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Abstract. Discrete and continuous 1 Introduction

skeletons suffer from the presence of non

significant branches. This makes the skele- The skeleton is a convenient representation of fig-
ton structure complex and prevents to ures which can be interpreted as constituted by
easily establish a correspondence between the superposition of elongated regions. In fact,
skeleton subsets and figure regions. We any skeleton branch is a unit wide set, centred
illustrate non significant branch removal within an elongated region and oriented along
techniques, which allow us to simplify the the directions of the main symmetry axes of the
skeleton without reducing .its representa- region. Beside symmetry, it also accounts for
tive power. To this purpose, a quantita- other shape properties of the region, such as
tive evaluation of the relevance of the re- - elongation and width. The length of a skele-
gion mapped In a skeleton branch is used ton branch can be used to evaluate the elonga-
to decide on branch removal. tion of the represented region. In turn, quantita-

tive information on region’s local thickness can
be achieved provided that the skeleton elements
are labelled with their distance from the figure
boundary.

Key words. Discrete skeleton, contin-
uous skeleton, pruning

Research on skeletonization has been influenced,
at least implicitly, by the work of Blum on the
continuous plane [1] dealing with the primitive
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from at least two different boundary points, and "

the growth process associates to each symmet-
ric point the largest disc, centred on the point
and fitting the shape. The skeleton is the collec-
tion of all the symmetric points and of the radii
of the associated maximal discs. A conspicuous
number of papers dealing with skeletonization
can be found in the literature. Most of them
refer to the computation of discrete skeletons
([2-7]), mainly because they appear as a natu-
ral choice when working with digital figures. On
the other hand, a set of vertices approximating
figure boundary in the continuous plane may also
be available. In this event, the vertices can be
used to compute the Voronoi graph and, hence,
the continuous skeleton, without performing any
shape digitisation. For this reason, and due to
the no longer prohibitive computation cost of the
Voronoi graph, the interest towards continuous
skeletonization has considerably increased in the
last decade([8-10]).

A problem common to discrete and continuous
skeletonization is the creation of non significant
(peripheral) skeleton branches in correspondence
with regions whose perceptual relevance is dis-
regardable. This makes the skeleton structure
complex and severely conditions the possibility
to use the skeleton for shape analysis. A less
complex skeleton can be obtained by cleaning
the input figure prior to skeletonization. How-
ever, cleaning produces partially satisfactory re-
sults, and limitedly to the case of non significant
branches originated due to noisy contour config-
urations.

The design of suitable pruning techniques is a
convenient way to simplify the structure of the
(discrete or of the continuous) skeleton, in such
a way that a correspondence can be established
between the skeleton branches remaining after
pruning and significant figure regions. Since the
pruned skeleton represents the smoothed version
of the figure, resulting after flattening some of its
protrusions, pruning criteria can be based on the

geometric properties which allow discrimination
between the protrusions significant in the prob-

lem domain and those that can be flattened.

This paper provides different criteria for pruning
the (discrete and the continuous) skeleton, by to-
tally removing or partially shortening unwanted
peripheral branches, without significantly alter-
ing the representative power of the skeleton. Sec-
tions 2 and 3 briefly introduce discrete and con-
tinuous skeletonization; the proposed criteria for
branch removal are illustrated in Section 4 and
some concluding remarks are given in Section 5.

2 Discrete skeletonization

Discrete skeletonization can be achieved by re-
peatedly applying a contour peeling process (e.g.
[2]), or by using a distance map based approach
(e.g., [7]). The latter method is more directly re-
lated to the Blum’s notions of a symmetric point
and a growth process. In fact, in the distance
map the pixels are labelled with their distance
from the complement of the figure, computed
according to a given distance function [11-13].
Thus, the pixels symmetrically placed within a
digital figure, as well as their associated radii,
can be easily found in the distance map.
Different distance maps originate different skele-
tons for the same figure. City-block and chess-
board distances have been widely used in the
past, as a natural choice on the discrete square
grid. However, they provide a rough approxi-
mation to the Fuclidean distance and originate
skeletons whose structure is strongly conditioned
by figure orientation. The (3,4)-weighted dis-
tance and the (5,7,11)-weighted distance, intro-
duced in [12], provide a better approximation to
the Fuclidean distance, and accordingly allow to
originate skeletons almost stable under figure ro-
tation.

Every pixel in the distance map can be inter-
preted as the centre of a disc fitting the figure,
and having radius equal to the label of the pixel.
The disc is a polygon approximating the Eu-
clidean circle to a different extent, depending on
the adopted distance function. Discs obtained by
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the city-block distance and chesshoard distance
are 4-side polygons, while those obtained via the
(3,4)-weighted distance and the (5,7,11)-distance
are 8-side and 16-side polygons, respectively.

If the centres of the maximal discs (i.e., discs that
are not included by any other single disc) are as-
cribed to the skeleton, skeletonization becomes
reversible, since the union of the maximal discs
coincides with the figure. Detection of the cen-
tres of the maximal discs in the distance map can
be done by suitably comparing the label of any
pixel (i.e., the radius of the associated disc) with
the labels of its neighbours (i.e., the radii of the
associated discs). Generally, the set of the cen-
tres of the maximal discs is not connected, even
for a connected figure, and is more than one pixel
wide, wherever the thickness of the figure is given
by an even number of pixels. To gain skeleton
connectedness, further skeletal pixels (the saddle
pixels, and the linking pixels) have to be found
on the distance map. Detection of the saddle
pixels can be done by analysing the neighbour-
hood of any pixel, so as to count the number
of components of neighbours with smaller label
and with larger label. Detection of the linking
pixels can be done by growing paths along the
direction of the steepest gradient in the distance
map, starting from any already found centre of
maximal disc or saddle pixel. Finally, the set
of the skeletal pixels can be reduced to the unit
wide skeleton, by employing topology preserv-
ing removal operations, designed in such a way
to prevent excessive shortening of the skeleton
branches.

The figure can be almost completely recovered
by applying to its skeleton the reverse distance
transformation. Complete recovery is not com-
patible with the requirement that the skeleton be
one pixel wide. In fact, this requirement forces
removal of a number of centres of maximal discs
from the set of the skeletal pixels. Maximal discs,
assoclated with skeleton pixels sufficiently close
to each other, partially overlap so that the set
of the maximal discs provides a covering of the

figure, which is not a partition. The contour

of a maximal disc and the contour of the figure
share one, two or more connected subsets, each
of which may include more than one pixel.

3 Continuous skeletonization

Differently from the discrete case, continuous
skeletonization does not require bit map image
digitisation. The obtained skeleton is a graph,
which is computed starting from a polygonal ap-
proximation of the continuous shape (provided,
for instance, by segmentation methods using a
deformable curve model). The vertices of the
polygonal approximation in the continuous plane
sample the boundary of the continuous shape,
and are called the sampling points. A mea-
sure of the quality of the approximation is given
by bounding the greatest distance between two
neighbouring sampling points on the boundary.
The more numerous those sampling points, the
more accurate the approximation.

Continuous approaches are based on the com-
putation of the Voronoi graph [14]. For a fi-
nite set of seeds £, the Voronoi graph consists
of the boundaries of the Voronoi regions. The
Voronoi region of a seed is the set of points of
the plane closer to this seed than to any other
seed. The Voronoi regions are polygons and
the Voronoi graph is made up of vertices and
straight-line segments (see Figure 1a). The dual
of the Voronoi graph is the Delaunay triangula-
tion. It consists of triangles whose circumscribed
circles do not contain any seed (see Figure 1b).
After the Voronoi graph of the sampling points
has been computed, a subgraph can be extracted
to approximate the skeleton of the continuous
shape. The differences among the skeletoniza-
tion methods in the recent literature regard the
selection of the best subgraph to approximate
the skeleton.
lecting the set of Voronoi vertices that are in-
side the shape (see Figure 2). Indeed, for suffi-
ciently regular shapes, it has been proved that
the Voronoi vertices of the sampling points tend

A possible choice consists in se-
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Figure 1: (a) Voronoi graph; (b) Delaunay triangulation; (¢) Partition of the shape with Delaunay
triangles; (d) Approximate skeleton; (e) Reconstruction of the shape using the Delaunay disc.

(a) (b)

(d

(c)

Figure 2: The set of Voronoi vertices included in the shape tends to the skeleton as the sampling
density increases. From (a) to (c¢), the shape is sampled by 10 points, 50 points and 200 points;
In (d), some noise is added to the 200 sampling points. The location of the Voronoi vertices is

consequently modified.

to the complete skeleton (i.e., the endoskeleton
and the exoskeleton of the shape) when the sam-
pling points tend to the shape boundary [15].
However, this choice leads to a set of discon-
nected points and consequently, contains no in-
formation on the topology of the original shape.
To overcome this problem, a connected over-
set of the inside Voronoi vertices can be taken
[8,9,16,17]. The computation time of continuous
methods comes down to the computation time
of the Voronoi graph which is O(nlogn), where
n is the number of sampling points.

The method proposed in [17] is particularly in-
teresting because it ensures homotopy between
the approximate shape and the approximate
skeleton. Assume the shape to be partitioned
with Delaunay triangles (Figure 1c). Then, the
skeleton (Figure 1d) consists of the Voronoi ver-
tices associated with Delaunay triangles con-
tained inside the shape, and of the straight-line

segments connecting the vertices. Two vertices

are connected by a segment if their associated

triangles are adjacent. In order to reconstruct
the continuous shape, one can use either the De-
launay triangles associated with the Voronoi ver-
tices. or the Delaunay discs (Figure le). A De-
launay disc is the disc circumseribed to a Delau-
nay triangle. Triangles provide a partition of the
region of the plane enclosed by the initial polygo-
nal approximation, while the discs partially over-
lap. Their union tends to the continuous shape,
when the density of the sampling points suffi-
ciently increases.

4 Branch removal

4.1 Preliminary notions

Unless explicitly pointed out, from now on the
term skeleton will be used to equivalently refer
to the discrete and the continuous skeleton, and
the term element will denote a skeletal pixel and
a Voronoi vertex, respectively,

The elements of the skeleton can be classified as
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end points, normal points and branch points, de-
pending on the number of neighbouring elements
they have in the skeleton. End points have only
one neighbouring element, and normal points
have exactly two neighbouring elements in the
skeleton. Branch points have exactly three (more
than two) neighbouring elements in the contin-
uous (discrete) skeleton. A skeleton branch is a
subset of the skeleton entirely consisting of nor-
mal points except for two elements, called the
extremes of the skeleton branch, that are end
points or branch points. When one extreme of
a skeleton branch is an end point, the skeleton
branch is termed a peripheral skeleton branch.
A correspondence can be established between
skeleton branches and figure regions. In partic-
ular, peripheral branches can be associated with
figure protrusions.

To avoid topology modifications of the skeleton,
only peripheral branches can be pruned. Re-
moving (partially or totally) a skeleton branch is
equivalent to flattening the corresponding figure
protrusion. In our opinion, only tapering pro-
trusions (i.e., protrusions whose local thickness
decreases when proceeding towards the periph-
ery of the protrusion) should be flattened, but
not bulbous protrusions (i.e., protrusions that
are linked to the figure by a neck), because the
latter might be regarded as significant regions in
their own right. Thus a skeleton branch should
be pruned only if the sequence of the radii of
the discs associated to the elements encountered
along the branch, starting from its tip, never de-
creases.

Pruning may involve either partial shortening or
complete deletion of a peripheral branch. Start-
ing from the end point, the elements of the
branch are checked one after the other against
a given pruning condition. Pruning can be done
as far as the pruning condition is satisfied. In the
following, we denote by p the end point of a pe-
ripheral skeleton branch, and by q any successive
more internal element along the same branch. If
the pruning condition is satisfied up to the ele-
ment g, then all the elements of the branch from

p to g, g excluded, are removed.

Generally, the pruning condition should pre-
vent excessive shortening of skeleton branches,
as this may result in loss of skeleton representa-
tion power. Thus, pruning should be based on
a measure of protrusion relevance and the only
branches to be pruned are those associated with
protrusions regarded as non meaningful accord-
ing to the relevance measure.

If all the branches sharing a branch point are to-
tally deleted, new peripheral branches are orig-
inated in the modified skeleton which can be
furthermore subjected to pruning, provided that
the relevance of the regions corresponding to the
already pruned branches is recorded. In this way.
decision on pruning can be taken by using the
relevance of the complex region mapped in the
union of the current peripheral skeleton branch
with the neighbouring, already pruned, skeleton
branches.

The pruning criteria we discuss in the following
can be applied to discrete or continuous skele-
tons, obtained by using any algorithm available
in the literature. The examples shown in this pa-
per refer to the discrete skeleton [7], computed
by using the (5,7,11)-weighted distance, and to
the continuous skeleton [10]. These skeletons are
shown superimposed over a test pattern in Fig-
ure 3a,b, as they result before performing any
pruning.

4.2 Branch removal criteria

Branch length. The length of a skeleton branch,
le., the number of elements constituting the
branch, can be used to decide on branch removal.
A peripheral branch can be entirely removed if
its length is below an a priori fixed threshold.
This criterion has not general applicability, as
the length of a branch depends also on the thick-
ness of the region from which the corresponding
protrusion sticks out. As an example, see Figure
4, where a very small protrusion on the bottom
side of the pattern is associated with a skeleton
branch whose length is almost equal to the length
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Figure 3: Discrete skeleton, (a), and continuous skeleton, (b), before pruning.

of the remaining two branches. In general, the
length based pruning criterion can be safely used
only to remove very short branches, say consist-
ing of 1 or 2 elements, as these are almost surely
noisy branches. It can also be used for partic-
ular classes of figures, as those constituted by
the superposition of elongated components hav-
ing constant thickness (e.g., chromosomes).

Figure 4: A noisy branch originating from a
small protrusion on the bottom side of the pat-
tern has length almost equal to that of the re-
maining significant branches.

The length based criterion can be improved toin-
crease its applicability. In the discrete case, the
number (and the distribution) of the centres of
the maximal discs along a branch, rather than
the number of pixels constituting the branch
itself, can be used to decide on pruning. In
fact, significant branches include a remarkably

larger number of centres of maximal discs, than
that present on noisy branches having the same
length.

By using the Fuler constant, it can be proved
that the number of vertices of the continuous
skeleton is related to the number of sampling
points along figure boundary. If the sampling
points are regularly spaced, then, computing the
number of vertices of a skeleton branch is equiv-
alent to computing the length of the boundary
of the protrusion associated with that branch.
Pruning methods based on the computation of

~the length of the boundary have been proposed
in [9].

Protrusion elongation. Intuitively, a (portion of
a) branch can be safely pruned if the difference in
elongation between the two regions, respectively
corresponding to the entire skeleton branch and
to the pruned skeleton branch, is negligible.

Let r and R be the radii of the discs associated
with p and ¢, and let d be the distance between
p and ¢g. The quantity (r — R 4 d) measures the
distance between the contours of the regions, re-
spectively associated with the entire branch and
with the branch pruned up to ¢. This value can
compared with a threshold ¥, to be fixed depend-
ing on the accepted tolerance in figure recovery.
Pruning can be done up to the most internal el-
ement ¢ such that (r — R+ d) <9 .
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The above criterion is strictly based on the dif-
ference in elongation and does not take into ac-
count protrusion sharpness. It can be suitably
modified, so as to prevent pruning of skeleton
branches corresponding to sharp protrusions. In-
deed, protrusion sharpness depends on the differ-
ence in radii as well as on the distance between
the two extremes of the corresponding skeleton
branch, i.e., it depends on the tangent of the
angle 3, as shown in Figure 5. To take into
account both elongation and sharpness, pruning
should be accomplished only provided that it is:
(r—-R+d)<Ix(R-r+1)/d

R-r

Figure 6: Effect of elongation-based pruning on
the discrete skeleton.

ing to the entire skeleton branch and the skeleton
branch that would result after pruning, can be

Figure 5: The angle § changes with protrusion
sharpness.

The performance of pruning based on elongation
and sharpness is shown in Figure 6, referring to
the discrete skeleton. The value used for the
threshold was ¢ = 2, which has been found to be
adequate for removal of noisy branches. White
regions inside the shape contour identify the pix-
els non recovered by the pruned skeleton.

For completeness, we point out that if a large
value is assigned to ¥, so as to produce a more
important figure smoothing, the geodesic dis-
tance between p and ¢ should be employed in
place of the distance d, when evaluating (r —
R +d). Otherwise, the pruning condition might
be satisfied also by two elements p and ¢ of a
significant skeleton branch, along which relevant
curvature changes occur.

The difference in area be-
tween the two regions, respectively correspond-

Protrusion area.

used to decide on branch removal.

The difference between the region corresponding
to the skeleton branch including all the elements
from p to ¢, and the region associated to the ele-
ment ¢ alone, defines the protrusion that would
be flattened by pruning the skeleton branch up
to g. The area P of the protrusion can be di-
rectly compared with a threshold or, preferably,
it can be compared with the area F of the whole
figure (easily available in both the discrete and
the continuous case) or with the area D of the
region associated to the element ¢. Comparing
P with F allows one to use the same threshold
whichever is the size of the figure at hand. Prun-
ing will be equally effective on equally sized pro-
trusions. Comparing P with D makes pruning
more context dependent.

In the continuous skeleton case, protrusion area
evaluation can be accomplished easily, since the
skeleton vertices are associated with non over-
lapping triangles. In turn, the Delaunay discs
partially overlap each other and also one Delau-
nay disc can overlap partially several Delaunay
triangles. Omne can make use of this remark to
provide a better pruning criterion as well as a
more faithful shape reconstruction. The key idea
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Figure 7: Effect of the area-based pruning on the continuous skeleton: when the area of the
protrusion is compared with the area of a single disc, (a), and with the area of the entire shape,

(b).

is that of using the Delaunay triangles while eval-
uating the contributions provided by the Voronoi
vertices that are going to be removed by pruning
(i.e., the vertices from p to ¢, ¢ excluded), and
to use the Delaunay discs when evaluating the
area of the region associated to ¢ and, in gen-
eral, for shape recovery. If the current protru-
sion mapped in the skeleton branch from p to ¢
is significantly overlapped by the Delaunay disc
associated to g, then the branch can be safely
removed; a rather faithful recovery is still pos-
sible, provided that the shape is reconstructed
by using the union of the Delaunay discs rather
than the union of the triangles. The area P of
the protrusion is computed by adding the area of
the Delaunay triangles associated with the skele-
ton vertices from p to ¢, ¢ excluded, while D
is the area of the Delaunay disc associated to
q. The branch is shortened up to ¢ if it results:
P <9 x D. Alternatively, if F denotes the area
of the shape, pruning can be accomplished pro-
vided that P < ¢ x F. In both cases, the value
of v depends on the tolerance in figure recov-
ery. In particular, when comparing P with D,
the value of 9 ranges between 0 (which prevents
any simplification) and 1 (which removes every
branch).

Figure 7 shows the continuous skeleton after ap-
plying the area-based pruning; shape reconstruc-
tion is done by employing the Delaunay discs.
Both the polygonal approximation of the initial
shape and the reconstructed shape (grey region)
are illustrated. In Figure 7a , the area P of the
protrusion is compared with 0 and it is ¥ = 0, 5;
in Figure 7b, P is compared with the area of the
entire shape and it is ¢ = 0,005,

The computation of the area of the protrusion
is not straightforward in the discrete case, since
the maximal discs partially overlap. Only for
skeletons driven by the city-block and the chess-
board distances (i.e., in case of square-shaped
discs), convenient algorithms have been intro-
duced to compute the area of the union of the
maximal discs [18].
skeletons driven by weighted distances, provid-

For the general case of

ing more rounded discs, an approximated eval-
nation of the protrusion area can be computed
as (R? — r?) x (tana — «), where « is the angle
shown in Figure 8.

Analogously to the continuous case, the areca of
the protrusion can be compared with the area
I of the whole figure, or the area D of the disc
associated with the element ¢. Figure 9, shows
the effect of the area-based criterion on the dis-
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crete skeleton, when the area of the protrusion is
compared with # and the threshold is ¥ = 0, 005.
As before, both the initial shape and the recon-
structed shape (grey region) are illustrated.

Figure 8: The area of the protrusion (dark re-
gion) can be computed in terms of the radii R
and 7, and of the angle a.

Figure 9: Effect of the area-based pruning on the
discrete skeleton.

5 Conclusion

Both the discrete skeleton and the continuous
skeleton suffer for the presence of a pumber of
peripheral branches having a disregardable rep-
resentative power. Removing these unwanted
branches, while leaving as much as possible un-
modified the remaining ones, is a crucial task,

indispensable to effectively use the skeleton for

pattern recognition. Pruning techniques to sim-
plify skeleton structure without altering signifi-
cantly the representative power of the skeleton
have been discussed in this paper.

Pruning is useful not only to remove branches
corresponding to non significant regions, but also
to reduce the effect of rotation. Figure rotation
has a relevant effect on the discrete skeleton, as
far as peripheral branches are concerned, even
if the Fuclidean distance is used for its compu-
tation. Figure rotation may also influence the
position and number of peripheral branches in
the continuous skeleton, depending on how the
sampling points are selected on the boundary.
Different criteria, based on protrusion elonga-
tion, sharpness and area, have been proposed so
as to be able to deal with different problems.
The suggested criteria have been implemented
to prune both the discrete and the continuous
skeleton. If the selected discrete skeleton is com-
puted by using a weighted distance providing a
good approximation of the Euclidean distance,
the obtained results are comparable. Although
the discrete and the continuous skeletons may
be rather different before pruning, they consist
of the same number of branches after pruning
and, in both cases, are adequate to represent the
initial figure.
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