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ABSTRACT

A shape description method is presented, which is based on the use of the weighted
skeleton of a digital pattern. The skeleton is interpreted as a curve in the 3D space, where
the three coordinates of any pixel are its planar coordinates and label. There, the skeleton
is partitioned into rectilinear segments by means of a polygonal approximation. The
partition allows one to decompose the pattern into simple parts. A merging step is also
performed to reduce the number of regions of the final decomposition and to facilitate the
description process. The process is fast because all the computations are performed on a
limited amount of data, which are stored in vector form.

1. Introduction

When working with binary images, shape description is a key step for pattern
recognition. If the pattern at hand has simple shape, e.g., it is a compact silhouette
bounded by a convex contour, its description can be given in terms of global geometric
features like area, perimeter and moments. These features are not enough to provide an
adequate description of a pattern having complex shape, e.g., a pattern bounded by non-
convex contour, which can be perceived as consisting of the union of more simple
regions. In this case, shape description can be accomplished by following the structural
approach: the pattern is decomposed into a number of simple regions that, by
hypothesis, can be easily described by means of a suitable set of features; then, the
description of the pattern is given in terms of the description of the obtained regions
and of their interrelations.

The labelled skeleton of a single-valued digital pattern is a region-based
representation system. It provides a convenient tool to analyse the shape of patterns
perceived as union of elongated regions, being each skeleton branch representative of
one of the constituting elongated regions. The skeleton is particularly suited to the
structural approach to shape description, since it is naturally structured as a graph. In



fact, each skeleton branch can be interpreted as a node (representing a pattern subset),
while any crossing between branches identifies the interrelations of the corresponding
regions and can be interpreted as an arc.

Different metrics can be adopted to drive the skeletonization process and to label
the skeletal pixels. If the city-block or the chessboard distance functions are used, the
obtained skeleton is rather sensitive to pattern orientation and its use for practical
applications has to be limited to the case of patterns with fixed orientation. In fact, these
distances provide a quite rough approximation of the Euclidean distance. Weighted
distance functions [1, 2] allow one to obtain a better approximation, and to gain
skeleton stability under pattern rotation.

In this paper we use a skeleton whose pixels are labelled according to the (3,4)-
weighted distance function. The skeleton is interpreted as a curve in the 3D space,
where the three coordinates of any pixel are the planar coordinates and the label. There,
the skeleton is partitioned by means of a polygonal approximation. The obtained
rectilinear segments are used to describe the corresponding regions. The description
method has been inspired by previous papers [3, 4], relative to the case of ribbon-like
patterns represented by their city-block distance labelled skeleton.

2. The Weighted Skeleton

Let P={1} and P={0} be the two sets constituting a binary picture digitis ed on
the square grid. The sets P and P are also referred to as the pattern and the complement.
We assume that the 8-metric holds for P and the 4-metric for P. Without losing

generality, we assume that P is a connected set.

The (3,4)-weighted distance among two pixels p and q is the length of the shortest
path (not necessarily unique) from p to g, where the two weights 3 and 4 are used to
measure any horizontal/vertical unit move and any diagonal unit move, respectively.

The (3,4)-weighted skeleton S, [5], is the subset of P having the following
properties: 1) it has the same number of 8-connected components as P, and each
component of S has the same number of 4-connected holes as the corresponding
component of P; 2) it is centred within P; 3) it is the unit-wide union of simple 8-arcs
and 8-curves; 4) its pixels are labelled with their distances from P; 5) it includes almost
all the centres of the maximal discs of P.

Inclusion of almost all the centres of maximal discs guarantees a quasi faithful
recovery of P, starting from S (the complete inclusion is not compatible with the



simultaneous fulfilment of property 3) on skeleton thickness). Moreover, stability under
rotation is achieved since the (3,4)-weighted distance provides a good approximation of
the Euclidean distance. In fact, the disc associated by the (3,4)-weighted distance to any
skeletal pixel is octagon-shaped, so that nearly the same number of discs fits the shape
of the contour, whichever the orientation of the pattern.

We do not elaborate on how to compute the weighted skeleton, but simply outline
the processing scheme, which includes three steps: i) computation of the (3,4)-weighted
distance map DT, ii) identification of the set of the skeletal pixels (i.e., maximal
centres, saddle pixels, linking pixels), and iii) reduction of the set of the skeletal pixels
to unit width.

Detection of the centres of the maximal discs on the DT is a straightforward task,
since the label of any pixel is related to the radius of the associated disc; detection of
the saddle pixels requires the analysis of the neighbourhood of any pixel, so as to count
the number of components of neighbours with smaller label and with larger label.
Detection of the linking pixels is done by growing paths along the direction of the
steepest gradient in the DT, starting from any already found skeletal pixel. The set of
the skeletal pixels is reduced to unit width, by employing topology-and-end-point
preserving removal operations.

The pixels of S can be classified into end points, normal points and branch points,
by taking into account the number of components of neighbours not belonging to the
skeleton and the number of neighbours belonging to the skeleton. An end point is a
pixel of S having a unique (4-connected) component of neighbours not in the skeleton.
A branch point is any pixel of S which is not an end point and has more than two
neighbours in S. A normal point is a pixel of S which is neither an end point nor a
branch point.

A skeleton branch is an arc of S entirely consisting of normal points, except for
the extremes of the arc, which are end points or branch points. If neither end points nor
branch points exist in S (i.e., the skeleton is a simple curve), any of its pixels is taken to
represent both the extremes of the unique skeleton branch.

Each skeleton branch can be understood as the spine of a subset of the pattern.
This is a simple region, if it satisfies the following two properties: 1) the contour arcs,
which are common also to the contour of the pattern, are straight line segments; 2) its
local thickness changes monotonically and linearly along the spine. The properties
characterising a simple region are reflected by corresponding properties of the



associated spine: this is a discrete straight line segment along which labels
monotonically and linearly change.

In the following, unless differently specified, the labels of the skeleton pixels
have to be understood as normalised labels, obtained by replacing any distance label p
with the integer number k such that: 3¢k -1) <p £ 3k

3. The Algorithm

A preliminary partition of the skeleton into its constituting branches is
accomplished. To this purpose, each branch is traced from one extreme to the other
extreme and the planar coordinates and label of each pixel are orderly stored in vector
form. This partition of S is equivalent to a decomposition of P into elongated regions,
i.e., the regions that could be obtained by individually applying to each skeleton branch
the reverse distance transformation.

Each skeleton branch, interpreted as a curve in the 3D space (x, y, label), is then
partitioned into a number of rectilinear 3D segments. To this aim, a polygonal
approximation is performed. A split type algorithm, [6], is used so that the obtained set
of vertices is not remarkably influenced by the order in which the pixels of the skeleton
branch are examined. The complexity of this task is in order of n.log(n), where n is the
number of pixels in the skeleton branch. Starting from the extremes of the branch (say
A and B), new vertices are identified in a recursive way. The pixel C of the skeleton
branch, whose Euclidean distance from the straight line (AB) is the maximal one, is
taken as a new vertex, provided that the Euclidean distance is larger than an a priori
fixed threshold 8. Vertex selection is then accomplished on the sub-branches AC and
CB. The recursive process terminates when, for every pixel of each sub-branch, the
distance from the corresponding straight line segment is not larger than the threshold 6.

The value for the threshold 6 depends on the tolerance regarded as acceptable in
the problem domain. In the experiments we have carried on, the value 8=1.5 has been
used to favour a rather faithful description of the pattern. Note that by assigning
different values to 0, different descriptions of the pattern would be available. The
descriptions are rougher and rougher as the threshold value increases.

Using the normalised labels in place of the distance labels allows us to treat
uniformly both the planar and the label coordinates, since a displacement of at most one
unit in each of the three directions is accomplished when passing from a skeletal pixel




to one of its neighbours. In this way, the skeleton is a connected union of arcs and
curves also in the 3D representation.

The skeleton segments obtained so far enjoy the properties characterising the
spines of simple regions, and are used to extract geometric features of the represented
regions. To this purpose, it is not necessary to reconstruct the regions by resorting to the
reverse distance transformation. In fact, starting from the coordinates (x1, y1, labelj)
and (x2, y2, labelp) of the vertices delimiting each partition component, an
approximated version of the corresponding region can be built. This is obtained by
drawing the discs associated with the vertices, and linking them by means of a
trapezium-shaped strip having the partition component as its symmetry axis (see Figure
1). The tolerance used to perform the skeleton partition conditions the degree of
approximation of the recovered regions.

Figure 1. The region corresponding to a skeleton partition component.

Some of the regions derived from the partition of a skeleton branch are (almost
completely) overlapped by adjacent regions. To facilitate pattern description, the
corresponding spines should be identified as superfluous and removed. A spine is
identified as superfluous if its length is smaller than the sum of the labels of the two
vertices. When this is the case, and both the extremes of the spine are normal points, the
segment is annihilated by moving its two vertices, which are also vertices common to
contiguous segments, towards the middle of the superfluous spine. The label to be
ascribed to the new vertex is computed by taking into account the relative distance and
the labels of the two original vertices. An example is shown in Figure 2.

When an extreme of a superfluous spine is a branch point, its presence in the
skeleton is necessary only to keep track of the interrelations among skeleton branches.
Any such a spine simply plays the role of a linking element, but has no region
representation power in the decomposition.

Although the regions remaining after superfluous spine annihilation are all
significant, a merging process is accomplished to reduce the number of elementary



regions which constitute the primitives for pattern description. In fact, the number of
simple regions obtained so far could be quite large, due to the small value selected for
the threshold during the polygonal approximation. We point out that the merging step
could not be avoided, by increasing the value of the threshold used to perform the
partition of the skeleton. In fact, representing with a unique spine (rectilinear in the 3D
space) a region characterised by appreciable changes of global curvature and/or width
could be too schematic, or even incorrect.

a)

b)

Figure 2. The initial partition of the skeleton into three components originates a
decomposition, where the intermediate ‘region is not significant, a). After the
intermediate spine is annihilated, a more significant decomposition is obtained, b).

Purpose of the merging step is to consider the union of consecutive regions as a
unique primitive, provided that only smooth changes (in orientation and/or thickness)
occur when passing from one region to the successive one. The region obtained by
making the union of simple regions is not a simple region, but its description can still
be easily derived from the coordinates of the vertices delimiting the merged spines. The
spine of the region union of simple regions is the concatenation of the merged spines.

Decision on region merging is taken by resorting to the 3D representation of the
corresponding spines: two consecutive regions are merged if the distance of their
common vertex from the straight line joining the remaining two vertices is less than an
a priori fixed threshold.
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An example of the performance of the proposed algorithm is shown in Figure 3.

4, Conclusion

In this paper we have introduced a method for describing the shape of a digital
pattern, represented by its weighted skeleton. A preliminary partition of the skeleton
into the constituting branches is accomplished. Then, each branch of the skeleton is
interpreted as a curve in the 3D space, where is partitioned into rectilinear segments by
means of a polygonal approximation. This partition simulates the decomposition of the
pattern into simple regions. An annihilation process is then performed to get rid of
superfluous spines, representing regions almost completely overlapped by neighbouring
regions. A merging step is then accomplished to reduce the number of elementary
regions into which the pattern is decomposed. Besides avoiding some redundancy, the
merging step allows us to obtain a final decomposition which is not strongly
conditioned by the preliminary skeleton partition and results to be more in accordance
with human intuition. The description of each region of the final decomposition can be
achieved by using the coordinates and labels of the vertices of the involved skeleton
segments, as well as a few notions of elementary plane geometry. The description of the
pattern is obtained in terms of the description of its constituting regions and of their
interrelations.

The process is very fast because all the computations are performed on a limited
amount of data (the skeletal pixels and, afterwards, the vertices of the polygonal
approximation), which are stored in vector form. The use of the (3,4)-weighted distance
function to label the skeletal pixels allows us to have a skeleton stable under pattern
rotation and, accordingly, the same description is expected for the pattern, whichever its
orientation. Investigation in this respect is currently under development.

References

1 G. Borgefors, Comput. Vision Graphics Image Process. 34 (1986) 344-371.

2 E. Thiel and A. Montanvert, Proc. 11th Int. Conf. on Pattern Recognition (1992)

244-247.

3 P.P. Cortopassi and T.C. Rearick, Proc. 2nd Int. Conf. on Computer Vision (1988)

597-601.

4. C. Arcelli, R. Colucci and G. Sanniti di Baja, Proc. Int. Conf. on Artificial

Intelligence Applications and Neural Networks (1990) 193-196.

5 G. Sanniti di Baja, Journal of Visual Communication and Image Representation, in
press (1993).

6 T.Pavlidis, Structural pattern recognition (Springer Verlag, New York, 1977).




