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Tverberg numbers for cellular bipartite graphs 

By 

VICTOR CIJAEPOI 1) and OLEG TOPALA 

1. Introduction. The well-known theorem of Radon (192t) says that eaeh set S of more 
than n + 1 points in an n-dimensional linear space N" can be partitioned into two disjoint 
subsets such that their convex hulls have a point in common. In 1966 Tverberg [16] has 
given a far-reaching generalization by taking partitions of S into a finite number of 
subsets. 

Tverberg Theorem. Each set o f  m (n + 1) - n points  IR" can be part i t ioned into m subsets 
whose convex  hulls have a point  in common. 

(The case n = 2 was settled by Birch [4]. For  new proofs of the Tverberg theorem see [13] 
and [17].) These theorem of Radon and Tverberg are formulated completely in ~erms of 
intersections of convex hulls and this suggests to formulate corresponding statements for 
more general kinds of convexities. A family cg of subsets of a set X is called a convexi ty  
on X if cg contains 0 and X and is closed under arbitrary intersections and directed 
unions; see Soltan [14] and van de Vel [18]. The members of cg are called convex sets. The 
convex hull co (S) of any subset S of X is defined to be the intersection of all convex sets 
which contain S. For  instance, every connected graph m endowed with the geodesic 
convexity ,  consisting of all those subsets S of the vertex set which include each shortest 
path of G joining two vertices of S. As to the definition of classical convex invariants [such 
as the Helly, Carath6dory, Radon and Tverberg numbersl of a convexity we adopt the 
convention of van de Vel [18]. The Radon number of a convexity ~ is the smallest in- 
teger r (if it exists) such that any finite set S with I SI > r admits a partition {$1, S 2 with 

co ($1) c~ co ($2) # O. 

In these circumstances, {S~,$2} is called a Radon partition and every pomt  of 
co ($1) ~ co ($2) is called a Radon point. The Hel ly  number is the smallest integer h (if it 
exists) such that for each finite set S with I S [ > h 

(-] co (S\{a}) # 0. 
a ~ S  

1) On leave from the Universitatea de stat din Moldova, Chi~in~u. 



Vol. 66, 1996 Tverberg numbers for cellular bipartite graphs 259 

The CarathOodory number is the smallest integer c (if it exists) such that 

co (s) ~= U co (S\{a}) 
a~S 

for each finite set S with L S[ > c. 
Let S be a non-empty subset of X. A partition {S 1 . . . . .  Sin} of S is called a Tverberg 

m-partition provided 

~) co (s3 ~ O. 
i = 1  

The ruth partition number alias ruth Tverberg number or ruth Radon number of X is the 
smallest number Pm (if it exists) such that each finite set with more than Pm points has a 
Tverberg partition into m + 1 parts. Note that the first partition number is just the Radon 
number. Tverberg's theorem asserts that Pm= m(n + 1)= mr in ~R". One of the main 
questions concerning convexity numbers is to decide whether Tverberg's theorem is of a 
purely combinatorial nature, or in other words: does the inequality Pm <= m r hold for all 
m > 1 and for all convexities? This problem is known in the literature as the Eckhoff 
conjecture [10]. Jamison [12] has shown that it is valid when the Radon number equals 2. 
In the same paper, the Eckhoff conjecture was verified for a class of convexity spaces 
which include ordered sets, trees, Cartesian products of two trees and subspaces of these. 
The next formula holds for all convexities: 

p , , < c ( m h - 1 ) +  l; 

see Doignon, Reay and Sierksma [6], Jamison [12], and Sierksma and Boland [14]. 
In this note we show that the inequality p,~ < m r holds for the geodesic convexity on 

cellular bipartite graphs. These graphs are obtained from even cycles and edges by 
successive applications of special amalgams. Among them are all trees, Cartesian prod- 
ucts of two trees and isometric subgraphs of these, and more generally cube-free median 
graphs. We prove that the convex invariants of cellular bipartite graphs behave like the 
classical invariants of plane convexity: 

c<2,  h < r < 3 ,  p , ,<3m.  

In contrast to convexity in cellular graphs, geodesic convexities in general graphs seem 
to behave like arbitrary convexities; see [8]. So one cannot expect a general Helly or 
Radon theorem involving a convenient dimension parameter. In some cases (for chordal 
graphs or Helly graphs) the Radon number is given by the clique number: see [3], [5]. The 
same holds for minimal path convexities [8]. Duchet and Meyniel [9] have shown that 
r < 2 r / -  1 holds for any graph G, where t/is the Hadwiger number of G. The stronger 
upper bound r < r/was established for Kl,s-free graphs in [11]. 

2. Cellular bipartite graphs. In what follows let G = (V, E) denote a finite connected 
graph endowed with the standard graph metric d (x, y). For arbitrary vertices x, y e V let 

I (x,y) = { r e  V:d(x,v) + cl(v,y) = d ( x , y ) }  

denote the (metric) interval between x and y. By an isometric cycle we will mean a cycle 
of G which is also a metric subspace. A subset S (or the subgraph induced by S) of G 

17" 



260 V. CHEPOI and O. TOPALA ARCH. MATH. 

is gated if for every vertex v E V there exists a (unique) vertex v' E S (the gate for v in S~ 
such that d(v,x) = d(v,v') + d(v',x) for all x~S;  see Dress and Scharlau [7] for further 
information on gated subsets. A graph G is a gated amalgam of two graphs G1 and G 2 

if G1 and G2 are (isomorphic tol two intersecting gated subgraphs of G whose union is 
all of G. A bipartite graph G is called cellular [1] if it can be obtained by successive ap- 
plications of gated amalgamations from even cycles and edges. Cellular graphs were 
introduced in order to characterize bipartite graphs whose metrics are totally decompos-  
able in the sense of Bandelt and Dress [2]. They show that any metric d on a finite set X. 
admits a specific additive decomposit ion d = dt + . . .  + dp + d' into split metrics di, 
i = 1 . . . . .  p, associated with splits (i.e. bipartitions) of the set X, and a split-prime res- 
idue d'. If  in such a decomposition there is no split-prime reminder, i.e., d' = 0, then the 
metric d is called totally decomposable: for precise definitions consult [2]. Bandelt and 
Dress characterize totally decomposable metrics in terms of a "five-point condition". In 
Ill a structural characterization of bipartite graphs with totally decomposable metric is 
presented. 

Theorem A [1, Theorem 1]. For a bipartite graph G = ( V, E) with at least two vertices the 
following conditions are equivalent: 

(i) G is cellular; 
(ii) the metric d o f  G is totally decomposable; 
Off) for  any subset S ~ V, 

co (s) = 0 I(u, v); 
u~v~S 

(iv) every isometric cycle o f  G is gated and G does not contain any three isometric" cycles 
C1, C2, C 3 and three distinct edges e~, e;, e 3 sharing a common vertex such that ei 
belongs to C s exactly when i r j.  

The structure of cellular bipartite graphs can be specified further. A cutset R of a 
connected graph G is any subset (or subgraph) for which G - R is disconnected. Evident- 
ly, if R is a gated cutset, then G can be represented as a gated amalgam of two gated 
subgraphs G 1 and G 2 along R. 

Theorem B I1, Theorem 3]. Every cellular bipartite graph either is indecomposable (i.e., 
comprises a single vertex, or a single edge, or an even cycle) or possesses a gated cutset that 
is a tree. 

3. Convex invariants of cellular bipartite graphs. In this section we present the main 
results of  this note. 

Proposition 1 [2, Proposit ion 3 and its proof]. ,~d  is a totally decomposable metric on 
a finite set X, then (in the usual metric convexity) c < 2. In particular, c < 2for  all cellular 
bipartite graphs. 

Proposition 2. I f  G is a cellular bipartite graph then h <_ r <_ 3. 



Vol. 66, 1996 Tverberg numbers for cellular bipartite graphs 261 

P r o o f. The inequality h < r holds for all convexities [18]. Each of the characteriza- 
tions of cellular bipartite graphs presented in Theorem A provides a method of proving 
the inequality r < 3. For  instance, using Theorem A (iii) one can establish that  any 4-ver- 
tex subset A = {a t, a2, a3, a4} of a cellular bipartite graph G has a Radon parti t ion of the 
form {{al, @ ,  {ak, a~}} (see [1]). We will outline the proof  of this property based on 
Theorem B to give an idea of how the gated amalgamat ion  along a tree can be employed. 
We proceed by induction on the number  of vertices of G. The assertion is evident when 
G is a tree or an even cycle. Moreover,  the Radon partitions in trees have the following 
additional property.  

O b s e r v a t i o n. Every 4-vertex subset A = {a t, a2, a3, a4} of a tree T has at least two 
Radon partitions of the form {{a,, a j}, {ak, a~}} whose Radon points coincide. 

Indeed, the convex hull of A is a subtree of T which can be represented as in Figure 1 
(some of the labeled vertices of this tree can coincide). Then {a~, a3} and {at, a4} together 
with their complements in A constitute two Radon partitions of A. The Radon points of 
both  partit ions form the path between the vertices u and v. 

at a3 

a2 a4 
Figure 1. 

Now suppose that  G is a gated amalgam of two subgraphs G1 and G 2 along a gated 
tree T. We can assume that  A is not completely contained in G 1 or  G2, otherwise we can 
apply the induction assumption. So let al ~ G2 and a4 r GI.  Denote by a't, a~, a~, a~ the 
gates of the vertices a~, a2, a3, a4 in the tree T. First, suppose that a 2 and a 3 belong to  G 2. 

By the induction hypothesis there exists a Radon parti t ion {a'~, a3}, {a2,a4} of the set 
{a~l, a2, a3, a4}. As a' 1 ~ I (al,  a3), we conclude that ! (al,  a3) c~ I (a2, a4) 5 ~ 0. So assume that  
a 2 e G  ~ and a 3 ~ G  2. By the Observation,  the set {a'~,a'2,a'3,a'4} has at least two Radon 
partitions. One of them necessarily consists of two pairs of vertices from different sub- 
graphs G t and G 2, say, it has the form {al, a~}, {al, a2}. We assert that I (a'~, a;) __= I (at, a3). 
Since a' 1 and a ;  are the gates of a t and a 3 in T and T separates the vertices a 1 and a3, 
we deduce that a'l e I (al, a3) and a'3 e I(a3,  a'O. Hence the vertices a'l and a ;  lie on a 
common  shortest path  between at  and a 3 and thus l (a 'x ,a '3)~ I (at ,a3) .  Similarly, 
! (al,  al) __c I (az, a4). Therefore, {al, a3}, {a2, a4} is a Radon parti t ion of the set A. []  

Note  that  the equality r = 3 holds for all cellular bipartite graphs except paths and the 
4-cycle. 

F rom Proposit ions i and 2 and the inequality Pm < C (m h -- 1) + 1 we conclude that 
Pm < 6 m -  1 holds for all cellular bipartite graphs. On the other hand, the Eckhoff 
conjecture asserts that p,, < 3 m. First we verify this inequality for cycles. 
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Lemma 3. I f  G is an even cycle, then p,~ < 3 m; this inequality is sharp. 

P r o o f. We proceed by induction on m. Fo r  m = 1 we apply  Proposi t ion  2. So assume 
that  m > 1. Let A be a (3m •  subset of G. Then either all vertices of A lie on a 
common shortest path  between two vertices u, v of A or G is a convex hull of three vertices 
u, v, w e A. Removing from A the vertices u and v in the first case and the vertices u, v 
and w in the second case we obtain a new set A'  with at least 3 (m - 11 + t vertices. By 

the induction assumption A' has a Tverberg m-part i t ion {A s . . . . .  Am}. Let x ~ ~ co (Ai). 
i = i  

In the first case x ~ I ( u , v )  and we get a Tverberg [ m +  1)-partition {Aa . . . . .  A,,, {u,v}}. 
Otherwise, if co(u, v, w) is the whole graph G we obta in  a Tverberg cm + 1)-partit ion 
{A , ,  . . . ,  A ~ , { u , v , w } } .  

In order  to show that the inequali ty is sharp we consider a cycle of length 6 m + 6 
whose vertices are distr ibuted into 6 disjoint paths P~, . . . ,  P6. Here the paths P~, P3 and 
P5 contain m vertices each, while the remaining paths contain m + 2 vertices each. Let A 
be the set of vertices of P~,P3 and Ps. Suppose that A has a Tverberg (m + 1)-partition 

m + l  

{AI . . . . .  Am+~} with x e  ("] co(A~). Assume without  loss of generali ty that  xeP~  wPz .  
i = l  

Since (Pt w Pz) ~ co (B) - 0 for any subset B E P3 ~ Ps, we conclude that each A i has 
at least one vertex from P~, contrary  to the assumption that  P~ contains only m ver- 
tices. []  

Theorem. I f  G is a cellular bipartite graph, then Pm ~ 3 m f o r  all m > I. 

P r o o f. We prove the inequali ty Pm< 3 m by induction on the number  of vertices 
of a cellular graph G. Consider  an arbi t rary  (3 m + 1)-vertex set A of Go In view of 
Lemma 3 we can suppose that  G is decomposable.  According to Theorem B it can 
be represented as a gated amalgam of two graphs G~ and G 2 along a gated tree T. 
Let V1 and V 2 be the vertex-sets of the graphs G~ and G2, respectively. Put  
k = min {[A n (V 1 - V2)I, [ A n  (V 2 - V0I }. We proceed by induction on k. If  k = 0, i.e. 
A is contained in one of the sets V~ or V2, say A c V2, then we can apply the induction 
hypothesis to the subgraph G2. Next suppose that  k = [ A c ~ ( V  1 - V / ) [  > 0 .  Pick any 
vertex u e A c~ (V  1 - Vz) and let u' be the gate of u in T. By the induction assumption the 
set A ' =  (A\{u})w {u'} has a Tverberg (m + 1)-partition {A1 . . . . .  A m, A,,+ 1}i In view of 
condit ion (iii) of Theorem A, we can suppose that  this par t i t ion consists of 2-vertex 

m + l  

subsets only. Let x ~ ~ co (A j). We may assume that  u' belongs to some set A,, otherwise 
j= l  

{At  . . . . .  A , , ,Am+I}  represents a Tverberg ( m +  l ) -par t i t ion of the initiaI set A. Let 
A t = {u', v}. If  v ~ V 2 then u' E l (u ,  v) and replacing in A t the vertex u' by u wege t  a Tverberg 
(m + 1)-partition of A. So assume that  v~  V 1 - V z. Then x e I ( u , ,  v) c ~ .  

m + !  

We claim that  there exists at least one vertex w c A n Vz such that  w ~ U Ai- Assume 
) = 1  

the contrary.  Since [ A c ~ ( V  2 -  V O t > ] A c ~ ( V I - - V z ) [  necessarily at least one pair  
A q = { y , z }  consists of vertices of V z, where y e V  2 -  V t.  Hence x e t ( y , z ) =  Vz, i,e. 
x s T = VI c~ V 2. Let v', y' and z' be the gates in T of the vertices v, y and z, respectively, 
Since x e I (u', v) and v 'e  I (x, v), there must be a shortest pa th  between u' and v which 
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passess through the vertices x and v'. On  the other hand, since y' e I (y, x) and z' s ! (z, x), 
there must be a shortest path between y and z which contains the vertices y', x and z. 
Therefore x e I (u', v') c~ I (y', z'). According to the Observation (cf. the proof of Proposi- 
tion 2) there is another Radon partition of the set {u', v', y', z'} which has x as a Radon 
point. Let, say, x e I (u', y') c~ I (v', z'). Since u, v E V 1 and y, z ~ V 2, we conclude that 
x ~ I(u,  y)c~ I (v, z). Replacing the sets A, and Aq by the pairs {u, y} and {v, z} we get a 
Tverberg (m + 1)-partition of the set A. Therefore there is a vertex w e A  ca V z with 

w r (~ Aj. Then u' E I (u, w) and x e I (u', v), i.e. x ~ co (u, v, w). In particular, replacing set 
j=l  

A t by the set A + = {u ,v ,w}  we get a Tverberg (m + l)-partition of the set A. Since 
co (A~ +) = 1 (u, v) w I (v, w) ~ 1 (w, u) we can replace in this partition the set A + by that pair 
of vertices u, v and w whose interval contains the vertex x. The proof of the theorem is 
now complete. [ ]  

We conclude with an illustration of the result of the Theorem for m = 2. In fact, the set 
{al, a2, aa, a4, as, a6} has a unique Tverberg 3-partition {al, a4}, {a 2, as}, {a3, a6}. 

5 

g4 

Figure 2. 

A c k n o w 1 e d g e m e n t. We would like to thank the referee and Professor H.-J. Ban- 
delt for helpful comments improving the presentation. 
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