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Abstract—Let P be a simple rectilinear polygon with N vertices, endowed with a rectilinear
metric, and let the location of # users in P be given. There are a number of procedures to locate
a facility for a given family of users. If a voting procedure is used, the chosen point x should
satisfy the following property: no other point y of the polygon P is closer to an absolute majority
of users. Such a point is called a Condorcet point. If a planning procedure is used, such as
minimization of the average distance to the users, the optimal solution is called a median point.
We prove that Condorcet and median points of a simple rectilinear polygon coincide and present
an O(N+nlogN) algorithm for computing these sets. If all users are located on vertices of a
polygon P, then the running time of the algorithm becomes O(N +n). Copyright © 1996 Elsevier
Science Ltd

Keywords: Computational geometry, Condorcet point, median point, rectilinear polygon,
rectilinear distance.

1. INTRODUCTION

In location theory, the best location of a facility that has a given number of users can be
obtained in different ways. On the one hand, if a planning procedure is used, such as the
minimization of the average distance to the users, the optimal solution is called a median
point. On the other hand, what would be the location of the facility resulting from a voting
procedure in which each user prefers to have the facility as close as possible to him? The
chosen point has to satisfy the following property: no other feasible location is closer to an
absolute majority of users. Such a point is called a Condorcet point.

The comparison of these two decision making procedures was studied in both fundamental
models in location theory: the discrete case dealing with locations on networks and graphs
(e.g. Bandelt, 1985; Hansen and Labbé, 1988; Hansen and Thisse, 1981; Hansen et al., 1992;
and Labbé, 1985) and the continuous case dealing with locations in normed spaces (e.g.
Durier, 1989; Wendell and McKelvey, 1981; and Wendell and Thorson, 1974). The standard
framework of continuous location theory is a two-dimensional space (Plastria, 1993); the
Euclidean norm used initially has been replaced by other norms, particularly, L;-norm. The
Condorcet points do not exist in general—equilateral triangles in the Euclidean plane or the
triangle network are standard counterexamples. It is well-known that in a normal plane
Condorcet points exist for all distributions of users if and only if the unit ball is a
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parallelogram (c¢f Durier, 1989; Wendell and McKelvey, 1981; and Wendell and Thorson,
1974). Another characteristic of such spaces is that Condorcet points and median points
coincide (cf. Durier, 1989; and Wendell and Thorson, 1974). As shown in Hansen and Thisse
(1981) the same property holds for all tree networks. In Bandelt (1985), those networks on
which Condorcet points and median points always coincide are characterized. Moreover, in
this paper, Bandelt presents a complete characterization of those networks on which no
Condorcet paradox occurs, i.e., for each distribution of users there exists at least one
Condorcet point. In Hansen and Labbé (1988), a polynomial algorithm for determining the
set of Condorcet points of a network is given.

This paper focuses on generating the set of Condorcet and median points of a simple
rectilinear polygon under the assumption that all travel occurs according to the rectilinear
metric. We can consider this problem as another kind of constrained facility location problem
where we want, for example, to describe the set of optimal locations of the facility (resulting
from a voting procedure) in an urban region or of a some service on a polygonal building
floor. Then the rectilinear metric is often a reasonable approximation of travel behavior. The
related problems of facility location with regions forbidden for location and travel in the case
of rectilinear distance are considered in Larson and Sadiq (1983) and Batta et al. (1989). In
the first paper, it is shown how to reduce the median problem to a similar problem on a
special grid-like network.

In Chepoi and Dragan (1994), we present an O(N +nlogN) time algorithm for finding a
median point of a simple rectilinear polygon P with N vertices. If all n users are located in
the vertices of P then the running time becomes O(n+N). In this paper, we develop an
algorithm of the same complexity for determining the whole set of Condorcet points of a
simple rectilinear polygon. We show that in such polygons Condorcet points and median
points coincide. The proof is based on some geometric properties of simple rectilinear
polygons, in particular on the fact that they are median spaces.

The paper is organized as follows. In the next section, we present the problem formulation.
In Section 3, we recall some facts about rectilinear polygons needed to justify the
relationships between Condorcet and median points that are presented in Section 4. In
Section 5, we show how to compute the Condorcet/median points, and the algorithm
description and a simple example are given in Sections 6 and 7.

2. PROBLEM FORMULATION

Let P be a simple rectilinear polygon in the plane R* (i.e. a simple polygon having all
edges axis-parallel) with N edges. A rectilinear path is a polygonal chain consisting of axis-
parallel segments lying inside P. The length of a rectilinear path in the L,-metric equals the
sum of the length of its constituent segments. In other words, the length of a rectilinear path
in the L,-metric is equal to its Euclidean length. For any two points 1 and v in P, the
rectilinear distance between u and v, denoted by d(u,v), is defined as the length of the
minimum length rectilinear path connecting v and v. Consider the problem of locating a
single facility on a simple rectilinear polygon P on which a given finite number of users are
located. Two users may be located at the same point. Let n(x) be the total number of all
users located at a point x. The demand is thus described by a weight function = from P to the
set of nonnegative integers. The polygon P is partitioned into three sets with respect to any
pair x, y of points:
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>y)={zeP:d(x,z) <d(y,2)},
[y>x]={zeP:d(y,z) <d(x,2)},
x~yl={zeP:d(x,z)=d(y,z)}.

If a voting procedure is used to solve the facility location problem, the chosen point x should
satisfy the following property:

No other point y of the polygon P is closer to an absolute majority of users, i.e.
n[y>x]<n(P)/2 for all points ye P

(For a SCP define n(S) as n(S)=2X,sn(p;), where py, p»,...,p, are the points of P where the
users are located.) Such a point x is called a Condorcet point, (see Bandelt, 1985; Durier,
1989; Hansen and Thisse, 1981; Hansen and Labbé, 1988; Hansen et al., 1992; Labbé, 1985;
Wendell and McKelvey, 1981; and Wendell and Thorson, 1974). Denote by Cond(P) the set
of all Condorcet points of the polygon P. The weighted distance sum of a point x with respect
to m is given by

D)= i n(p;)d(x,p:).

i=1

If a planning procedure is used, such as minimization of the function D(x), the optimal
solution is a median (or a Weber point); (see Bandelt, 1985; Bandelt and Barthelemy, 1984;
Durier, 1989; Hansen and Labbé, 1988; and Hansen and Thisse, 1981). Let Med(P) be the
set of all median points of polygon P with respect to the weight function =.

In a similar way, we can define the median and Condorcet points for an arbitrary metric
space (X,d).

3. PROPERTIES OF SIMPLE RECTILINEAR POLYGONS

Recall that the interval I(u,v) between two points u, v of a metric space (X,d) consists of
all points z between u and v, that is

I(u,v)={zeX:d(u,v)=d(u,z) +d(z,v)}.

A metric space (X,d) is a median space if every triple of points u, v, weX admits a unique
“median” point z=m(u,v,w), such that

d(u,v)=d(u,z) +d(z,v),
d(u,w)=d(u,z)+d(z,w),
d(v,w)=d(v,z)+d(z,w),

i.e. z=I(u,v)NI (v,w)NI(w,u) (for an illustration, see Figs 1 and 2).

The median spaces represent a common generalization of different mathematical
structures such as median semilattices and median algebras (Bandelt and Hedlikova, 1983),
median graphs (including trees and hypercubes) (Mulder, 1980), median networks (Bandelt,
1985) and linear spaces with L,-metric. For classical results on median spaces, the reader is
referred to Bandelt and Hedlikova (1983) and van de Vel (1993).

A set M of metric space (X,d) is convex if for any points x,ye M the interval I(x,y) belongs
to M. For a subset SCX by conv(S) we denote the convex hull of S, i.e. the intersection of
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Fig. 1. The interval I(u,v).

all convex sets containing S. A subset H of X is a half-space provided both H and X\H are
convex. Recall also that the subset M is called gated (Dress and Scharlau, 1987), provided
every point xeX admits a gate in M, i.e. a point x'e M such that x"e/(x,y) for all ye M (see Fig.
3). Any gated subset of a metric space is convex. The converse holds for median spaces:

Lemma 1. Any convex compact subset of a median space is gated.
For a proof of this result, see van de Vel (1993). The next result is proved in Chepoi and
Dragan (1994).

Lemma 2. A simple rectilinear polygon P equipped with L,-metric is a median space.
An axis-parallel segment ¢ is called a cut segment of a polygon P if it connects two parallel

L
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Fig. 2. z is the median of , v and w.

Fig. 3. u’ and ¢ are the gates of « and v.



Condorcet and median points of simple rectilinear polygons 25

a
€¢ d l | 2 )
b

c

Fig. 4. [a,b], [c,e] and [d,e] are cut segments.

edges of P and is fully contained in P. Note that any cut segment of a polygon P is a gated
subset of P; for an illustration, see Fig. 4.

Lemma 3. If M is a compact convex subset of a simple rectilinear polygon P and xeP\M
then there exists a cut ¢ of P which separates x and M, i.e. MN\c=0, x¢c, and M and x belong
to different subpolygons defined by c.

Proof. Let ¢’ and ¢” be the maximal cuts of P which pass through the point x. If both these
segments intersect the set M, say y'ec’ MM and y"ec”MM, then necessarily xe/(y’,y"), which
is impossible. Let ¢’ M=0. Consider a shortest path Q between x and the gate x,, of x in
M. Moving the cut ¢’ a little such that ¢’ intersects Q we obtain the required cut of P. []

The next property is a particular instance of a general result of Bandelt et al. (1993) on
convexity structures; see also van de Vel (1993). A direct proof is given in Schuierer (1993).

Lemma 4. For any finite subset S of a simple rectilinear polygon P

conv(S)= \U I(u,v).

veS

4. BASIC RESULTS

In this section, we investigate the structural properties of sets of Condorcet points and
median points of a simple rectilinear polygon P. We use some results for the median problem
in median graphs and discrete median spaces, established in Bandelt and Barthelemy, 1984;
Chepoi, 1995; and Soltan and Chepoi, 1987.

Consider all horizontal and all vertical cuts that pass through the vertices of the polygon
P or the points of P where the users are located. These cuts together with the edges of P
generate a rectilinear grid; see Fig. 5 for an illustration. Denote by V' the vertices (intersection
points) of this grid and by G its graph. Recall that a graph G is median (Mulder, 1980) if G
is a median space with respect to the standard graph distance.

Lemma 5. (Chepoi, 1995). G is a median graph.
Denote by Med(G) the set of median vertices of the graph G.

Lemma 6. (Bandelt and Barthelemy, 1984; Soltan and Chepoi, 1987). Med(G) is convex in
G. Moreover, Med(G) is an interval of G.
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Fig. 5. A polygon P with users and its rectilinear grid.

Let ¢ be a cut of P. Then for the subpolygons P’ and P” defined by this cut we have
(P +n(P")=nr(P)+=r(c).

Lemma 7. (Bandelt and Barthelemy, 1984; Soltan and Chepoi, 1987). If n(P") >n(P") then
Med(P)CP’, otherwise if n(P")=n(P") then Med(P)(N\c #9.
The converse is true for the set Med(G).

Lemma 8. (Soltan and Chepoi, 1987). If Med(G) belongs to the half-space H of G then
n(H)>=n(V)2=nr(P)/2.

Lemma 9. Let x and y be points on a cut ¢ of P. If x and y belong to a common rectangle
of the grid then

D(x)—D(y)=d(x.y) (a[y>x] —nlx>y]).

Proof. From the choice of points x and y, we conclude that for every vertex v of V either
xel(v,y) or yel(v,x). In particular, n[y>x]+n[x>y]=n(P). Then the proof that the required
equality is true is straightforward. O

Lemma 10. Med(P)=conv(Med(G)).

Proof. By Lemma 6 the set Med(G) is convex in G. Applying Lemma 4 we deduce that
conv(Med(G)) in P coincides with the union of all rectangles (including degenerated ones) of
the grid whose four corners belong to Med(G). Let R=conv(a,b,c,d) be such a rectangle and
let x be an arbitrary point of R. First suppose that x belongs to the boundary of R, say
x€la,b]. By Lemma 9 we have

D(x)—D(a)=d(x,a)(n[a>x]—nl[x>a]).

Observe that [a>-x]=[a>>b] and [x>a]=[b>a]. Applying this fact and Lemma 9 to the
vertices a and b we get

D(a)—D(b)=d(a,b)(r[b>>a]—n[a>b])=d(a,b) (n[x>a]—n[a>x]).

Since D(a)=D(b) in both G and P (Soltan and Chepoi, 1987) we conclude that
n[b>a]=n[a>b]). Therefore D(x)=D(a).
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Next assume that x is an interior point of R. Let x’ and x” be the boundary points of R
which lie on a common horizontal cut with x. Then as we already proved

D(x')=D(a)=D(b)=D(x").

Notice that n[a>b]=n[x'>x] and n[b>a]==n[x>x"]. Applying Lemma 9 to the points x
and x’ we obtain that D(x)=D(x"). Thus D(-) is constant on the set conv(Med(G)).

In order to prove the required equality, it is sufficient to establish that z¢Med(P) for an
arbitrary point z ¢conv(Med(G)). By Lemma 3 there is a cut ¢ that separates the sets {z} and
conv(Med(G)), i.e.

zeP"\¢, conv(Med(G))CP",

where P’ and P” are the subpolygons defined by c. Then H'=P’'NV and H"=P"NV represent
complementary half-spaces of the graph G. Since Med(G)CH” by Lemma 8, we conclude
that n(P")=n(H")>n(P)/2. Let z* be gate for z in the subpolygon P". A straightforward
verification shows that

D(*)—D(z)<n(P")—n(P") <0,

and thus z¢Med(P). Hence Med(P)Cconv(Med(G)). Since D(-) is constant on the set
conv(Med(G)), we conclude that Med (P)=conv(Med (G)). [

Theorem 1. Cond(P)=Med(P).

Proof. First we prove that Med(P)CCond(P). Assume the contrary, i.e. for some median
point x there exists a point y such that z[y>x]>n(P)/2. If xeconv([y>x]) then by Lemma 4
we have xel(z',z") for two points z’,z"€[y >x]. Since d(y,z') <d(x,z’) and d(y,z") <d(x,z") we
obtain a contradiction with the choice of z’ and z”. So, assume that x¢conv[(y>x]). Let x* be
the gate for x in the gated set conv([y>>x]). In the interval I(x,x*) pick a close neighbor z of
x, such that x and z belong to a common rectangle of the grid and to a common cut of P. By
Lemma 9.

D(z)~D(x)=d(z,x) (n[x>z] —nfz>x]).

Since [z>x]2[x*>x]2[y>x] and =[y>x]>=n(P)/2 we get D(z) <D(x), in contradiction with
the assumption that xeMed (P). Therefore, any median point of P is a Condorcet point.

Conversely, assume that some Condorcet point x is not a median point. As Med(P) is
convex by Lemma 3, there exists a cut ¢ which separates the set Med(P) and the point x. Let
xeP"\c, Med(P)CP", where P’ and P” are subpolygons defined by c. Since Med(G)CP"NV by
Lemma 8 necessarily n(P")=n(P"MV) > n(P)/2. But then for the gate x* of x in P” we have
P"C[x*>x] and thus n[x*>x]>n(P)/2, a contradiction. (J

5. COMPUTING CONDORCET AND MEDIAN POINTS

Using the results of the previous section, we describe how to compute the set of Condorcet
alias median points of a simple rectilinear polygon P. We start with an outline of the
algorithm. Instead of constructing the rectilinear grid G (which in the worst case can contain
O((N +n)?) vertices), we divide the polygon P into horizontal strips by using the horizontal
cuts that pass through the vertices of P. The dual graph of this subdivision is a tree 7(P).
Assign to each vertex of T(P) a weight equal to the number of users located in the
corresponding rectangle. Let Med(T(P)) be the set of median vertices with respect to this
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weight function. It is well-known that Med(T(P)) induces a subpath of T(P). There is a close
relationship between the sets Med(P) and Med (T (P)). Namely, Med(P) intersects a rectangle
of the subdivision if and only if it belongs to Med(T(P)). In order to derive Med(P) as a
union of its intersections with the rectangles of Med(T(P)), we have to compute
M(x)=Med(P)N\R(x) and M(y)=Med(P)NR(y), where R(x) and R(y) are the rectangles
_that correspond to the end-vertices x and y of the path Med(T(P)). This is done by solving
two median problems on the rectangles R(x) and R(y), where each user is replaced by its
gate in R(x) and R(y), respectively. The problem is now reduced to joining the sets M(x) and
M(y) along the path Med(T(P)) in order to compute the whole set Med(P). For this purpose,
it suffices to find the intersection of Med(P) with each horizontal cut ¢ separating the
rectangles M(x) and M(y). We show that Med(P)N\c is the smallest subsegment of ¢
containing the gates of the corners of M(x) and M(y) in the cut c¢. These gates can be
computed in constant time pro cut by processing twice the edges (they correspond to
horizontal cuts of P) of the path Med(T(P)).

In the following pages, we perform a rather detailed description of the algorithm. The
algorithm is based on the Chazelle algorithm for computing all vertex-edge visible pairs
(Chazelle, 1991) and on the Goldman algorithm for finding the median set of a tree
(Goldman, 1971). By the first algorithm, we obtain a decomposition of a polygon P into
O(N) rectangles, using only maximal horizontal cuts. The dual graph of this decomposition
is a tree T(P): vertices of this tree are the rectangles and two vertices are adjacent in 7(P)
if the corresponding rectangles in the decomposition share a common cut (see Figs 6 and 7).
Denote by R(v) the rectangle that corresponds to a vertex v of the tree T(P). Assign to each
vertex of T(P) the weight of its rectangle. (The weight of a rectangle R is the sum of weights
of its points (users) minus one half of the total weight of points that belong to the horizontal
sides of R and do not belong to the boundary of P.) In order to compute these weights, we
first have to compute which rectangles of the decomposition of P contain each of the users.
Using one of the optimal point location methods (Edelsbrunner et al., 1985 or Kirkpatrick,
1983) this can be done in time O(nlogN) with a structure that uses O(N) storage. (Here N
is the number of vertices of polygon P, while n is the number of users.) Observe that the
induced subdivision is monotone and hence, the point location structure can be built in linear
time. Therefore the weights of vertices of T(P) can be defined in total time O(nlogN +N).
When all users are located only on vertices of P then this assignment takes O(N +n) time.

1L
R(z)
1
—— ]

Fig. 6. Subdivision of P into horizontal strips.
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Fig. 7. Dual graph T(P).

Now using the Goldman algorithm (Goldman, 1971) we compute the set Med(T(P)) of
median vertices of the tree 7T(P). It is well-known that Med(T(P)) induces a path of T(P);
sce for example Tansel et al. (1983).

Lemma 11. Med(P)C\U{R(v): veMed(T(P))}. Moreover, Med(P)N\R(v)#0 for every
vertex veMed (T(P)).

Proof. By the majority rule for trees veMed(T(P)) if and only if n(7,)>n=(7, ) for any
neighbor v’ of v; Goldman (1971). (By T, and T, we denote the subtrees obtained by
deleting the edge (r,v')). In the polygon P, the rectangles R(v) and R(v") are separated by
the horizontal cut ¢ which coincides with R(r)NR(¢'). Let P, and P,. be the subpolygons
defined by ¢ and let R(v)CP, and R(v")CP,-. All rectangles that correspond to vertices from
T, lie in the subpolygon P,.. If veMed(T(P)) then n(P.))—n(c)2=n(T,)>n(T,)=n(P,")
—mn(c)/2 for all neighbors of . Since R(v) coincides with the intersection of the subpolygons
of the type P, by Lemma 7, we conclude that Med (P)M\R(v) #0. Conversely, if v¢ Med(T(P))
then n(P,)—n(c)2=n(T,)<n(T, )=n(P,.)—n(c)/2 for some vertex v’ adjacent to v. By
Lemma 7, we obtain that Med (P)MR(v)=9. O

Denote by x and y the end-vertices of the path Med(T(P)). Next we concentrate on finding
the median points of rectangles R(x) and R(y). For this purpose, we use the method
developed in Chepoi and Dragan (1994). Suppose that R(x) is bounded by the horizontal
cuts ¢’ and ¢” of the decomposition of P. Then P can be represented as a union of R(x) with
two subpolygons P’ and P” of P, where P'MR(x)=c’ and P"MR(x)=c". For any user z; let g,
be the gate for z; in the rectangle R(x). Evidently giec’ if z,eP', gec” if zeP” and g;=z; if
z;€R(x). In order to find these gates, we define the maximal histograms H’ and H” inside P’
and P" with ¢’ and ¢” as their bases, respectively. (A histogram is a rectilinear polygon that
has one distinguished edge, its base, whose length is equal to the sum of the lengths of the
other edges that are parallel to it); see for example de Berg (1991). The vertical edges of
these histograms divide the polyons P’ and P” into subpolygons, called pockets. (In Fig. 8 P’
has two pockets, while P” has three pockets.) Consider for example the pockets from P’.
Note that all points from the same pocket Q have one and the same gate. This is a point of
a cut ¢’ which has the same x-coordinate with the vertical cut of P’ that separates the pocket
Q and the histogram H’. (For example, in Fig. 8) a’ and b’ are the gates in R(x) of the
points @ and b, respectively.) Hence it is sufficient to find the location of users in the pockets.
This can be done by using the subdivisions of P’ and P” into rectangles by vertical vertex-
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Fig. 8. Vertical subdivision of pockets of P'.

edge visible pairs. Let T,(P’) be the dual graph of such a subdivision of P’. The rectangles
from any pocket of P’ induce a subtree in T,(P’). Therefore T,(P’) is a disjoint union of the
subtrees corresponding to pockets of P’ and of the subtree generated by the histogram H'
(see Fig. 9). Such a partition can be computed in time proportional to the size of T,,(P’), just
processing the boundary of each pocket separately. So, it suffices to establish which
rectangles of the subdivision of P’ contain each of the users. Again it is necessary to use the
Chazelle algorithm (Chazelle, 1991) and the optimal point location methods (Edelsbrunner et
al., 1985; and Kirkpatrick, 1983). For every user z;e P’\JP" assign the weight n(z;) to its gate
g, the weights of users from R(x) remain unchanged. As a result, we obtain a median
problem in the rectangle R(x). Note that any solution of this problem belongs to
Med(P)NR(x). To see this, observe that for any two points z’, z"eR(x) it holds

DE)-DE)= @) dEz)—dE"z)= Y 1) g)—dE"g)).

i=1 i=1

The new median problem on R(x) may be solved by decomposing it into two one-
dimensional median problems and applying to cach of them a modification of the selection
algorithm from Blum et al., 1972; see also Cormen et al., 1990.

Let M(x)=Med(P)NR(x). In a similar way, we find the set M(y)=Med(P)NR(y). Both
M(x) and M(y) are rectangles (possible degenerate) whose corners are vertices of the grid G
introduced in Section 2. Denote the corners of M(x) by a,, as, as, a, and the corners of M(y)
by by, bs, bs, by, in the assumption that the segments [as,as] and [bs,b4] belong to the
horizontal sides s, and s, of R(x) and R(y) which separate the rectangles R(x) and R(y). By

Fig. 9. The partition of T.(P") into subtrees of pockets.



Condorcet and median points of simple rectilinear polygons 31

Lemmas 6 and 10, the set Med(P) coincides with the interval I(v’,v”) between two vertices
v’, v" of the grid. As the cuts s, and s, separate the rectangles R(x) and R(y) from the rest
of the set Med(P), we deduce that v'e{a;,a,} while v"e{b,b,}. Therefore
Med(P)= i jet1.21(a;b;), i.. it is enough to compute this union of intervals (in fact, Med P)
equals one of the intervals / (a:,b;)). Moreover, it is sufficient to find its intersection with each
horizontal cut that separates the rectangles R(x) and R(y). Indeed, let R(v) be a rectangle
for veMed (T (P)). Assume that R(v) is bounded by the horizontal cuts ¢; and ¢, and let

Med(P)Ne,=I' and Med(P)Nc,=I".

Then Med(P)NR(v) is a rectangle, whose corners can be computed in constant time by
finding the intersection of segments I’ and I” with the respective horizontal sides of the
rectangle R(v).

Let x=vo,v1,...,06_1, Ux=y be the vertices of Med(T(P)) and let c,=c’,...,c, be the
horizontal cuts of P that correspond to edges of the path induced by Med(T(P)). First we
find that gates g'(a1), g'(a2), 8'(01), 8 (b2), .8 (1), 8*(a2), g“(b1), g“(b) for points a,, s,
by, by in the cuts c,...,c;, respectively. In order to do this, we use the next evident remark:
g'"'(a)) and g'*'(a,) are the gates for g'(a,) and g'(az) in the cut ¢, ,, while g'(h,) and
g'(b2) are the gates for g'*'(b;) and g'*'(b,) in ;. This follows from the fact that if ¢ cuts
P into subpolygons P’ and P” and xeP’ then the gates for x in ¢ and P” coincide; see Chepoi
and Dragan (1994) Lemma 3.

Fig. 10. Computation of [p;p/] and Med (P)M\R(z,).
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Let [p/,p/] be the smallest segment of the cut ¢; containing the points g'(a,), g'(a>), g'(b1)
and g'(b,) (see Fig. 10 for an illustration),

Lemma 12. [p/,p!'|=Med(n,P)Nc..

Proof. Assume for example that Med(P)=I(a\,b,). Then necessarily a,, b,el(a;,b,). The
points p;, p/ being the gates for some of the points a,, a,, b; or b, necessarily belong to the
interval /(a,b;). By the convexity of the set I(a;,b,) we conclude that [p;,p/|CI(a.,b,). Next

consider a point p outside the segment [p/p!]. Then
d(a,,p)=d(a,,gi(a1)) +d(gi(a1)7p)v
d(bi,p)=d(b1,g'(b1)) +d(g'(b1).p).

Since d(g'(a,), p)+d(g'(b)).p)=d(g'(a\), g'(b))) we conclude that d(a,,p)+d(by,p-
)>d(a,,by), i.e. p¢l(a,,b,). Thus Med(P)Mc;=[p/,p!]. Another proof of this equality follows
from the fact that gate functions in median spaces map intervals precisely to intervals; see
van de Vel, 1993. O

Fig. 11
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The computing of gates for points a,, a,, b; and b, in cuts c,,...,c, takes O(N) time. The
same number of operations is necessary to compute the segments Med(P)Nc; and the sets
Med(P)NR(v.), i=1,...,k. Thus we obtain the set Med(P) as a union of at most N rectangles.

Summarizing the results of this section and taking into account that Cond(P)=Med(P) the
next result is obtained.

Theorem 2. The sets of Condorcet and median points of a simple rectilinear polygon P can
be found in time O(nlogN+N). If all users are located on vertices of P then the time
becomes O(N +n).

6. THE ALGORITHM

We are now in position to describe the complete procedure for the calculation of
Cond(P)=Med(P). It consists of the following steps.

Step 1: Divide P into horizontal strips. Let T(P) be the tree of this subdivision. For each
vertex v of T(P) R(v) denotes the corresponding strip alias rectangle.

Step 2:  Assign to each vertex v of T(P) the sum of weights of users located in R(v) minus
one half of the weight of users located on horizontal sides of R(v) which do not

[ 10 LT

le

gﬁ.f Exl

Fig. 12. The sets M(x), M(y) and Med(P).
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belong the boundary of P. To this end, we use the point location methods in planar
subdivisions.

Step 3: Compute the median Med(T(P)) of the tree T(P). It is known that Med(T(P)) is a
subpath of T(P), say Med (T (P))=(x=vg, V1s...,x=y).

Step 4: Compute the rectangles M(x)=Med(P)NR(x) and M(y)=Med(P)N\R(y). To this
end, we solve two median problems on R(x) and R(y), where each user is replaced
by its gates in R(x) and R(y), respectively. These gates (say in R(x)) can be
determined by dividing P—R(x) into pockets and two histograms. All users from
one pocket have a common gate in R(x). In order to find all users located in each
pocket, we divide the pockets into vertical strips and apply the point location
methods to the obtained subdivision of P.

Step 5: Recursively compute the gates of the corners of M(x) and M(y) in each horizontal
cut ¢; separating the rectangles R(x) and R(y). Find the smallest segment [p;,

13

pi'] of ¢; containing these gates. Using the segments [p/,p'] and [p/, 1,p/ 1] compute
the intersection M(v;) of Med(P) with the rectangle R(v;) (R(v;) shares its
horizontal sides with the cuts ¢; and ¢, ;).

Step 6:  Output Med (P)=Cond (P)=\U oM (v,).

7. AN EXAMPLE

In Figs 11 and 12 we present a concrete step-by-step example (all users are assumed to
have weight 1).

Acknowledgements—We would like to thank the referees for many helpful comments improving the
presentation.
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