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Theorem. (Leroux & Sutre 2004)
The reachability relation of 2-VASS is effectively Presburger definable.

Theorem. 
The reachability relation of 2-VASS is computable in exponential space.
The reachability problem for 2-VASS is PSPACE-complete.

2-VASS history

(Blondin, Finkel. G, Haase & McKenzie 2015)
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[ T (Ri)Ri+1
def
= Ri [ T (Ri, S/Zd)

[ T (S/Zd, Ri)
Residue classes obtainable 
from       by applying a unary rule.  Ri

Residue classes obtainable 
by applying binary rule: 
Left child from  
Right child from

Ri

S/Zd

Left child from  
Right child

S/Zd

Ri

Observation.
The fixed point                                  is computable in PTIME.                             

binary rule

R
def
=

[
{Ri | i � 0}

Define Ri ✓ Q⇥ Zd for each i � 1



Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if



Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if

q(r) 2 R (deals with proof trees having at  
least one counter value >   )b

or



Residue reachability (4/4)
Lemma.
For all q(r) 2 Q⇥ Zd we have

9m � n : m ⌘ r mod d q(m)and is reachable
if, and only, if

q(r) 2 R

or

9m 2 [n, n+ |Q| · d] m ⌘ n mod d, q(m) 2 Sand

(deals with proof trees having at  
least one counter value >   )b

z}|{b

(deals with proof trees having all 
counter values <    )b
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1-BVASS: 
 Reachability       residue reachabilityP

T

Assume a minimal reachability tree for q(0)
q(0) Assume it must involves a  

configuration    with a `big´ 
counter value (first time)

configurations  
have small values

Pumping parts
non-overlapping!

residue reachability
Alternating logspace machine guesses tree and instances

oracle.to suitably guessed instance of

Positive instance of
residue reachability!
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Outlook & Future Work

• Is reachability for 2-BVASS decidable?

• Is reachability for 2-BVASS semilinear?

• Reachability for BVASS

• Binary 1-BVASS: PTIME...EXPTIME

Montag, 11. April 16



Thank you for your attention!
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Type 1 runs
Starting and ending sufficiently large in same control state q

Run is a decomposition of small cycles
Idea:

⇡1�( ) ⇡2�( ), 2 N⇥ N�

Each cycle     has an effect ⇡ �(⇡) 2 Z2

Restrict to two cycles       and    ⇡1 ⇡2

q (u,v)

q (x,y)

p

Idea:

⇡1

``that point in the right direction´´

p

p
⇡1

r
r⇡2 r⇡2 r⇡2

↵

�

�

Use bounded language

↵

� �⇡⇤
1 ⇡⇤

2

small
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(u,v)p

Idea:

Each run        can be factorized as              

⇡

⇡

↵0 �1 �`↵1 ↵`· · ·=⇡

cycles starting and ending sufficiently large (i.e. Type 1)

`  |Q|
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Type 3 runs

Idea:

Treat each run        as a run in a big 1-VASS (with             states)                ⇡

Type 3 runs

q (x,y)

Staying sufficiently small all the time

⇡

D

|Q|· D

↵ � �⇡⇤
1 ⇡⇤

2

Run      can  be factorized as              

=⇡
2 possible cases:

down* right*

up*left*

(u,v)p

⇡

↵ � �

↵ � �
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Reachability is in PSPACE
[

i

↵0�
⇤
1↵1 · · ·�⇤

k↵k

Length at most
(|Q|+ |T |+ ||T ||)O(1)

k  O(|Q|2)

1) For each                            construct a matrix  ↵0�
⇤
1↵1 · · ·�⇤

k↵k A 2 Zn⇥k

   and a vector   ~b 2 Zn such that solutions                     to
the system of linear Diophantine inequalities 
correspond to real runs 

(e1, . . . , ek)

↵0�
e1↵1 · · ·�ek

k ↵k in the 2-VASS.

2) Use results from integer linear programming that solutions  
to

Ax � ~

b

Ax � ~

b

are bounded by 2k
O(1)

·O(||A||+ ||~b||).
(Shrijver 1998)


