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Cătălin Dima, Bastien Maubert and Sophie Pinchinat

Journées ALGA, April 11-12, 2016

1 / 17
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Background, question. Framework, answer.

Janin and Walukiewicz, 1996

Bisimulation
invariant

properties
MSOµ-calculusµ-calculus
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Background, question. Framework, answer.

Adding uncertainty

Temporal epistemic logics: LTLK, CTLK, LµK. . .

Strategic logics with imperfect information: ATLi, ESL. . .

Common feature:

Indistinguishability relation on finite paths:

Temporal epistemic logics: semantics of K

Imperfect-information games: strategies must be uniform

In most works, this relation is fixed.

memoryless, bounded memory, perfect recall

synchronous, asynchronous. . .

Unlike the perfect information case, no unifying logic for now.
For instance: ATLi ≺ LµK ?
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Background, question. Framework, answer.

Our contribution

Question

Is the µ-calculus still as central when uncertainty is considered?

Answer

It depends on the nature of the relation between paths. . .
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x y
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. . .

a b

a a b a + À =

p, q

p q

p, q p q q

. . .
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Example: a synchronous perfect recall agent, who only observes p
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Background, question. Framework, answer.

Extending the framework

MSO

ψ ::= p(X) | r(X) | a(X,Y ) | X ⊆ Y | ¬ψ | ψ ∨ ψ | ∃X.ψ(X)

|À(X,Y )

where p ∈ AP and a ∈ Act.

Lµ

ϕ ::= X | p | ¬ϕ | ϕ ∨ ϕ | a ϕ | µX.ϕ(X)

| Àϕ

where p ∈ AP and a ∈ Act.
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MSOÀ: MSO with path relation

ψ ::= p(X) | r(X) | a(X,Y ) | X ⊆ Y | ¬ψ | ψ ∨ ψ | ∃X.ψ(X)|À(X,Y )

where p ∈ AP and a ∈ Act.

LÀµ : Jumping µ-calculus

ϕ ::= X | p | ¬ϕ | ϕ ∨ ϕ | a ϕ | µX.ϕ(X) | Àϕ

where p ∈ AP and a ∈ Act.
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Background, question. Framework, answer.

Semantics

MSOÀ

t, V |=À p(X) if for all x ∈ V (X), p ∈ `(x)
t, V |=À r(X) if V (X) = {ε}
t, V |=À a(X,Y ) if V (X) = {x}, V (Y ) = {y}, and xaty
t, V |=À X ⊆ Y if V (X) ⊆ V (Y )
t, V |=À ¬ψ if t, V 6|=À ψ
t, V |=À ψ ∨ ψ′ if t, V |=À ψ or t, V |=À ψ′

t, V |=À ∃X.ψ(X) if there is T ⊆ t s.t. t, V [T/X] |=À ψ(X)
t, V |=À À(X,Y ) if V (X) = {x}, V (Y ) = {y}, and xÀy
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Background, question. Framework, answer.

Semantics

LÀµ

JXKt,VÀ = V (X)

JpKt,VÀ = {x ∈ t | p ∈ `x}
J¬ϕKt,VÀ = t \ JϕKt,VÀ
Jϕ ∨ ϕ′Kt,VÀ = JϕKt,VÀ ∪ Jϕ′Kt,VÀ
J a ϕKt,VÀ = {x ∈ t | there exists y ∈ JϕKt,VÀ such that xaty}
JµX.ϕ(X)Kt,VÀ =

⋂
{T ⊆ t | Jϕ(X)Kt,V [T/X]

À ⊆ T}
JÀϕKt,VÀ = {x ∈ t | there exists y ∈ JϕKt,VÀ such that xÀy}
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Background, question. Framework, answer.

Precise question

Now:

Is LÀµ the bisimulation invariant fragment of MSOÀ?

Proposition

LÀµ ≺ MSOÀ, and LÀµ is invariant under bisimulation.
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Background, question. Framework, answer.

Classes of relations

Regular relations

A relation is regular iff it is recognized by a synchronous transducer.

Recognizable relations

A relation is recognizable iff it is recognized by a word automaton:

{u#v | uÀv} is a regular language

Recognizable ( Regular
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Background, question. Framework, answer.

Answer

Theorem

For every recognizable relation À, LÀµ ≡ MSOÀbisim.

Theorem

There are regular relations À for which LÀµ 6≡ MSOÀbisim.

À : synchronous perfect recall / equal level.

Property: existence of a winning strategy in two-player reachability
games with imperfect information.

invariant under bisimulation

expressible in MSOÀ
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Background, question. Framework, answer.

Jumping tree automata (JTA) [M., Pinchinat, 2013]

Alternating tree automata: ↓
Path relation À

Jumping tree automata: ↓ + À

...
...

Proposition

JTA ≡ LÀµ
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Background, question. Framework, answer.

Outline of the proof (1/4)

Assume that ϕ ∈ LÀµ expresses what we want.

There is a JTA Aϕ that accepts (unfoldings of) arenas where Eve
wins. Let N be the number of states in Aϕ plus one.

We build 2N arenas, t1, . . . , t2N , where Eve wins (and is blind).

Winning strategy in ti : a0 · a0 · wi

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wi

W

wi

wi = i− 1 in binary
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Background, question. Framework, answer.

Outline of the proof (2/4)

Purpose : combine two arenas ti and tj into an arena t0 where Eve does
not win, but that is accepted by Aϕ.

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wi

W

wi

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wj

W

wj

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0
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W

w1

W

wk

W

w2N

W

wj

W
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14 / 17



Background, question. Framework, answer.

Outline of the proof (3/4)

Gi := G(Aϕ, ti) : acceptance game of Aϕ on ti

perfect-information parity game between Verifier and Refuter
positions : (x, q) ∈ ti ×Aϕ

For each i, Verifier has a positional winning strategy σi in Gi.

visitσi
(x) := {q ∈ Aϕ | ∃π ∈ Out(Gi, σi) s.t π goes through (x, q)}

Pigeon hole: ∃ i 6= j s.t. visitσi(y2N+1) = visitσj
(y2N+1).

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wj

W

wi
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Background, question. Framework, answer.

Outline of the proof (4/4)

How does Verifier accept t0?

At first : follow σi. When a position (yk, q) is reached:

If k 6= 2N + 1:

Gi, (yk, q) is winning for Verifier,

Gi, (yk, q) - G0, (yk, q), so

G0, (yk, q) is winning for Verifier

If k = 2N + 1:

q ∈ visitσi (y2N+1) = visitσj (y2N+1),

Gj , (y2N+1, q) is winning for Verifier,

Gj , (y2N+1, q) - G0, (y2N+1, q), so

G0, (y2N+1, q) is winning for Verifier

W. . .W. . .W

. . .. . .

x1 xk x2N x2N+1 x2N+2

y1 yk y2N y2N+1 y2N+2

a0 a0 a0 a0 a0

a0 a0 a0 a0 a0

W

w1

W

wk

W

w2N

W

wj

W

wi
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