Good-for-Games Automata.

Denis Kuperberg Michał Skrzypczak

TUM Munich and University of Warsaw

GT ALGA 12/04/2016 Marseille Deterministic automata on words are a central tool in automata theory:

- Polynomial algorithms for inclusion, complementation.
- Safe composition with games, trees.
- Solutions of the synthesis problem (verification).
- Easily implemented.

Problems :

- exponential state blow-up
- technical constructions (Safra)

Can we weaken the notion of determinism while preserving some good properties?

Good-for-Games automata

Idea : Nondeterminism can be resolved without knowledge about the future.

Idea : Nondeterminism can be resolved without knowledge about the future.

Introduced independently in

- ► symbolic representation (Henzinger, Piterman '06) → simplification
- quantitative models (Colcombet '09) \rightarrow replace determinism

Applications

- synthesis
- branching time verification
- ► tree languages (Boker, K, Kupferman, S '13)

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: *I*₁ System:

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: *I*₁ System: *O*₁

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

```
Environment: I_1 I_2
System: O_1
```

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: $I_1 I_2$ System: $O_1 O_2$

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

```
Environment: I_1 I_2 I_3
System: O_1 O_2
```

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

```
Environment: I_1 I_2 I_3
System: O_1 O_2 O_3
```

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: I_1 I_2 I_3 \cdots System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$.

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: I_1 I_2 I_3 \cdots System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$. Church's problem: Can the system win ? If yes give strategy.

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: I_1 I_2 I_3 \cdots System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$. Church's problem: Can the system win ? If yes give strategy.

Classical approach: $\varphi \rightsquigarrow \mathcal{A}_{det}$ then solve game on \mathcal{A}_{det} . 2EXP blow-up for φ in LTL

Finite alphabets I for inputs and O for outputs. **Synthesis** : design a system responding to environment, while satisfying a constraint $\varphi \subseteq (IO)^{\omega}$ (regular language).

Environment: I_1 I_2 I_3 \cdots System: O_1 O_2 O_3 \cdots

System wins iff $(I_1, O_1), (I_2, O_2), (I_3, O_3), \ldots \models \varphi$. Church's problem: Can the system win ? If yes give strategy.

Classical approach: $\varphi \rightsquigarrow \mathcal{A}_{det}$ then solve game on \mathcal{A}_{det} . 2EXP blow-up for φ in LTL

Wrong approach: $\varphi \rightsquigarrow \mathcal{A}_{non-det}$: no player can guess the future.

Trivial instance of the synthesis problem:

•
$$I = \{a, b\}, O = \{c, d\}$$

• $\varphi = (IO)^{\omega}$

Trivial instance of the synthesis problem:

•
$$I = \{a, b\}, O = \{c, d\}$$

• $\varphi = (IO)^{\omega}$

Trivial instance of the synthesis problem:

•
$$I = \{a, b\}, O = \{c, d\}$$

• $\varphi = (IO)^{\omega}$

Trivial instance of the synthesis problem:

Trivial instance of the synthesis problem:

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters:

GFG Prover: controls transitions

 ${\cal A}$ automaton on finite or infinite words. Refuter plays letters: ${\it a}$

GFG Prover: controls transitions

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: *a a* GFG Prover: controls transitions

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b$ GFG Prover: controls transitions

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b \ c$ GFG Prover: controls transitions

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b \ c \ c$ GFG Prover: controls transitions

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b \ c \ c \ \dots \ = \ w$ GFG Prover: controls transitions

GFG Prover wins if: $w \in L \Rightarrow$ Run accepting.

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b \ c \ c \ \dots \ = \ w$ GFG Prover: controls transitions

GFG Prover wins if: $w \in L \Rightarrow$ Run accepting.

 \mathcal{A} **GFG** means that there is a strategy $\sigma : \mathcal{A}^* \to Q$, for accepting words of $\mathcal{L}(\mathcal{A})$.

 \mathcal{A} automaton on finite or infinite words. Refuter plays letters: $a \ a \ b \ c \ c \ \dots \ = \ w$ GFG Prover: controls transitions

GFG Prover wins if: $w \in L \Rightarrow$ Run accepting.

 \mathcal{A} **GFG** means that there is a strategy $\sigma : \mathcal{A}^* \to Q$, for accepting words of $\mathcal{L}(\mathcal{A})$.

How close is this to determinism?

Composing a game with an automaton: Input:

- ► Game G with complex winning condition L. A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A.
 Simple accepting condition C.

Output:

Game $A_L \circ G$, with winning condition *C*. Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \rightsquigarrow positional winning strategies

Composing a game with an automaton: Input:

- ► Game G with complex winning condition L. A alphabet of actions in G.
- Automaton A_L recognizing L, on alphabet A.
 Simple accepting condition C.

Output:

Game $A_L \circ G$, with winning condition *C*. Straightforward construction, arena of size $|A_L| \cdot |G|$.

Goal: Simple winning condition \rightsquigarrow positional winning strategies

Theorem (Sound Composition)

 \mathcal{A}_L is **GFG** if and only if

for all G with condition L, $A_L \circ G$ has same winner as G.

GFG Automata:

- " $\mathcal{A} \subseteq \mathcal{B}$?": in **P** if \mathcal{B} GFG (**PSPACE**-complete for ND)
- ► But Complementation ~ Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

GFG Automata:

- " $\mathcal{A} \subseteq \mathcal{B}$?": in **P** if \mathcal{B} GFG (**PSPACE**-complete for ND)
- ► But Complementation ~ Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '13)

Let \mathcal{A} be an automaton for $L \subseteq A^{\omega}$. Then the tree version of \mathcal{A} recognizes $\{t : all \text{ branches of } t \text{ are in } L\}$ if and only if \mathcal{A} is **GFG**.

GFG Automata:

- " $\mathcal{A} \subseteq \mathcal{B}$?": in **P** if \mathcal{B} GFG (**PSPACE**-complete for ND)
- ► But Complementation ~ Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '13)

Let \mathcal{A} be an automaton for $L \subseteq A^{\omega}$. Then the tree version of \mathcal{A} recognizes $\{t : all \text{ branches of } t \text{ are in } L\}$ if and only if \mathcal{A} is **GFG**.

Theorem (Löding)

Let \mathcal{A} be **GFG** on finite words. Then \mathcal{A} contains an equivalent deterministic automaton.

GFG Automata:

- " $\mathcal{A} \subseteq \mathcal{B}$?": in **P** if \mathcal{B} GFG (**PSPACE**-complete for ND)
- ► But Complementation ~ Determinisation.
- Size of GFG strategy $\sigma \cong$ Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S '13)

Let \mathcal{A} be an automaton for $L \subseteq A^{\omega}$. Then the tree version of \mathcal{A} recognizes $\{t : all \text{ branches of } t \text{ are in } L\}$ if and only if \mathcal{A} is **GFG**.

Theorem (Löding)

Let \mathcal{A} be **GFG** on finite words. Then \mathcal{A} contains an equivalent deterministic automaton.

What about infinite words ? Colcombet's conjecture: $GFG \approx Det$.

An automaton that is not GFG

This automaton for $L = (a + b)^* a^{\omega}$ is not **GFG**:

Refuter strategy: play *a* until Eve goes in *q*, then play ba^{ω} .

An automaton that is not GFG

This automaton for $L = (a + b)^* a^{\omega}$ is not **GFG**:

Refuter strategy: play *a* until Eve goes in *q*, then play ba^{ω} .

Fact

GFG automata with condition *C* have same expressivity as deterministic automata with condition *C*.

Therefore, GFG could improve succinctness but not expressivity.

A GFG Büchi example

Büchi condition: Run is accepting if infinitely many Büchi transitions are seen.

Language: $[(xa + xb)^*(xaxa + xbxb)]^{\omega}$

Theorem (K, Skrzypczak '15)

Let \mathcal{A} a **GFG** Büchi automaton. There exists a deterministic automaton \mathcal{B} with $L(\mathcal{B}) = L(\mathcal{A})$ and $|\mathcal{B}| \leq |\mathcal{A}|^2$.

Proof scheme:

- Brutal powerset determinisation,
- Use is as a guide to normalize A.

Conclusion: the automaton can use itself as memory structure \Rightarrow quadratic blow-up only.

Is it true for all ω -regular conditions?

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi '84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG ?

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi '84)

Nondeterministic CoBüchi automata are easier to determinise than Büchi ones: 2^n instead of $2^{n \log n}$ and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG ? NO

Theorem (K, Skrzypczak '15)

For all $n \ge 2$, there exists a language L_n on 3 letters such that

- ► There is a n-state CoBüchi GFG automaton for L_n,
- any deterministic automaton for L_n has $\Omega(2^n)$ states.

CoBüchi (and parity) **GFG** automata can provide both succinctness and sound behaviour with respect to games.

General picture

(i, j)-Parity condition: Each state has a color in $\{i, i + 1, ..., j\}$. Accepting runs: Maximal color occuring infinitely often is even.

Blow-up $GFG \rightarrow Det$:

General picture

(i, j)-Parity condition: Each state has a color in $\{i, i + 1, ..., j\}$. Accepting runs: Maximal color occuring infinitely often is even.

Blow-up $GFG \rightarrow Det$: exponential co-Büchi reachability (1, 3)(0, 3)(0,1)Büchi (0,2) (1,4) ... safety (1,2)polynomial

Question: How practical are these GFG ?

Recognizing GFG automata

Question: Given an automaton A, is it **GFG**?

Theorem (K, Skrzypczak '15)

The complexity of deciding GFG-ness is in

- ► Upper bound: **EXPTIME** (even for (1,3)-parity)
- NP for Büchi automata
- ▶ **P** for coBüchi automata (surprising given blow-up result)
- ► at least as hard as solving parity games (P / NP ∩ coNP) for parity automata.

Open Problems

- Is it in P for any fixed acceptance condition?
- Is it equivalent to parity games for arbitrary condition?

Results

- GFG automata capture good properties of deterministic automata.
- ► Inclusion is in **P**, but Complementation ~ Determinisation.
- Conditions Büchi and lower: **GFG** \approx Deterministic.
- ► Conditions coBüchi and higher: exponential succinctness.
- Recognizing GFG coBüchi is in P.

Open Problems

- Can we build small GFG automata in a systematic way?
- Complexity of deciding GFG-ness for parity automata? (gap P vs EXPTIME)