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Questions on system verification as ”simple” games (finite graphs).

Theorem (Gurevich and Harrington 1982)

Simple Muller games have finite-memory solutions.

Questions on distributed-system verification as ”complex” games.

Theorem (Paul and Simon 2009)

Complex Muller games have finite-memory solutions.

How about a transfer theorem?

Result by De Pril 2013, Brihaye, De Pril, and Schewe 2013.

Our transfer theorem:

I applicable to, e.g. , energy-parity games.

I sufficient condition approaching necessity,
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Turn-based games played on finite graphs

v0

v2

v1 v3

I (V ,E ) is a finite directed graph s.t. vE 6= ∅ for all v ∈ V .

I v0 ∈ V is the initial vertex.

I A is a set (of players) and {Va}a∈A is a partition of V .

I H are the histories: finite paths in (V ,E ) starting at v0.

I [H] are the runs: infinite paths in (V ,E ) starting at v0.

I ≺a⊆ [H]× [H] (is the preference of player a ∈ A).
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Nash equilibrium

v0

a
start

v2

c

v1

b

v3

a

Def s : H → V is a strategy profile iff h · s(h) ∈ H for all h ∈ H.

E.g. s(hv3) ∈ {v1, v3}
Def A strategy profile s induces a unique run ρ(s).

Notation Let s ≺a s
′ stand for ρ(s) ≺a ρ(s ′).

Def Let s be a profile, then sa := s |V ∗Va is a strategy for player a.

Def A profile s = ∪b∈Asb is a Nash equilibrium iff
s makes all the players stable, i.e. for all a ∈ A we have

∀s ′a, s 6≺a s ′a ∪ (∪b∈A\{a}sb).
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Some special cases

Usually, the preferences are defined in two stages :

1. by assigning a payoff tuple A→ R to each run.

If A = {a, b, c} then (2, 7, 4) means a gets 2, b gets 7...

2. and (0, 2, 1) ≺b (9, 3, 0).

Two-player win/lose games: only payoffs (1, 0) or (0, 1).
Such games may have winning strategies.
In such games s = sa ∪ sb is an NE iff sa or sb is winning.
If a game has a winning strategy, it is said to be determined.
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Finite games in extensive form with R-valued payoffs
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Towards the transfer theorem
for turn-based games on finite graphs

Theorem (Gurevich and Harrington 1982)

Two-player win/lose Muller games are finite-memory determined

Theorem (Paul and Simon 2009)

Multi-player multi-outcome Muller games have finite-memory NE.

Theorem (still a bit vague)

A game g played on a finite graph has a finite-memory NE if

1. some win/lose derived games are finite-memory determined,

2. and the preferences satisfy three conditions.
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Future games
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Define v3h ≺future
b v3h

′ iff v0v1v3h ≺b v0v1v3h
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Threshold games
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Below: game for b and threshold run v0v1v
ω
3
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a ∪ c

Player b wins if the run ρ �b v0v1v
ω
3 , else a ∪ c wins.
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Strict weak order
existing concept

A relation ≺ is a strict partial order if it is irreflexive and transitive.

It is a strict weak order if in addition its complement is transitive.

I a strict linear order is a strict weak order,

I so is the usual order over payoffs, e.g. (0, 2, 1) ≺b (9, 3, 0).

I The strict weak order (R× {0, 1}, <lex) cannot be simulated
by payoff tuples.
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Automatic-piecewise prefix linearity

Usual preferences depend either fully on finite prefixes of the run,
or only on its tail. (Apart from discounted payoffs.)

A preference relation ≺ is prefix-linear if
hρ ≺ hρ′ ⇔ h′ρ ≺ h′ρ′ for all h, h′, ρ, ρ′.

The lexicographic order on {0, 1}ω is prefix-linear.

More general: hρ ≺ hρ′ ⇔ h′ρ ≺ h′ρ′ if h′ = h ∈ H,
where H are the classes of an equivalence relation on H.
If the classes are decidable by a finite automaton, ≺ is
automatic-piecewise prefix-linear.

On {0, 1}ω let 0ρ ≺ 0ρ′ ⇔ ρ <lex ρ
′ and 1ρ ≺ 1ρ′ ⇔ ρ >lex ρ

′.
Then ≺ is automatic-piecewise prefix-linear (with two classes),
but ≺ is not prefix-linear: 010 ≺ 011 but 10 � 11.
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The Mont condition

A relation ≺⊆ V ω × V ω is Mont if ∀h0, h1, h2, · · · ∈ V ∗ we have:
h0 . . . hnρ ≺ h0 . . . hnhn+1ρ for all n ∈ N implies h0ρ ≺ h0h1h2 . . .

Prefix independent, irreflexive relations are Mont:
h0 . . . hnρ ≺ h0 . . . hnhn+1ρ implies ρ ≺ ρ.
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Our result

Theorem
Let a game be played by players in A on a graph over finite V s.t.

1. All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory.

2. The ≺a are automatic-piecewise (with k classes) prefix-linear
Mont strict weak orders.

Then the game has an NE in finite-memory strategies requiring
|A|(m + 2 log max(k, |V |)) + 1 bits of memory.
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Counterexamples
Why ”All one-vs-all threshold games of all future games are
determined via strategies using m bits of memory”?

badstart good

1

0

0

If finitely many ”good” then payoff 0, else lim sup average 0 and 1.

start

Gurvich and Oudalov (2014) constructed a four-player 13-state
one-cycle game with no positional NE. So, no transfer theorem
with memoryless determinacy.
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