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Abstract— A digital pattern, perceived as the superposition of elongated regions, is decomposed into simple
regions through the decomposition of its (3,4)-weighted skeleton. The skeleton is interpreted as a curve in
3D space, where the three coordinates of any pixel are its planar coordinates and the distance label. The
3D curve is divided into rectilinear segments, which constitute the spines of elementary regions, i.e. regions
with linearly changing width and orientation. Then, the spines are analysed to simplify the skeleton
decomposition and avoid redundancy. Spines identifying regions unnecessary for the description of the
pattern are annihilated, while contiguous spines, corresponding to sufficiently similar regions, are merged.
The resulting skeleton components are used to represent and describe the simple regions into which the
pattern is decomposed. Decomposition at different resolution levels can be obtained by selecting different
threshold values during the polygonal approximation, performed to divide the skeleton into rectilinear

pieces, and/or the successive merging step.
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1. INTRODUCTION

The description of patterns that can be perceived as
the superposition of ribbon-like regions’ can be facili-
tated by the structural approach. A suitable represen-
tation of the pattern is decomposed, in such a way that
each decomposition component could be interpreted
as the representation of one of the regions constituting
the pattern.” 7 Then, the description of the pattern is
obtained in terms of the description of the obtained
regions and of their spatial relationships. The descrip-
tion of each elementary region, which by hypothesis is
characterised by a simple shape, can be obtained by
exploiting the information carried on by the correspond-
ing component of the representation system.

The labelled skeleton® 13 is a convenient tool to
analyse the shape of patterns perceived as union of
ribbon-like regions. A ribbon-like pattern is character-
ised by one spine and a disc: the disc sweeps out the
shape by moving along the spine, changing size as it
moves. The skeleton is a curvilinear subset of the
pattern and its branches play the role of the spines of
the ribbon-like regions constituting the pattern. The
label of any pixel p of the skeleton, which represents
the distance of p from the complement of the pattern,
can be interpreted as the radius of the sweeping disc
centred on p. The shape of the disc depends on the
adopted distance function. The discs are more rounded
if a quasi Euclidean metric is adopted.

Reasonable approximations of the Euclidean dis-
tance are provided by the weighted distance func-
tions,**717 where suitable integer weights are used to

Polygonal approximation

Decomposition

measure the distance between neighbouring pixels,
depending on their relative position. Skeletons!’-10-12:13)
whose pixels are labelled using a weighted distance are
called weighted skeletons. The weighted skeleton and
the skeleton labelled according to the city-block or the
chessboard distance can be obtained at a comparable
(limited) computational cost. The stability of the
weighted skeletons under pattern rotation favours their
use for practical applications.

A correspondence exists between any subset of the
skeleton and the region of the pattern that is the union
of the discs associated with the pixels of the skeleton
subset (in the strict sense, the only pixels of the skeleton
subset which are centres of maximal discs are enough
to recover the region). This region can be obtained by
applying the reverse distance transformation!® 1% to
the skeleton subset, which requires two raster scan
inspections when a sequential algorithm is used. Under
certain circumstances, a satisfactory approximated
version of the region can be obtained at a lower com-
putational cost. For instance, if the skeleton subset can
be interpreted as the spine of an elementary region
having linearly (and monotonically) changing width
and orientation, a satisfactory approximated region is
the envelope of only two discs, those associated with
the extremes of the spine.

In this paper, we divide the (3,4)-weighted skeleton!:*¥
of a pattern into subsets that can be understood as
spines of simple regions. The decomposition method
has been inspired by previous works®'® where the
city-block distance labelled skeleton has been employed.
Skeleton decomposition is accomplished in two main
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phases. During the first phase (splitting step), the skele-
ton is interpreted as a curve in 3D space, where the
coordinates of any pixel are the planar coordinates and
the distance label. The 3D skeleton is divided into
rectilinear segments by means of a polygonal approxi-
mation. The obtained segments are the spines of ele-
mentary regions, characterised by linearly (and mono-
tonically) changing width and orientation. During the
second phase (merging step), the skeleton segments are
analysed. Skeleton segments which represent regions
almost completely recovered by adjacent regions are
annihilated, while contiguous segments constituting
the spines of sufficiently similar elementary regions are
merged. The merging step reduces the number of regions
into which the pattern is decomposed, so that the
obtained results are more in accordance with human
intuition. In particular, it allows alleviation of the
distortions generally affecting geometry and labels of
the skeleton in correspondence of region crossings,
which could produce an error-prone decomposition.

Although referred to the case of patterns represented
by their (3,4)-weighted skeleton, the decomposition
process equally applies to any other weighted skeleton.
In fact, most of the computation is done by using
normalized labels, which rids the process of the depen-
dence on the value of the weights of the adopted
distance function.

2. NOTIONS AND DEFINITIONS

Let B and W be a pattern perceived as the super-
position of elongated regions, and its complement,
respectively. Since the tool we adopt to perform the
decomposition of B is the weighted skeleton S, we
assume that a cleaning step is preliminarily performed
to fill the noisy holes of B. In fact, loops originated in
S in correspondence with non-meaningful holes of B
would irreparably bias the skeleton structure and
strongly condition the resulting decomposition. More-
over, the existence of noisy holes, completely lacing the
contour of B, could even prevent creation of a unit-
wide skeleton. We do not explicitly require that cleaning
also remove noisy protrusions and dents from the
contour of B, so as to avoid creation of noisy skeleton
branches. These branches can be removed after the
skeleton has been obtained, during the pruning step
that we performed to delete skeleton branches regarded
as non-significant in the problem domain.

The 8-connectedness and the 4-connectedness are
assumed for B and W, respectively. The 8-connectedness
holds also for S, since the skeleton is a subset of B.

The (3,4)-weighted distance d; , among two pixels p
and g is the length of the shortest 8-connected path
(not necessarily unique) from p to g, where the two
integers weights w, = 3and w, = 4 are used to measure
any horizontal/vertical unit move and any diagonal
unit move, respectively.

The distance transform DT of B with respect to W
is a replica of B, where each pixel is labelled with its
ds , distance from W. Each pixel of the DT can be
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interpreted as the centre of a disc, whose radius has
length equal to the label of the pixel. The disc is
octagon-shaped, as soon as the centre has a sufficiently
large label.

A disc of the DT which is not completely overlapped
by any other single disc is called a maximal disc. The
union of the maximal discs coincides in size and shape
with B. The centre of a maximal disc is called a maximal
centre. A suitable comparison??? among the label of a
pixel p and the label of its neighbours in the DT allows
one to establish whether p is a maximal centre.

The (3,4)-weighted skeleton S is the subset of B having
the following properties: (1) S has the same number of
8-connected components as B, and each component of
S has the same number of 4-connected holes as the
corresponding component of B. (2) S is centred within
B. (3) S is the unit-wide union of simple 8-arcs and
8-curves.?! (4) The pixels of § are labelled with their
ds 4 distance from W. (5) S includes almost all the
maximal centres of B [complete inclusion is not com-
patible with fulfilment of property (3)].

An end point is a pixel of S having a unique (4-con-
nected) component of neighbours not in the skeleton.
It identifies the starting point of a skeleton arc and is
placed in correspondence with the tip of an elonga-
ted subset of the pattern. A branch point is a pixel of
S which is not an end point and has more than two
neighbours in S. It identifies crossings of skeleton arcs,
and is located in correspondence of the superposition
of elongated regions. Finally, a normal point is a pixel
of the skeleton which is neither an end point, nor a
branch point (see Fig. 1).

Branch points and end points allow one to interpret
the skeleton as a concatenation of skeleton branches.
These are arcs of the skeleton, whose pixels are all
normal points except for the extremes. In particular,
branches delimited by an end point are called peripheral
skeleton branches. When all the pixels of S are normal
points, the skeleton is a simple curve. The curve is
interpreted as a single skeleton branch, whose extremes
are any two adjacent normal points, e.g. the first pixel
of S, met when scanning the array in forward raster
fashion, and the last pixel found when tracing S com-
pletely, starting from the first extreme. These two pixels
are considered as if they were branch points, so as to
treat all the skeleton branches homogeneously.

The normalized label of a skeleton pixel with
distance label p is the minimal integer k, such that
k > p/3. Unless differently specified, in the following
the same letter will be used to indicate both the pixel
and its associated label.

An elementary region of B is any set R, obtained by
applying the reverse distance transformation to a-{sub-
set of a) skeleton branch, such that: (1) the local thickness
of R changes monotonically and linearly along the
(subset of the) skeleton branch; and (2) the subsets of
the contour shared by R and B are straight line seg-
ments.

The (subset of a) skeleton branch corresponding to
the elementary region R is the spine of R.



(3,4)-Weighted skeleton decomposition

1041

Normal point

Branch point

End point

Fig. 1. Normal points, branch points and end points in the skeleton.

Fig. 2. The approximated version of an elementary region,

obtained by building the envelope of the two octagon-shaped

discs, centred on the extremes of the corresponding skeleton
subset.

A satisfactory approximated version of R can be
obtained by taking the envelope of the discs associated
with the extremes of the spine of R. The two discs are
octagon-shaped, while the central portion of the envel-
ope is trapezium-shaped (see Fig. 2).

R,

3. DECOMPOSING THE SKELETON: THE SPLITTING STEP

The skeleton is preliminarily processed to prune
skeleton branches originated by protrusions regarded
as non-significant in the problem domain. These
branches include, but are not limited to, branches
originated from noisy contour protrusions. In fact,
pruning is also effective to reduce skeleton sensitivity
to pattern rotation, by removing skeleton branches
whose presence depends on pattern orientation.

Pruning is sometimes already included as a final step
of the skeletonisation algorithm. This is the case in the
algorithm proposed by Sanniti di Baja,'** where prun-
ing is accomplished using a criterion based on the
relevance of the protrusion associated with the skeleton
branch, so as to keep under control the loss of informa-
tion caused by branch deletion.

In this paper, the above relevance criterion is used,
while pruning is parallelwise applied to the peripheral

2o

b)

Fig. 3. The (3,4)-weighted skeleton of a pattern before pruning (a) and after pruning (b). The pixels of the
input pattern which are not recovered by applying to the skeleton the reverse distance transformation are
indicated by “+™.
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skeleton branches. Pruning is iterated until branch
removal does not diminish the representative power of
the skeleton, in the limits of the adopted tolerance.
Thus, skeleton branches which are initially delimited
by branch points may be pruned as soon as they
become peripheral branches, due to the deletion of the
neighbouring branches. Iterating pruning does not
cause a summation effect in the loss of information. At
each iteration and for each peripheral skeleton branch,
the protrusion whose relevance is evaluated is the
protrusion mapped in the union of the current peri-
pheral skeleton branch with the neighbouring skeleton
branches, already pruned at a previous iteration. To
this purpose, the information relative to the starting
point(s) of the branch(es) is propagated through the
branch(es) while performing pruning.

In Fig. 3, the (3,4)-weighted skeleton is shown super-
imposed on the input pattern, before and after pruning.
Pixels denoted by “+” are not recovered when the
reverse distance transformation is applied to the skele-
ton. In Fig. 3(a), only a few pixels of the border of B
are missed out. Loss of recovery happens since the
skeleton is required to be unit-wide and, as such, it
does not include all the maximal centres of B. In
Fig. 3(b), the smoothing effect due to the pruning pro-
cess is evident; each skeleton branch remaining after
pruning corresponds to a significant ribbon-like region.

The skeleton is preliminarily decomposed into the
constituent skeleton branches. This is equivalent to
performing a decomposition of the pattern into the
elongated regions that could be obtained by individually
applying the reverse distance transformation to the
skeleton branches. A data structure is built to record
the extremes of the skeleton branches and the spatial
relationships among them.

Each skeleton branch is furthermore decomposed,
by means of a polygonal approximation, in such a way
that each rectilinear segment constitutes the spine of
an elementary region. Division points have to be placed
wherever non-linear curvature changes occur along
the skeleton branch, as they reflect non-linear curvature
changes along the contour of the corresponding pattern
subset. Division points have also to be placed where
non-linear or non-monotonic label variations occur,
as they indicate non-linear or non-monotonic pattern
thickness variations. To locate both types of division
points, we interpret any skeleton branch as an arc in
3D space where, for each skeletal pixel, the three co-
ordinates are the planar coordinates and the normalised
label. Using the normalised label in place of the distance
label is done to treat uniformly the three coordinates,
by allowing a displacement of one unit only in each of
the three directions, when passing from a skeletal pixel
to one of its neighbours. In this way the skeleton
branch is a connected arc also in the 3D representation.

The polygonal approximation is accomplished by
using a split type algorithm (e.g. the one described by
Pavlidis,??), so that the obtained set of vertices is not
influenced by the order in which skeletal pixels are
processed. The extremes of the current branch (say v;
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and v,) are accepted as vertices, and properly stored
in the data structure. Then, new vertices are identified
(and stored in the data structurej in a recursive way.
The Euclidean distance dg{p) between any pixel p of
the skeleton branch and the 3D straight line (v;,v,) is
computed. Then, the pixel of the branch for which dg(p)
has the largest value is taken as a new vertex v, provided
that dg(p) is greater than an a priori fixed threshold 6.
Vertex selection is then accomplished on the sub-arcs
v and vv,. The recursive process terminates when, for
the pixel maximising dg(p), it results in dg(p) < 6.

If a number of pixels of the skeleton branch maxi-
mises dg(p), the two pixels which are respectively the
closest to v; and to v, are accepted as vertices, and the
skeleton arc is divided in three sub-arcs, which are
recursively examined. Accepting as vertices all the pixels
maximising dg(p) could result in a polygonal approxi-
mation with too many vertices, not necessarily all
significant. In contrast, accepting only one pixel could
make the skeleton decomposition dependent on the
order in which the pixels are processed.

The square root computation necessary to obtain
the Euclidean distance dg(p) can be avoided, since the
same result is obtained when comparing the square
distance with the square threshold.

The value of 6 is fixed depending on the tolerance
regarded as acceptable for the specific task. The thres-
hold should be rather small, to favour a quite faithful
recovery of the elementary regions having the skeleton
segments as their spines, by building the envelopes of
the pairs of discs, centred on the extremes of the spines.
In our experiments, the value 6= 1.5 has been re-
vealed as adequate. Skeleton decomposition at different
resolution levels is obtained by assigning different values
to 6. As the threshold increases, the number of com-
ponents into which the skeleton is decomposed gene-
rally diminishes, while the representation becomes
rougher and rougher. In fact, the regions that could
be recovered by applying the reverse distance trans-
formation to the pixels of the skeleton components are
likely to differ remarkably from the envelopes of the
discs centred on the extremes of the so-found skeleton
components.

Let V(0) be the set of vertices found in the polygonal
approximation of the skeleton, performed with the
lowest threshold. The vertices of any other polygonal
approximation, performed with a higher threshold,
can be directly identified as they constitute a subset of
V(6). Any subset is obtained by comparing the value
dg(p), stored for any pixel p of V(8), with the desired
new threshold.

Recovery of the elementary regions represented by
the skeleton segments is not necessary for computing
geometric features (e.g. area or perimeter) and shape
features (e.g. orientation or rectangularity) of the regions.
These features can easily be derived starting from the
3D coordinates of the found vertices. However, for
illustrative purpose, the elementary regions, correspond-
ing to polygonal approximations of the skeleton at
three different threshold values, are shown in Fig. 4.
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Fig. 4. Letter V denotes the vertices found during the polygonal approximation of the skeleton with
threshold 6 = 1.5 (a); decomposition into elementary regions, corresponding to 6= 1.5 (b), § = 4 (c), and
0 =28 (d).

To use all the pattern representations in a compact
way, we associate each vertex p of ¥(8) a quadruplet
(x,y, label, dg(p)). In this way, the permanence of a
vertex in any of the resolution levels can be immediately

checked. In Table 1, the entries x, y,1,d, and ¢ indicate
the Cartesian coordinates x and y, the label, the 3D
distance, and the pixel type, respectively (b, e, and n,
stand for branch point, end point and normal point,
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Table 1.

x y ! d t

1 31 22 16 e
2 28 28 21 1,99 »n
3 28 40 23 5,23 n
4 30 48 20 1,86 n
5 35 S5 24 b
6 31 97 28 e
7 46 94 38 2,94 n
8 53 88 40 21,24 n
9 49 72 27 4,60 n
10 36 56 24 b
11 67 37 23 e
12 57 43 26 .24 n
13 41 51 15 315 n
14 36 55 24 b

respectively) with reference to the 14 vertices, found
when performing the polygonal approximation with
0 = 1.5 of the skeleton shown in Fig. 4(a).

4. DECOMPOSING THE SKELETON: THE MERGING STEP

Some of the regions represented by the skeleton
segments are (almost completely) overlapped by the
adjacent regions, especially when the polygonal ap-
proximation is performed with a low threshold value.
To avoid redundancy, overlapped regions should be
either completely disregarded or merged to adjacent
regions. To this purpose, the skeleton segments must
be examined and suitably processed. Correspondingly,
the data structure, where the vertices found on the
skeleton branches have been recorded, is suitably
updated.

4.1. Short spine annihilation

All the short spines (e.g. skeleton segments having
length less than 4 pixels) are examined. Short spines,
whose contiguous spines are not short, are termed
isolated short spines.

angtonsoonde

a)

b)
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Any isolated short spine s;, delimited by two normal
points, is annihilated by moving the two vertices, shared
by s; with the contiguous spines s; -, and s;, ,, towards
a common position in 3D space. This position is either
the barycentre of s; or the intersection between s;_,
and s, ;, depending on the angle between s;_, and
s;+1- The pixel common to the two new spines, obtained
by modifying s;_, and s;, 1, is not taken as a vertex if,
in the limits of the tolerance adopted when performing
the polygonal approximation, the modified spines are
aligned. When this is the case, the two modified spines
are merged into a unique spine, still identifying an
elementary region.

Any isolated short spine s;, delimited by end points
and/or branch points, is suppressed. However, when s,
is delimited by a branch point, track of s; must be
kept to record the relative position of the skeleton
branches and, hence, of the corresponding regions in
the decomposed pattern. In this case, the suppressed
spine s; plays the role of a linking element, but has no
region representation power in the decomposition.

4.2. Superfluous spine annihilation

Spines longer than 4 pixels may correspond to regions
almost completely overlapped by adjacent regions.
These spines are superfluous for pattern representation
and description.

In general, a spine can be considered superfluous if
the envelope of the discs centred on its extremes does
not significantly differ from the union of the two discs,
as it is the case if the two discs partially overlap. The
d 4 distance between the extremes of the spine and the
value of their labels, e.g. I, and [,, can be used to
evaluate the overlapping. The spine is regarded as
superfluous if the overlapping condition is satisfied, i.e.
if it results in /1 + 13 > d3 .

If the extremes of a superfluous spine s are both
normal points and the contiguous spines are both
non-superfluous, sis annihilated by following the same
strategy already discussed for the short spine annihi-
lation.

c)

™

el o ety
tos

ees,

d)

Fig. 5. The initial partition of the skeleton into three components (a), originates a decomposition (b), where
the intermediate region is not significant. After the intermediate spine is annihilated (c), a more significant
decomposition is obtained (d). The vertices of the partition components are denoted by “+”.
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b)

Fig. 6. Skeleton segments rid of region representation power are hatched lines. The overlapping condition
is satisfied by the discs centred on the pairs of vertices (vy, v5) and (v,,v3) in (a), and by the discs centred on
the pair (vy, v3) in (b).

The effect of the spine annihilation process is illustra-
ted in Fig. S.

4.3. Crossing spines

Spines sharing a branch point as a common vertex
identify elementary regions that cross each other. The
spines are meaningful if the corresponding elementary
regions do not remarkably overlap. Otherwise, their
presence in the skeleton is necessary only to keep track
of the spatial relationships among skeleton branches.
As before, these spines should simply play the role of
linking elements, but have no region representation
power in the decomposition.

However, it may happen that considering any such
a spine as a linking element is not enough to eliminate
redundancy in the decomposition, and to guarantee
stability of the decomposition under pattern rotation.
Also, some successive spine(s), located on the same
skeleton branch, might have no region representation
power. The skeleton branch could have been excessively
fragmented during the polygonal approximation, so
that the subset of the skeleton branch which, in the
final decomposition, should have only role of a linking
element results in being divided into a number of spines.
Moreover, the polygonal approximation of the skeleton
performed at the lowest threshold is seldom stable
when the orientation of the input pattern is changed.
Thus, a different interpretation of which spines are
linking elements could occur when the pattern s rotated.

Pixels of V() which are vertices of the polygonal
approximation also when a larger threshold is selected
(8 =2, in our case) are more likely both to be present
in the skeleton decomposition when the pattern is
rotated, and to identify correctly the subset of the
skeleton branch having only a linking role in the final
decomposition. These pixels are identified by resorting
to the quadruplets (x, y, label, dg(p)), stored for any
vertex found during the polygonal approximation.

Let b,,b,,...,b, be the skeleton branches sharing
the branch point v,, and let v; (i=1, n) be the first
vertex along b,, remaining in the polygonal approxi-
mation when it is 8 = 2. The subset of b, delimited by
v, and v, is regarded as rid of region representation

power if for a vertex v, located on b; (j #i), the overlap-
ping condition between the discs centred on v; and v; is
satisfied. If this is the case, the subset only maintains
its linking role. Otherwise, the overlapping condition
is checked between the discs centred on v, and on any
of the vertices of the subset of b;, delimited by v, and
v, to identify the longest linking element and to simplify
the decomposition.
As an example, refer to Fig. 6.

4.4. Spine merging

Although the spines remaining at this stage of the
process all significantly contribute to pattern recovery,
merging some of them could be useful to reduce the
number of regions which will constitute the primitives
for pattern decomposition. The reduction of the num-
ber of primitives generally also increases the stability
of the decomposition and produces results. more in
accordance with human intuition.

Elementary regions having sufficiently similar width
and orientation could be merged by merging the cor-
responding spines. A merged region, although no longer
an elementary region, can still be simply described
starting from the 3D coordinates of the vertices of the
merged spines. By employing a different merging tol-
erance, different concatenations of merged spines are
possible, which produce different pattern decomposi-
tions. The decompositions have all the same rep-
resentation power, since any merged region is the
union of the corresponding elementary regions. (This
was not the case when different decompositions were
obtained by adopting different thresholds during the
polygonal approximation of the skeleton, see Fig. 4.)

Having several decompositions of the same pattern
is convenient to facilitate pattern recognition, and
allows one to select the decomposition which is more
adequate to the solution of a specific problem.

The orientation and width of two contiguous ele-
mentary regions are faithfully reflected by their cor-
responding spines. Thus, if the spines, represented as
3D straight lines, are aligned in the limits of the adopted
tolerance, the elementary regions are similar and could
be merged.
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b)

©)

Fig. 7. Different decompositions of the same pattern, obtained by using different values for the merging
threshold: 7 = 0.15 (a), T = 0.25 (b), = 0.50 (c).

Each pair of successive spines, belonging to the same
skeleton branch, is examined. Let (v;_;,v,) and (v, v, , ;)
be the vertices delimiting the current pair. Let D, and
L; be the Euclidean distance of v; from the straight line
segment joining v;_; and v; , {, and the Euclidean length
of the segment, respectively. A flag F, initially equal to
0, is set to 1 in correspondence with each vertex v, such
that D,/L, is less than an a priori fixed merging thre-
shold .

Let vy,v,,...,v, be a set of successive vertices, in
correspondence of which it is F = 1. Moreover, let v,
and v, , ; be the vertices immediately preceding v, and
immediately following v,

If n=1, the two spines (vo,v,) and (vy,v,,,) are
merged by all means.

Ifn > 1, the distance D, from the straight line segment
joining v, with v, is divided by the length L, of the
segment, for every v; (i=1,2,...,n). If D;/L; <t for
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every vertex, all the spines are merged. Otherwise, the
concatenation v,,vs,...,0,_ is considered, and for
each of these vertices the merging ratio D,/ L, is checked
with reference to the straight line segment joining v,
and v,. The process is repeated until for the concatena-
HON U Uy 1,-..,0; (k=141 j=n—1i, i>0) the mer-
ging condition is verified by all the vertices. Then,
the merging condition is recursively checked on the
two sub-concatenations vy,v,,..., 0 and v,
Djg2s-vsUn

The vertices delimiting the set of the merged success-
ive spines are taken as the extremes of the resulting
complex spine. Note that the remaining vertices still
maintain their region representation power, since the
region associated with a complex spine is the union of
the elementary regions associated with the merged
spines.

The value of the merging threshold v depends on the
desired merging tolerance. In our experiments, the
value 7==0.25 has been adopted as a default value.
Larger values can be used to favour merging. An
example is shown in Fig. 7, where three different values
have been used for the merging threshold 7. The
three decompositions are obtained starting from the
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polygonal approximation of the skeleton, performed
with 6 = 1.5. Note that, in contrast to the decomposit-
ions shown in Fig. 4, the regions are not elementary
regions.

The possibility of merging spines sharing a branch
point as a common vertex could also be taken into
account, so that the final pattern decomposition would
not be conditioned by the preliminary decomposition
of the skeleton into its constituting branches. Work in
this respect is currently in progress.

5. CONCLUSION

In this paper we have illustrated a method for de-
composing a digital pattern through the decomposition
of its weighted skeleton. The method is adequate for
patterns that can be perceived as constituted by the
union of elongated (ribbon-like) regions; it could be
employed, for instance, in the framework of a document
analysis task to classify the alphanumeric symbols
which it contains.

The weighted skeleton has been chosen to favour the
stability of the decomposition under pattern rotation.
In fact, stability is an indispensable presupposition for

b)

<)

Fig. 8. Stability of the decomposition under pattern rotation.
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any application where the orientation of the pattern is
not known a priori. Stability is also favoured by the
annihilation and merging steps, which reduce the skele-
ton decomposition components to the most significant
ones. As an example of the performance of the decom-
position under pattern rotation refer to Fig. 8, where
the pattern of Fig. 7 appears in a different orientation.
The three decompositions have been obtained using
the same merging threshold as in Fig. 7.

A relevant feature of the proposed decomposition
method is the possibility of obtaining decompositions
at different resolution levels. This can be done by
changing the thresholds used during the polygonal
approximation and the merging step. In the first case,
the obtained pattern representations do not have the
same representative power. In fact, the skeleton decom-
position components are considered as the spines of
elementary regions, independently of the employed
threshold. The various representations can be used in
a compact way. In the second case, the decompositions
differ from each other for the number and shape of the
constituent regions, but all have the same representative
power. A region of a decomposition obtained with a
small merging threshold is simpler to describe, but the
total description of the pattern in terms of the consti-
tuent regions is less manageable.

The computational burden of the process is rather
modest, because all the computations are performed
on a small amount of data (the skeletal pixels and,
afterwards, the vertices of the polygonal approximation),
which are stored in vector form.

We are conscious that our method can be improved,
especially regarding the merging step. It should be
interpreted as a starting point to devise better decom-
position procedures, each tailored to the specific appli-
cation. It is, in fact, rather difficult to foresee a general-
purpose decomposition process. For completeness, we
point out some of the topics that we are currently
investigating. We are trying to take into account some
more information, still derivable from the coordinates
of the vertices of the polygonal approximation of the
skeleton, which could originate merged regions more
in accordance with human intuition. This information
concerns detection of vertices where the change in sign
of the curvature occurs, or the distance label is minimal.
Detecting these pixels could help us to avoid consider-
ing S-shaped patterns or clepsydra-shaped patterns as
a unique region. Also, the splitting step could be per-
formed by resorting to a skeleton partition more ap-
propriate to handling rounded shapes. For instance,
rather than a polygonal approximation, one could
employ a curve-fitting technique.
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