Relating paths in transition systems: the fall of the modal μ-calculus

Cătălin Dima, Bastien Maubert and Sophie Pinchinat

UniversiTàdecuSTudi di Napoli
Federico II

Journées ALGA, April 11-12, 2016

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL*, $\mathrm{L}_{\mu} \ldots$
- ATL, ATL*...

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL*, $\mathrm{L}_{\mu} \ldots$
- ATL, ATL*...

What is a good logic?

- Complexity
- Expressivity

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL* ${ }^{*} \mathrm{~L}_{\mu} \ldots$
- ATL, ATL*...

What is a good logic?

- Complexity
- Expressivity: compare to a "yardstick" logic.

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL* ${ }^{*} \mathrm{~L}_{\mu} \ldots$ most \nprec FO
- ATL, ATL*...

What is a good logic?

- Complexity
- Expressivity: compare to a "yardstick" logic.

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL* ${ }^{*} \mathrm{~L}_{\mu} \ldots$
\prec MSO
- ATL, ATL*...

What is a good logic?

- Complexity
- Expressivity: compare to a "yardstick" logic.

Logical approach to program verification

Programs:

Properties:

- LTL, CTL, CTL* ${ }^{*} \mathrm{~L}_{\mu} \ldots$
\prec MSO, bisimulation invariant.
- ATL, ATL*...

What is a good logic?

- Complexity
- Expressivity: compare to a "yardstick" logic.

Janin and Walukiewicz, 1996

Adding uncertainty

- Temporal epistemic logics: LTLK, CTLK, $\mathrm{L}_{\mu} \mathrm{K} .$.
- Strategic logics with imperfect information: $A T L_{i}, E S L \ldots$

Common feature:

Indistinguishability relation on finite paths:

- Temporal epistemic logics: semantics of K
- Imperfect-information games: strategies must be uniform In most works, this relation is fixed.
- memoryless, bounded memory, perfect recall
- synchronous, asynchronous...

Unlike the perfect information case, no unifying logic for now. For instance: $\mathrm{ATL}_{\mathrm{i}} \prec \mathrm{L}_{\mu} \mathrm{K}$?

Our contribution

Question

Is the μ-calculus still as central when uncertainty is considered?

Our contribution

Question

Is the μ-calculus still as central when uncertainty is considered?

Answer

It depends on the nature of the relation between paths...

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A c t}$
$\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A} c t},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)$

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A c t}$

$$
\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A c t}},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)
$$

Fix a binary relation $\backsim \operatorname{over}\left(\mathcal{A c t} \times 2^{\mathcal{A} \mathcal{P}}\right)^{*}$: path relation.

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A} c t$

$$
\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A c t}},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)
$$

Fix a binary relation \backsim over $\left(\mathcal{A} c t \times 2^{\mathcal{A P}}\right)^{*}$: path relation.

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A c t}$

$$
\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A c t}},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)
$$

Fix a binary relation $₫$ over $\left(\mathcal{A} c t \times 2^{\mathcal{A P}}\right)^{*}$: path relation.

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A c t}$
$\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A c t}},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)$
Fix a binary relation $₫$ over $\left(\mathcal{A} c t \times 2^{\mathcal{A P}}\right)^{*}$: path relation.

$$
\begin{gathered}
x \checkmark y \text { if } w(x) \checkmark w(y) \\
w(x)=\{p, q\} a\{p\} a\{p, q\}
\end{gathered}
$$

Relating paths

Transition systems over $\mathcal{A P}$ and $\mathcal{A c t}$

$$
\mathcal{S}=\left(S, s_{\iota},\left\{a^{\mathcal{S}}\right\}_{a \in \mathcal{A c t}},\left\{p^{\mathcal{S}}\right\}_{p \in \mathcal{A P}}\right)
$$

Fix a binary relation $₫$ over $\left(\mathcal{A c t} \times 2^{\mathcal{A P}}\right)^{*}$: path relation.

Example: a synchronous perfect recall agent, who only observes p

Extending the framework

MSO

$\psi::=p(X)|r(X)| a(X, Y)|X \subseteq Y| \neg \psi|\psi \vee \psi| \exists X \cdot \psi(X)$
where $p \in \mathcal{A P}$ and $a \in \mathcal{A c t}$.
L_{μ}

$$
\varphi::=X|p| \neg \varphi|\varphi \vee \varphi| @ \varphi \mid \mu X . \varphi(X)
$$

where $p \in \mathcal{A P}$ and $a \in \mathcal{A c t}$.

Extending the framework

MSO^{\wedge} : MSO with path relation
$\psi::=p(X)|r(X)| a(X, Y)|X \subseteq Y| \neg \psi|\psi \vee \psi| \exists X . \psi(X) \mid \checkmark(X, Y)$
where $p \in \mathcal{A P}$ and $a \in \mathcal{A c t}$.
$\mathrm{L}_{\mu}^{\checkmark}$: Jumping μ-calculus

$$
\varphi::=X|p| \neg \varphi|\varphi \vee \varphi| \Leftrightarrow \varphi|\mu X . \varphi(X)| \diamond \varphi
$$

where $p \in \mathcal{A P}$ and $a \in \mathcal{A c t}$.

Semantics

MSO^{\top}

```
t,V\not=`}p(X)\mathrm{ if for all }x\inV(X),p\in\ell(x
t,V\modelsr(X) if V(X)={\epsilon}
t,V\models}\mp@subsup{\models}{}{*}a(X,Y)\mathrm{ if }V(X)={x},V(Y)={y}, and xat
t,V\models
t,V\mp@subsup{\models}{}{*}\neg\psi\mathrm{ if }t,V\not\mp@subsup{\vDash}{}{*}\psi
t,V\models}\mp@subsup{\models}{}{*}\psi\vee\mp@subsup{\psi}{}{\prime}\mathrm{ if }t,V\models\mp@subsup{\models}{}{*}\psi\mathrm{ or }t,V\not=*\mp@subsup{\psi}{}{\prime
t,V=\existsX.\psi(X) if there is T\subseteqt s.t. }t,V[T/X]\models\psi(X
t,V \models`}\checkmark(X,Y)\mathrm{ if }V(X)={x},V(Y)={y}, and x\checkmark
```


Semantics

L $_{\mu}^{\omega}$

$$
\begin{aligned}
& {[x]_{V}^{t \cdot V}=V(X)} \\
& \llbracket p]_{i}^{t_{i} V}=\left\{x \in t \mid p \in \ell^{x}\right\} \\
& \llbracket \neg \rrbracket_{4}^{t_{i}^{t, V}}=t \backslash \llbracket \varphi \rrbracket_{\varphi}^{t, V}
\end{aligned}
$$

$$
\begin{aligned}
& {[\mu X . \varphi(X)]^{2}=\left\{\cap\left\{T \subseteq t \mid[\varphi(X)]^{L Y}\right]^{T / X]} \subseteq T\right\}}
\end{aligned}
$$

Precise question

Now:
Is L_{μ}^{\sim} the bisimulation invariant fragment of MSO^{\wedge} ?

Now:
Is L_{μ}^{\sim} the bisimulation invariant fragment of MSO^{\wedge} ?

Proposition
$\mathrm{L}_{\mu}^{\sim} \prec \mathrm{MSO}^{\wedge}$, and L_{μ}^{\sim} is invariant under bisimulation.

Regular relations

A relation is regular iff it is recognized by a synchronous transducer.

Recognizable relations

A relation is recognizable iff it is recognized by a word automaton:

$$
\{u \# v \mid u \backsim v\} \text { is a regular language }
$$

$$
\text { Recognizable } \subsetneq \text { Regular }
$$

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\checkmark} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\sim} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.
Recognizable relations are MSO definable: $\rightarrow \mathrm{MSO}^{\star}$ collapses to MSO
$\mathrm{L}_{\mu}^{\backsim} \subset \mathrm{MSO}^{\star}=\mathrm{MSO}$, and
$\mathrm{L}_{\mu}^{\omega}$ is invariant under bisimulation
$\rightarrow \mathrm{L}_{\mu}^{u}$ collapses to L_{μ}.

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\cdots} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.

Theorem

There are regular relations \backsim for which $\mathrm{L}_{\mu}^{\backsim} \not \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.
\quad : synchronous perfect recall / equal level.
Property: existence of a winning strategy in two-player reachability games with imperfect information.

- invariant under bisimulation
- expressible in MSO ${ }^{\wedge}$
- not expressible in L_{μ}^{\sim}.

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\imath} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.

Theorem

There are regular relations \checkmark for which $\mathrm{L}_{\mu}^{\backsim} \not \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.
G: synchronous perfect recall / equal level.
Property: existence of a winning strategy in two-player reachability games with imperfect information.

- invariant under bisimulation \checkmark [Berwanger, Kaiser, 2010]
- expressible in MSO ${ }^{\text {r }}$
- not expressible in L_{μ}^{\sim}.

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\imath} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.

Theorem

There are regular relations \checkmark for which $\mathrm{L}_{\mu}^{\backsim} \not \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.
\quad : synchronous perfect recall / equal level.
Property: existence of a winning strategy in two-player reachability games with imperfect information.

- invariant under bisimulation \checkmark [Berwanger, Kaiser, 2010]
- expressible in MSO ${ }^{\text {r }}$
- not expressible in L_{μ}^{\sim}.

Answer

Theorem

For every recognizable relation $\checkmark, \mathrm{L}_{\mu}^{\imath} \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.

Theorem

There are regular relations \checkmark for which $\mathrm{L}_{\mu}^{\backsim} \not \equiv \mathrm{MSO}_{\text {bisim }}^{\sim}$.
\quad : synchronous perfect recall / equal level.
Property: existence of a winning strategy in two-player reachability games with imperfect information.

- invariant under bisimulation \checkmark [Berwanger, Kaiser, 2010]
- expressible in MSO ${ }^{\text {r }}$
- not expressible in $\mathrm{L}_{\mu}^{\mathrm{G}}$.

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \checkmark
Jumping tree automata: $\downarrow+\backsim$

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: \downarrow
Path relation \rightarrow
Jumping tree automata: $\downarrow+\backsim$

Proposition

$$
\mathrm{JTA} \equiv \mathrm{~L}_{\mu}^{\sim}
$$

Outline of the proof $(1 / 4)$

- Assume that $\varphi \in \mathrm{L}_{\mu}^{\vec{u}}$ expresses what we want.
- There is a JTA \mathcal{A}_{φ} that accepts (unfoldings of) arenas where Eve wins. Let N be the number of states in \mathcal{A}_{φ} plus one.
- We build 2^{N} arenas, $t_{1}, \ldots, t_{2^{N}}$, where Eve wins (and is blind). Winning strategy in $t_{i}: a_{0} \cdot a_{0} \cdot w_{i}$

Outline of the proof $(2 / 4)$

Purpose: combine two arenas t_{i} and t_{j} into an arena t_{0} where Eve does not win, but that is accepted by \mathcal{A}_{φ}.

Outline of the proof $(3 / 4)$

- $\mathcal{G}_{i}:=\mathcal{G}\left(\mathcal{A}_{\varphi}, t_{i}\right)$: acceptance game of \mathcal{A}_{φ} on t_{i}
- perfect-information parity game between Verifier and Refuter
- positions : $(x, q) \in t_{i} \times \mathcal{A}_{\varphi}$
- For each i, Verifier has a positional winning strategy σ_{i} in \mathcal{G}_{i}.
- $\operatorname{visit}_{\sigma_{i}}(x):=\left\{q \in \mathcal{A}_{\varphi} \mid \exists \pi \in \operatorname{Out}\left(\mathcal{G}_{i}, \sigma_{i}\right)\right.$ s.t π goes through $\left.(x, q)\right\}$
- Pigeon hole: $\exists i \neq j$ s.t. visit $_{\sigma_{i}}\left(y_{2^{N}+1}\right)=\operatorname{visit}_{\sigma_{j}}\left(y_{2^{N}+1}\right)$.

Outline of the proof $(4 / 4)$

How does Verifier accept t_{0} ?
At first : follow σ_{i}. When a position $\left(y_{k}, q\right)$ is reached:

If $k \neq 2^{N}+1$:

- $\mathcal{G}_{i},\left(y_{k}, q\right)$ is winning for Verifier,

If $k=2^{N}+1$:

- $\mathcal{G}_{i},\left(y_{k}, q\right) \leftrightarrows \mathcal{G}_{0},\left(y_{k}, q\right)$, so
$\mathcal{G}_{0},\left(y_{k}, q\right)$ is winning for Verifier
- $q \in \operatorname{visit}_{\sigma_{i}}\left(y_{2^{N}+1}\right)=\operatorname{visit}_{\sigma_{j}}\left(y_{2^{N}+1}\right)$,
- $\mathcal{G}_{j},\left(y_{2^{N}+1}, q\right)$ is winning for Verifier,
- $\mathcal{G}_{j},\left(y_{2^{N}+1}, q\right) \leftrightarrows \mathcal{G}_{0},\left(y_{2^{N}+1}, q\right)$, so $\mathcal{G}_{0},\left(y_{2^{N}+1}, q\right)$ is winning for Verifier

Conclusion

Janin and Walukiewcz:

Bisimulation invariant properties

Conclusion

With recognizable relations over paths:

Conclusion

For some regular relations over paths:

Thank you!

