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Introduction

Deterministic automata on words are a central tool in automata
theory:

I Polynomial algorithms for inclusion, complementation.

I Safe composition with games, trees.

I Solutions of the synthesis problem (verification).

I Easily implemented.

Problems :

I exponential state blow-up

I technical constructions (Safra)

Can we weaken the notion of determinism while preserving some
good properties?



Good-for-Games automata

Idea : Nondeterminism can be resolved without knowledge about
the future.

Introduced independently in

I symbolic representation (Henzinger, Piterman ’06)
→ simplification

I quantitative models (Colcombet ’09) → replace determinism

Applications

I synthesis

I branching time verification

I tree languages (Boker, K, Kupferman, S ’13)
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Evaluating a game

Finite alphabets I for inputs and O for outputs.
Synthesis : design a system responding to environment, while
satisfying a constraint ϕ ⊆ (IO)ω (regular language).

Environment: I1

I2 I3 · · ·

System:

O1 O2 O3 · · ·

System wins iff (I1,O1), (I2,O2), (I3,O3), . . . |= ϕ.

Church’s problem: Can the system win ? If yes give strategy

.

Classical approach: ϕ; Adet then solve game on Adet .
2EXP blow-up for ϕ in LTL

Wrong approach: ϕ; Anon−det : no player can guess the future.
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A trivial synthesis example

Trivial instance of the synthesis problem:

I I = {a, b}, O = {c , d}
I ϕ = (IO)ω

I Synthesis possible (no wrong answer !)

IAdet (safety): O

a, b

c , d
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Definition of GFG via a game

A automaton on finite or infinite words.
Refuter plays letters:

GFG Prover: controls transitions

q0 q1 q2

a, b, c
a

b, c

a
b

a, b, c

c
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GFG Prover wins if: w ∈ L ⇒ Run accepting.
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A GFG means that there is a strategy σ : A∗ → Q, for accepting
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GFG Prover wins if: w ∈ L ⇒ Run accepting.

A GFG means that there is a strategy σ : A∗ → Q, for accepting
words of L(A).

How close is this to determinism?



Why Good-for-games

Composing a game with an automaton:
Input:

I Game G with complex winning condition L.
A alphabet of actions in G .

I Automaton AL recognizing L, on alphabet A.
Simple accepting condition C .

Output:
Game AL ◦ G , with winning condition C .
Straightforward construction, arena of size |AL| · |G |.
Goal: Simple winning condition ; positional winning strategies

Theorem (Sound Composition)

AL is GFG if and only if
for all G with condition L, AL ◦ G has same winner as G .
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Some properties of GFG automata

GFG Automata:

I “A ⊆ B?”: in P if B GFG (PSPACE-complete for ND)

I But Complementation ∼ Determinisation.

I Size of GFG strategy σ ∼= Size of deterministic automaton.

Theorem (Boker, K, Kupferman, S ’13)

Let A be an automaton for L ⊆ Aω. Then the tree version of A
recognizes {t : all branches of t are in L} if and only if A is GFG.

Theorem (Löding)

Let A be GFG on finite words. Then A contains an equivalent
deterministic automaton.

What about infinite words ? Colcombet’s conjecture: GFG ≈ Det.
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An automaton that is not GFG

This automaton for L = (a + b)∗aω is not GFG:

p q

a, b

a, b

a

Refuter strategy: play a until Eve goes in q, then play baω.

Fact

GFG automata with condition C have same expressivity as
deterministic automata with condition C .

Therefore, GFG could improve succinctness but not expressivity.
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A GFG Büchi example

Büchi condition: Run is accepting if infinitely many Büchi
transitions are seen.

x

x

b

a

a

b

x

x

b

a

a

b

Language: [(xa + xb)∗(xaxa + xbxb)]ω



Determinization of Büchi GFG

Theorem (K, Skrzypczak ’15)

Let A a GFG Büchi automaton. There exists a deterministic
automaton B with L(B) = L(A) and |B| ≤ |A|2.

Proof scheme:

I Brutal powerset determinisation,

I Use is as a guide to normalize A.

Conclusion: the automaton can use itself as memory structure ⇒
quadratic blow-up only.

Is it true for all ω-regular conditions?



The coBüchi jump

CoBüchi condition: must see finitely many rejecting states.

Fact (Miyano-Hayashi ’84)

Nondeterministic CoBüchi automata are easier to determinise than
Büchi ones: 2n instead of 2n log n and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG ?

NO

Theorem (K, Skrzypczak ’15)

For all n ≥ 2, there exists a language Ln on 3 letters such that

I There is a n-state CoBüchi GFG automaton for Ln,

I any deterministic automaton for Ln has Ω(2n) states.

CoBüchi (and parity) GFG automata can provide both
succinctness and sound behaviour with respect to games.
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Büchi ones: 2n instead of 2n log n and much simpler construction.

Are CoBüchi GFG simpler to determinize than Büchi GFG ? NO
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General picture

(i , j)-Parity condition: Each state has a color in {i , i + 1, . . . , j}.
Accepting runs: Maximal color occuring infinitely often is even.

Blow-up GFG → Det:

polynomial

safety

reachability

Büchi
(1,2)

co-Büchi
(0,1)

(0, 2)

(1, 3)

(1, 4)

(0, 3)

· · ·

· · ·

exponential

Question: How practical are these GFG ?
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Recognizing GFG automata

Question: Given an automaton A, is it GFG?

Theorem (K, Skrzypczak ’15)

The complexity of deciding GFG-ness is in

I Upper bound: EXPTIME (even for (1, 3)-parity)

I NP for Büchi automata

I P for coBüchi automata (surprising given blow-up result)

I at least as hard as solving parity games (P / NP ∩ coNP) for
parity automata.

Open Problems

I Is it in P for any fixed acceptance condition?

I Is it equivalent to parity games for arbitrary condition?



Summary and conclusion

Results

I GFG automata capture good properties of deterministic
automata.

I Inclusion is in P, but Complementation ∼ Determinisation.

I Conditions Büchi and lower: GFG ≈ Deterministic.

I Conditions coBüchi and higher: exponential succinctness.

I Recognizing GFG coBüchi is in P.

Open Problems

I Can we build small GFG automata in a systematic way?

I Complexity of deciding GFG-ness for parity automata?
(gap P vs EXPTIME)


