Relating paths in transition systems: the fall of the modal $\mu\text{-}calculus$

Cătălin Dima, Bastien Maubert and Sophie Pinchinat

Journées ALGA, April 11-12, 2016

Background, question.

Properties:

- LTL, CTL, CTL^{*}, L_μ...
- ATL, ATL*...

Background, question.

Properties:

- LTL, CTL, CTL*, L_μ...
- ATL, ATL*...

- Complexity
- Expressivity

Background, question.

Properties:

- LTL, CTL, CTL*, L_μ...
- ATL, ATL*...

- Complexity
- Expressivity: compare to a "yardstick" logic.

Background, question.

Properties:

• LTL, CTL, CTL^{*}, L_{μ} ... • ATL, ATL^{*}...

- Complexity
- Expressivity: compare to a "yardstick" logic.

Background, question.

Properties:

• LTL, CTL, CTL*, L_{μ} ... • ATL, ATL*... \prec MSO

- Complexity
- Expressivity: compare to a "yardstick" logic.

Background, question.

Properties:

LTL, CTL, CTL*, L_μ... ≺ MSO, bisimulation invariant.

- Complexity
- Expressivity: compare to a "yardstick" logic.

Background, question. $0 \bullet 00$

Framework, answer.

Janin and Walukiewicz, 1996

Adding uncertainty

- \bullet Temporal epistemic logics: LTLK, CTLK, L_{\mu}K...
- \bullet Strategic logics with imperfect information: $\mathsf{ATL}_i,\,\mathsf{ESL}\ldots$

Common feature:

Indistinguishability relation on finite paths:

- Temporal epistemic logics: semantics of K
- Imperfect-information games: strategies must be *uniform* In most works, this relation is fixed.
 - memoryless, bounded memory, perfect recall
 - synchronous, asynchronous...

Unlike the perfect information case, no unifying logic for now. For instance: ATL_i \prec L_{\mu}K ?

Our contribution

Question

Is the μ -calculus still as central when uncertainty is considered?

Our contribution

Question

Is the μ -calculus still as central when uncertainty is considered?

Answer

It depends on the nature of the relation between paths...

Transition systems over \mathcal{AP} and $\mathcal{A}ct$

$$\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$$

Transition systems over \mathcal{AP} and $\mathcal{A}ct$

$$\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$$

Transition systems over \mathcal{AP} and $\mathcal{A}ct$

$$\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$$

Transition systems over \mathcal{AP} and $\mathcal{A}ct$ $\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$

Transition systems over
$$\mathcal{AP}$$
 and $\mathcal{A}ct$
 $\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$

$$x \checkmark y \text{ if } w(x) \checkmark w(y)$$
$$w(x) = \{p, q\}a\{p\}a\{p, q\}$$

Transition systems over \mathcal{AP} and $\mathcal{A}ct$ $\mathcal{S} = (S, s_{\iota}, \{a^{\mathcal{S}}\}_{a \in \mathcal{A}ct}, \{p^{\mathcal{S}}\}_{p \in \mathcal{AP}})$

Fix a binary relation \checkmark over $(Act \times 2^{AP})^*$: path relation.

Example: a synchronous perfect recall agent, who only observes p

Extending the framework

$$\begin{split} & \mathsf{MSO} \\ & \psi ::= \quad p(X) \mid r(X) \mid a(X,Y) \mid X \subseteq Y \mid \neg \psi \mid \psi \lor \psi \mid \exists X.\psi(X) \\ & \mathsf{where} \ p \in \mathcal{AP} \ \mathsf{and} \ a \in \mathcal{Act}. \end{split}$$

L_{μ}

$$\varphi ::= X \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \textcircled{}{} & \textcircled{}{} \varphi \downarrow \mu X. \varphi(X)$$

where $p \in \mathcal{AP}$ and $a \in \mathcal{A}ct$.

Extending the framework

MSO^{*}: MSO with path relation

$$\psi ::= p(X) | r(X) | a(X,Y) | X \subseteq Y | \neg \psi | \psi \lor \psi | \exists X.\psi(X) | \checkmark (X,Y)$$

where $p \in \mathcal{AP}$ and $a \in \mathcal{A}ct$.

L_{μ}^{\checkmark} : Jumping μ -calculus

$$\varphi ::= X \mid p \mid \neg \varphi \mid \varphi \lor \varphi \mid \textcircled{\otimes} \varphi \mid \mu X.\varphi(X) \mid \diamondsuit \varphi$$

where $p \in \mathcal{AP}$ and $a \in \mathcal{A}ct$.

 $t, V \models \neg \psi \text{ if } t, V \not\models \psi$ $t, V \models \psi \lor \psi' \text{ if } t, V \models \psi \text{ or } t, V \models \psi'$ $t, V \models \exists X.\psi(X) \text{ if there is } T \subseteq t \text{ s.t. } t, V[T/X] \models \psi(X)$ $t, V \models \forall \forall (X, Y) \text{ if } V(X) = \{x\}, V(Y) = \{y\}, \text{ and } x \neq y$

 $\begin{array}{l} t,V\models \stackrel{\text{\tiny def}}{=} r(X) \text{ if } V(X) = \{\epsilon\}\\ t,V\models \stackrel{\text{\tiny def}}{=} a(X,Y) \text{ if } V(X) = \{x\}, V(Y) = \{y\}, \text{ and } xa^ty \\ \end{array}$

 $t, V \models f(X)$ if for all $x \in V(X), p \in \ell(x)$

MS0^G

Semantics

$$\begin{split} & \llbracket X \rrbracket_{\rightarrow}^{t,V} = V(X) \\ & \llbracket p \rrbracket_{\rightarrow}^{t,V} = \{ x \in t \mid p \in \ell^x \} \\ & \llbracket \neg \varphi \rrbracket_{\rightarrow}^{t,V} = t \setminus \llbracket \varphi \rrbracket_{\rightarrow}^{t,V} \\ & \llbracket \varphi \lor \varphi' \rrbracket_{\rightarrow}^{t,V} = \llbracket \varphi \rrbracket_{\rightarrow}^{t,V} \cup \llbracket \varphi' \rrbracket_{\rightarrow}^{t,V} \\ & \llbracket \varphi \lor \varphi' \rrbracket_{\rightarrow}^{t,V} = \llbracket \varphi \rrbracket_{\rightarrow}^{t,V} \cup \llbracket \varphi' \rrbracket_{\rightarrow}^{t,V} \\ & \llbracket \varphi \lor \rrbracket_{\rightarrow}^{t,V} = \{ x \in t \mid \text{ there exists } y \in \llbracket \varphi \rrbracket_{\rightarrow}^{t,V} \text{ such that } xa^ty \} \\ & \llbracket \mu X.\varphi(X) \rrbracket_{\rightarrow}^{t,V} = \bigcap \{ T \subseteq t \mid \llbracket \varphi(X) \rrbracket_{\rightarrow}^{t,V[T/X]} \subseteq T \} \\ & \llbracket \varphi \varTheta_{\rightarrow}^{t,V} = \{ x \in t \mid \text{ there exists } y \in \llbracket \varphi \rrbracket_{\rightarrow}^{t,V} \text{ such that } x \backsim y \} \end{split}$$

Precise question

Now:

Is L^{\triangleleft}_{μ} the bisimulation invariant fragment of MSO^{\checkmark}?

Precise question

Now:

Is L^{\triangleleft}_{μ} the bisimulation invariant fragment of MSO[¬]?

Proposition

 $L_{\mu}^{\bowtie} \prec MSO^{\backsim}$, and L_{μ}^{\bowtie} is invariant under bisimulation.

Classes of relations

Regular relations

A relation is regular iff it is recognized by a synchronous transducer.

Recognizable relations

A relation is recognizable iff it is recognized by a word automaton:

 $\{u \# v \mid u \lhd v\}$ is a regular language

 $\mathsf{Recognizable} \subsetneq \mathsf{Regular}$

Theorem

For every recognizable relation
$$\backsim$$
, $L^{\backsim}_{\mu} \equiv MSO^{\backsim}_{bisim}$.

Theorem

For every recognizable relation \checkmark , $L^{\checkmark}_{\mu} \equiv MSO^{\checkmark}_{\text{bisim}}$.

Recognizable relations are MSO definable:

 $L^{\lhd}_{\mu} \subset MSO^{\lhd} = MSO$, and L^{\lhd}_{μ} is invariant under bisimulation

 $\rightarrow L^{\lhd}_{\mu}$ collapses to L_{μ} .

Theorem

For every recognizable relation
$$\triangleleft$$
, $L^{\triangleleft}_{\mu} \equiv MSO^{\triangleleft}_{bisim}$.

Theorem

There are regular relations \backsim for which $L^{\backsim}_{\mu} \neq MSO^{\backsim}_{bisim}$.

 \backsim : synchronous perfect recall / equal level.

- invariant under bisimulation
- expressible in MSO[™]
- not expressible in L^{\triangleleft}_{μ} .

Theorem

For every recognizable relation \triangleleft , $L^{\triangleleft}_{\mu} \equiv MSO^{\triangleleft}_{bisim}$.

Theorem

There are regular relations \backsim for which $L^{\backsim}_{\mu} \neq MSO^{\backsim}_{bisim}$.

 \backsim : synchronous perfect recall / equal level.

- invariant under bisimulation √ [Berwanger, Kaiser, 2010]
- expressible in MSO[™]
- not expressible in L^{\triangleleft}_{μ} .

Theorem

For every recognizable relation \triangleleft , $L^{\triangleleft}_{\mu} \equiv MSO^{\triangleleft}_{bisim}$.

Theorem

There are regular relations \backsim for which $L^{\backsim}_{\mu} \neq MSO^{\backsim}_{bisim}$.

 \backsim : synchronous perfect recall / equal level.

- invariant under bisimulation √ [Berwanger, Kaiser, 2010]
- expressible in MSO \checkmark \checkmark
- not expressible in L^{\triangleleft}_{μ} .

Theorem

For every recognizable relation \triangleleft , $L^{\triangleleft}_{\mu} \equiv MSO^{\triangleleft}_{bisim}$.

Theorem

There are regular relations \backsim for which $L^{\backsim}_{\mu} \neq MSO^{\backsim}_{bisim}$.

 \backsim : synchronous perfect recall / equal level.

- invariant under bisimulation √ [Berwanger, Kaiser, 2010]
- expressible in MSO \checkmark \checkmark
- not expressible in L^{\triangleleft}_{μ} .

 $\mathsf{Proposition} \\ \mathsf{JTA} \equiv \mathsf{L}_{\mu}^{\backsim}$

Outline of the proof (1/4)

- Assume that $\varphi \in L^{\triangleleft}_{\mu}$ expresses what we want.
- There is a JTA A_{φ} that accepts (unfoldings of) arenas where Eve wins. Let N be the number of states in A_{φ} plus one.
- We build 2^N arenas, t_1, \ldots, t_{2^N} , where Eve wins (and is blind). Winning strategy in $t_i : a_0 \cdot a_0 \cdot w_i$

Framework, answer.

Outline of the proof (2/4)

Purpose : combine two arenas t_i and t_j into an arena t_0 where Eve does not win, but that is accepted by A_{ω} .

Outline of the proof (3/4)

• $\mathcal{G}_i := \mathcal{G}(\mathcal{A}_{arphi}, t_i)$: acceptance game of \mathcal{A}_{arphi} on t_i

- perfect-information parity game between Verifier and Refuter
- positions : $(x,q) \in t_i \times \mathcal{A}_{\varphi}$
- For each *i*, Verifier has a **positional** winning strategy σ_i in \mathcal{G}_i .
- $\operatorname{visit}_{\sigma_i}(x) := \{q \in \mathcal{A}_{\varphi} \mid \exists \pi \in \operatorname{Out}(\mathcal{G}_i, \sigma_i) \text{ s.t } \pi \text{ goes through } (x, q)\}$
- Pigeon hole: $\exists i \neq j \text{ s.t. } \text{visit}_{\sigma_i}(y_{2^N+1}) = \text{visit}_{\sigma_j}(y_{2^N+1}).$

Framework, answer.

Outline of the proof (4/4)

How does Verifier accept t_0 ?

At first : follow σ_i . When a position (y_k, q) is reached:

If $k \neq 2^N + 1$:

- $\mathcal{G}_i, (y_k, q)$ is winning for Verifier,
- $\mathcal{G}_i, (y_k, q) \simeq \mathcal{G}_0, (y_k, q)$, so

 $\mathcal{G}_0, (y_k, q)$ is winning for Verifier

If $k = 2^N + 1$:

- $q \in \operatorname{visit}_{\sigma_i}(y_{2^N+1}) = \operatorname{visit}_{\sigma_j}(y_{2^N+1}),$
 - $\mathcal{G}_{j}, (y_{2^{N}+1}, q)$ is winning for Verifier,

•
$$\mathcal{G}_j, (y_{2^N+1}, q) \simeq \mathcal{G}_0, (y_{2^N+1}, q)$$
, so

 $\mathcal{G}_0, (y_{2^N+1}, q)$ is winning for Verifier

Janin and Walukiewcz:

With recognizable relations over paths:

For some regular relations over paths:

Thank you!