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Abstract. In this paper pruning techniques are illustrated, which allow us to
suitably simplify the (discrete and semicontinuous) skeleton, by either
deleting or shortening peripheral skeleton branches. To avoid excessive
shortening, which might reduce the representative power of the skeleton, the
relevance of the figure regions mapped in the skeleton branches is used to
decide on pruning. Different definitions of relevance are introduced and
features allowing the quantitative evaluation of the relevance are suggested.

1 Introduction

The skeleton is a stick-like representation of a figure, which accounts for different figure
properties. It is a curvilinear set consisting of branches and, in case of multiply connected
figures, of loops. Each skeleton component is placed in the medial regions of a figure
subset, and is oriented along the directions of the main symmetry axes of the corresponding
figure subset. Each element of the skeleton can be interpreted as the centre of a disc fitting
the figure, and is labelled with the corresponding radius; thius, the length of a skeleton
branch gives an evaluation of the elongation of the represented figure subset and the labels
of the skeleton elements provide a measure of the local thickness of the figure.

The literature includes a relevant number of papers dealing with skeletonization. Most of
thern refer to the computation of discrete skeletons. More recently, algorithms using the
Voronoi graph have become of interest to compute semicontinuous skeletons. In fact the
computation cost of the Voronoi graph is no longer prohibitive; moreover vertices
approximating the figure contour in the continuous plane are often available, which can be
used directly to guide skeletonization without performing any shape digitisation. A problem
affecting both discrete and continuous skeletons is the presence of a number of peripheral
skeleton branches, originated in correspondence with figure protrusions having no
perceptual relevance. This makes the skeleton structure complex and limits the possibility to
use the skeleton for shape analysis. This paper provides different pruning criteria for the
discrete and the continuous skeleton, which allow us to eliminate unwanted ‘branches
without significantly altering the topological and representative power of the skeleton.

2 Discrete Skeleton
On the discrete plane, the identification of the skeletal pixels can be conveniently

accomplished on the distance map of the figure (e.g., [1,2]). The distances most commonly
used to compute the distance map are the city-block distance, the chessboard distance, the
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(3,4)-weighted distance and the (5,7,11)-weighted distance. The latter two distances,
introduced in [3], provide a better approximation to the Euclidean distance and allow to
originate skeletons almost stable under figure rotation. On the distance map, one can
identify a nearly thin set of skeletal pixels (i.e., the centres of the maximal discs, the saddle
pixels, and the linking pixels). This set is then reduced to the unit wide skeleton, by
employing removal operations, which are topology-and-end-point preserving.

The discrete skeleton cannot be perfectly centred within the figure, wherever the
thickness of the figure is given by an even number of pixels. In these regions, the set of the
centres of maximal discs is 2-pixel wide. The unit wide skeleton includes almost all the
centres of the maximal discs, so that the figure can be nearly completely recovered by
applying to its skeleton the reverse distance transformation. Complete recovery is not
compatible with skeleton unit thickness. Each skeleton pixel is the centre of a disc fitting the
shape. The discs are polygons approximating the Euclidean circle to a different extent,
depending on the adopted distance function. Discs obtained by the city-block distance and
chessboard distance are 4-side polygons, while those obtained via the (3,4)-weighted
distance and the (5,7,11)-distance are 8-side and 16-side polygons, respectively. Maximal
discs, associated with skeleton pixels sufficiently close to each other, partially overlap so
that the set of the maximal discs does not provide a partition of the figure. The contour of a
maximal disc and the contour of the figure share one, two or more connected subsets, each
of which may include more than one pixel.

3 Semicontinuous Skeleton

Semicontinuous skeletonization does not require image digitisation. The skeleton is a graph,
computed starting from a polygonal approximation of the continuous shape (provided, for
instance, by segmentation methods using a deformable curve model). The vertices of the
polygonal approximation in the continuous plane sample the boundary of the continuous
shape, and are called the sampling points. A measure of the quality of the approximation is
given by bounding the greatest distance between two neighbouring sampling points on the
boundary. The more numerous those sampling points, the more accurate the approximation.
In recent papers [4-6], the skeleton of continuous shapes is approximated by using the
Voronoi graph of the sampling points [7]. A partition of the polygonal shape is computed
by using the Delaunay triangulation; then, the approximated skeleton is defined as the dual
of this partition. For sufficiently regular shapes, due to the convergence theorem-{8], the
Voronoi vertices of the sampling points tend to the complete skeleton (i.e., the endoskeleton
and the exoskeleton of the shape) when the sampling points tend to the shape boundary.
The semicontinuous skeleton consists of the Varonoi vertices associated with the Delaunay
triangles contained inside the shape, and of the straight line segments connecting the
vertices. Two vertices are connected by a segment if their associated triangles are adjacent.
To reconstruct the continuous shape, one can use either the Delaunay triangles associated
with the Voronoi vertices, or the Delaunay discs (i.e., discs circumscribed to Delaunay
triangles). Triangles provide a partition of the region of the plane enclosed by the initial
polygonal approximation. In turn, the discs partially overlap. Their union tends to the
continuous shape, when the density of the sampling points sufficiently increases.

4 Pruning

To avoid topology modifications, pruning always concerns with peripheral branches, i.e.,
branches delimited by an end point. In the discrete skeleton, an end point is a skeleton pixel
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having only one neighbour in the skeleton. In the semicontinuous case, an end point is a
Voronoi vertex having only one neighbouring vertex in the skeleton. The second extreme of
a skeleton branch is generally a branch point. In the discrete case, this is a pixel with more
than two neighbours in the skeleton; in the continuous case it's a Voronoi vertex having
exactly three neighbouring vertices in the skeleton. All the other pixels of a discrete skeleton
branch (Voronoi vertices of a semicontinuous skeleton branch) have exactly two neighbours
(neighbouring vertices) in the skeleton, and are called normal points. In the following, the
term skeleton will be used to equivalently refer to the discrete or the continuous skeleton; the
term element will denote a skeletal pixel or a Voronoi vertex.

The discrete skeleton [1] computed by using the (5,7,11)-weighted distance and the
semicontinuous skeleton [6] of a test shape are respectively shown in Fig.1a and Fig.1b, as
they result before applying any pruning. Pruning may involve either partial shortening or
complete deletion of a peripheral branch. The elements of the branch are checked one after
the other against a given pruning condition. Pruning is accomplished as far as the pruning
condition is satisfied. Generally, the pruning condition should prevent excessive shortening
of skeleton branches, as this may result in loss of skeleton representation power. Thus,
pruning should be based on a measure of protrusion relevance and the only branches to be
pruned are those associated with protrusions regarded as non meaningful according to the
relevance measure.

When all the branches sharing a branch point are totally deleted, new peripheral branches
are possibly originated in the modified skeleton. These branches can be furthermore
subjected to pruning, provided that the protrusion whose relevance is evaluated is the
protrusion mapped in the union of the current peripheral skeleton branch with the
neighbouring, already pruned, skeleton branches.

4.1 Pruning Criteria

Branch length. The length of a peripheral branch can be computed in terms of the number of
elements constituting the branch. A peripheral branch can be entirely removed if its length is
below an a priori fixed threshold. This criterion has not general applicability, as the length
of a noisy branch depends also on the thickness of the region from which the noisy
protrusion sticks out. A length based criterion can be used to remove very short branches,
say 1 or 2 elements, or for particular classes of figures (e.g., alphanumerics, where any
figure is the superposition of elongated narrow strokes having constant thickness),

In the discrete case, the distribution and number of centres of maximal discs along the
branch can provide some more information on the relevance of the represented protrusion.
Generally, a small percentage of pixels of a noisy branch are centres of maximal discs. In
the continuous skeleton, by using the Euler constant one can prove that the number of
skeleton vertices is related to the number of sampling points. If the sampling points are
regularly spaced, then, computing the number of vertices is equivalent to computing the
length of the boundary of the protrusion associated with the branch, Pruning methods based
on the computation of the length of the boundary have been proposed in [5].

Intuitively, a portion of a branch can be safely pruned if a negligible difference exists
between the two regions corresponding to the entire skeleton branch and to the pruned
skeleton branch, respectively. The difference in elongation or in area between the previous
regions can be used to decide on pruning.

Elongation. Let r and R be the radii of the discs associated with the end point p of a
peripheral skeleton branch and a more internal element q, along the same skeleton branch,
Let d be the distance between the two elements p and q. The quantity (r-R-+d) measure the
distance between the contour of the two regions, respectively associated with the entire
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Fig. 1. The discrete skeleton, (a), and the continuous skeleton, (b), before pruning. Effect
of elongation-based pruning, (c), and area-based pruning, (e), on the discrete skeleton.
Effect of area-based pruning on the continuous skeleton: the protrusion area is
compared with the area of a single disc in (d), and with the area of the entire shape in (f).
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branch, and with the branch pruned up to q (q excluded). This value can be compared with
a threshold 9, whose value depends on the accepted tolerance in figure recovery. Pruning
can be done up to the most internal element q such that (r-R+d)< 8.

A disadvantage of the above criterion is that it does not take into account protrusion
sharpness. Since protrusion sharpness depends on the difference in radii and on the distance
between the two elements p and q, a suitable correction factor can be accordingly

introduced. Our choice is to muitiply 9 by (R-r+1)/d, which approximately evaluates the
tangent of the angle B, as shown in Fig.2a. Pruning is accomplished up to g, provided that
itis: (r-R4d)< OxR-r+1)/d.
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Fig. 2. (a) The angle B changes with protrusion sharpness; (b) the area of the protrusion
(dark region) can be computed in terms of the radii R and r, and of the angle o,

Fig.1c shows the discrete skeleton, pruned by using the above elongation-based criterion
with ¥=2. White regions inside the shape contour identify ther,.pgxels non recovered by the

pruned skeleton.

Note that if a large value is assigned to 8, the geodesic distance between p and q should

be employed in place of the distance d, when evaluating (r-R-+d). Otherwise, the pruning
condition might be satisfied also by two elements p and g of a significant skeleton branch,
along which relevant curvature changes occur.
Area. The difference between the region corresponding to the skeleton branch including all
the elements from p to g, and the region associated to the element q aloqc, defines the
protrusion that would be flattened by pruning the skeleton branch up to q, ¢ excluded. The
area P of the protrusion can be directly compared with a threshold or, preferably, it can be
compared with the area F of the whole figure (easily availablein both the discrete and the
continuous case) or with the area D of the region associated to the element q. Comparing P
with F allows one to use the same threshold whichever is. the size of the figure at hand.
Pruning will be equally effective on equally sized protrusions. Comparing P with D makes
pruning more context dependent.

In the continuous skeleton case, protrusion area evaluation can be accomplished easily,
since the skeleton vertices are associated with non overlapping triangles. In turn, the
Delaunay discs partially overlap each other and also one Delaunay disc can gverlap partially
several Delaunay triangles. One can make use of this remark to provide a better pruning
criterion as well as a more faithful shape reconstruction. The key idea is that of using the
Delaunay triangles while evaluating the contributions provided by the Voronoi vertices that
are going to be removed by pruning (i.e., the vertices from p to g, q excluded), and to use
the Delaunay discs when evaluating the area of the region associated to q and, in general,
for shape recovery. If the current protrusion mapped in the skeleton branch from p to q is
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significantly overlapped by the Delaunay disc associated to g, then the branch can be safely
removed; a rather faithful recovery is still possible, provided that the shape is reconstructed
by using the union of the Delaunay discs rather than the union of the triangles. Let P be the
area obtained by adding the area of the Delaunay triangles associated with the skeleton
vertices from p to g, g excluded. Let D be the area of the Delaunay disc associated to q. The
branch is shortened up to q if it results: P < 9xD. Alternatively, if F denotes the area of the

shape, pruning can be accomplished provided that P < OXF. In both cases, the value of &

depends on the tolerance in figure recovery.

Fig.1 d,f shows the continuous skeleton after applying the area-based pruning; shape
reconstruction is done by employing the Delaunay discs. Both the polygonal approximation
of the initial shape and the reconstructed shape (grey region) are illustrated. In Fig.1d, the
area P of the protrusion is compared with D and it is $=0,25; in Fig.1f, P is compared with

the area of the entire shape and it is 9=0,005.

In the discrete case, since the maximal discs partially overlap, generally the computation
of the area of the protrusion is not straightforward. Only for skeletons driven by the city-
block and the chessboard distances (i.e., in case of square-shaped discs), convenient
algorithms have been introduced to compute the area of the union of the maximal discs 91
For the general case of skeletons driven by weighted distances, providing more rounded
discs, an approximated evaluation of the protrusion area can be computed as (Rz-rZ)X(tan

0-0), where @, is the angle shown in Fig.2b.

As in the continuous case, the area of the protrusion can be compared with the area Fof
the whole figure, or the area D of the disc associated with the element q. Fig.1le, shows the
effect of the area-based criterion on the discrete skeleton, when the area of the protrusion is

compared with F and the threshold is 9=0,03. As before, both the initial shape and the
reconstructed shape (grey region) aré illustrated. : 0,
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