(u,v)p

⇡

Type 3 runs

Idea:

Treat each run as a run in a big 1-VASS (with states) ⇡

Type 3 runs

q (x,y)

Staying sufficiently small all the time

⇡

D

|Q|· D

↵ � �⇡⇤
1 ⇡⇤

2

Run can be factorized as

=⇡
2 possible cases:

down* right*

up*left*

(u,v)p

⇡

↵ � �

↵ � �

Factorizing arbitrary runs

q (x,y)

(u,v)p

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Color each border position with its control state
Idea:

Type 1 run!

q (x,y)

(u,v)p

Type 1 run!

Color each border position with its control state
Idea:

Factorizing arbitrary runs

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!

Type 1 run!

Type 1 run!

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!

Type 1 run!

Type 1 run!

Type 1 run!

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!⇡1

⇡1

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!
Type 1 run!⇡2

⇡1

⇡1

⇡2

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!
Type 1 run!⇡2⇡1
Type 3 run!⇡3

⇡3

⇡1

⇡2

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!
Type 1 run!⇡2⇡1
Type 3 run!⇡3

⇡3

⇡4

Type 3 run!⇡4

⇡1

⇡2

Color each border position with its control state
Idea:

Factorizing arbitrary runs

q (x,y)

(u,v)p

Color each border position with its control state
Idea:

Type 1 run!
Type 1 run!⇡2⇡1
Type 3 run!⇡3

⇡3

⇡4

Type 3 run!⇡4

⇡1

⇡2

⇡5

⇡5 Type 2 run!

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!
Type 1 run!⇡2⇡1
Type 3 run!

⇡3

⇡3

⇡4

Type 3 run!

⇡4 ⇡1

⇡2

⇡5 Type 2 run!

Small factorization:

⇡4

⇡2 ⇡5

⇡3

⇡1
⇡5

Factorizing arbitrary runs

q (x,y)

(u,v)p

Type 1 run!
Type 1 run!⇡2⇡1
Type 3 run!

⇡3

⇡3

⇡4

Type 3 run!

⇡4 ⇡1

⇡2

⇡5 Type 2 run!

Small factorization:

⇡4

⇡2 ⇡5

⇡3

⇡1
⇡5

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

bounded by (|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

``Reachability is witnessed by a small bounded language´´

The following is computable in exponential space:

How to get PSPACE

for reachability?

Our main result
V = (Q,T)Given: 2-VASS .

Output: Finite unions of regular expressions

such that
p(u1, u2) �!⇤ q(v1, v2)

if, and only, if

p(u1, u2)
↵0�

e1
1 ↵1···�

ek
k ↵k�����������! q(v1, v2)

[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

9e1, . . . , ek 2 N :

Length at most
(|Q|+ |T |+ ||T ||)O(1)

bounded by (|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

``Reachability is witnessed by a small bounded language´´

The following is computable in exponential space:

How to get PSPACE

for reachability?

Why?

Reachability is in PSPACE
[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

Reachability is in PSPACE
[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

1) For each construct a matrix ↵0�
⇤
1↵1 · · ·�⇤

k↵k A 2 Zn⇥k

 and a vector ~b 2 Zn such that solutions to
the system of linear Diophantine inequalities
correspond to real runs

(e1, . . . , ek)

↵0�
e1↵1 · · ·�ek

k ↵k in the 2-VASS.
Ax � ~

b

Reachability is in PSPACE
[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

1) For each construct a matrix ↵0�
⇤
1↵1 · · ·�⇤

k↵k A 2 Zn⇥k

 and a vector ~b 2 Zn such that solutions to
the system of linear Diophantine inequalities
correspond to real runs

(e1, . . . , ek)

↵0�
e1↵1 · · ·�ek

k ↵k in the 2-VASS.

2) Use results from integer linear programming that solutions
to

Ax � ~

b

Ax � ~

b

are bounded by 2k
O(1)

·O(||A||+ ||~b||).
(Shrijver 1998)

