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Abstract

Chamfer distances are widely used in image analysis. One of their major interest
is to approximate the Euclidean distance with integers. Optimizing approximations,
in the 3D case, is done in the litterature but without worrying if the computed masks
actually induce a norm. In that paper, we propose a construction of chamfer masks
in 3D, based on Farey triangulations, which gives constraints on the weightings; by
scanning the whole space of solutions, we compute for each mask, an exhaustive list
of optimal weightings.
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1 Introduction

In image analysis, more precisely in representation and shape description, discrete geome-
try notions such as discrete distances are needed to measure and describe objects contained
in an image. Chamfer distances, also known as weighted distances, are discrete distances
which are widely used for instance when computing reversible skeletons [San94, Att97], to
perform shape splitting, when interpolating two objects, when computing the generalized
Voronöı diagram or when filling holes in surfaces [Akt96].

A discrete distance is positive defined, symmetric and respects the triangular inequality,
and works with integers. The goal is to approximate the Euclidean distance dE with
integers, in a very efficient way both in term of storage and processing time on a whole
image.

If a discrete distance satisfies the homogeneity property on the grid, then it induces a
discrete norm. In most cases, it is not desirable to use a function that is a distance but
not a norm, since this leads to many unpredictable results in applications, such as in
medial axis extraction.

Chamfer distance can be defined in the following way: a chamfer mask is a set of legal
displacements in a neigbourhood, each displacement being weighted by an integer cost;
the chamfer distance between two points is the cost of the path of least cost joining them,
formed with legal displacements in the mask. The notion of lattice is underlying.
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Borgefors popularizes chamfer distances in [Bor84], in any dimension. Afterwards many
optimization methods have been proposed, to approximate the Euclidean distance dE;
the major contribution is due to Verwer in 2 and 3 dimensions [Ver91b]. One can find in
[Thi94] a complete history of chamfer distances, the comparison of different optimization
methods and crossing formulas between them.

Chamfer distances have many advantages, which justify their success in applications.
They are local distances, that is to say, which permit to deduce a distance from the
distances of close neighbours, unlike dE. The computation of the medial axis is also
done by a local test [Thi94]. All computations are done using integer numbers and linear
operations {+,−, <}.
The major attraction is the high speed — and simplicity — of the distance transform
algorithm, due to Rosenfeld [Ros66]. The distance transform, denoted DT, consists in
labeling each object point of an image to its distance to the complementary. The transform
is global, and the Rosenfeld’s algorithm operates in 2 passes on the image, independently
of the thickness of the objects in the image, and of the dimension. The reverse algorithm
allows to recover an object from its medial axis, also in 2 passes.

Verwer shows in [Ver91a] that any chamfer mask induces a distance. On the other hand,
a chamfer mask does not necessarily induce a norm; some conditions must be fulfilled, on
the choice of displacements on one side, and on the choice of associated weights on the
other side.

In 2 dimensions, we have established exact conditions for a chamfer mask to induce a
norm in [Thi94]. For this sake, we have established arithmetic and geometric proper-
ties of chamfer balls, and brought out general structures such as cones and elementary
displacements. These results lie on Farey series, relating to the theory of numbers [Har78].

We study in this paper the chamfer balls in 3 dimensions, which structures are more
complex. Indeed, switching from 2nd to 3rd dimension forces the loss of angular order
between visible points, and the triangulation is no more unique. The construction of 3D
chamfer masks we propose, is lying on Farey sets and Farey triangulations [Gra92].

In §2 we define the work space, the mask, the distance and the chamfer ball; visible
points are introduced in §3 and properties of Farey sets in §4. In §5 we study the ball’s
geometry, the elementary displacements in the influence cones, and we introduce the
notion of equivalent rational ball. The exact constraints for a chamfer mask to induce a
norm are established in §6 by a convexity criterion on the ball. Hence in §7, we compute
the constraints on 3 masks and we discuss in §8 the optimizations on these masks for 2
approximation criteria of dE.

2 Definitions

Our work space is the cubic grid, associated with the fundamental lattice Λ of Z3. The cu-
bic grid implies the symmetry towards planes of axes and bissectrices, called 48-symmetry :
it divides Z3 into 48 sub-spaces (48 = 23.3! with 23 sign combinations and 3! coordinates
permutations), versus 8 octants in Z2. We denote S the 48th of space

S =
{

0 ≤ z ≤ y ≤ x , (x, y, z) ∈ Z3
}

(1)
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and we denote Sn = {(x, y, z) ∈ S , x ≤ n}. In the following, we will mostly represent S
using the projection π (figure 1) :

π : (x, y, z) 7−→
(y
x
,
z

x

)
. (2)
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Figure 1: The 48th of space S (a) and its representation using projection π (b).

By definition of S, the borders of the triangle seen by projection in figure 1.b are the 3
planes passing through O such that z = y, z = 0 and y = x, and the triangle’s interior
is such that 0 < z < y < x (figure 2.a). We take the symmetries σ with respect to the
planes delimiting S, as illustrated figure 2.b:

σ1 : (x, y, z) 7−→ (x, z, y)
σ2 : (x, y, z) 7−→ (x, y,−z)
σ3 : (x, y, z) 7−→ (y, x, z)

σ4 = σ2 ◦ σ1

σ5 = σ3 ◦ σ1

σ6 = σ1 ◦ σ2

σ7 = σ1 ◦ σ3

(3)

(b)

σ3(S)

σ5(S)σ1(S)

(a)

σ7(S)

σ6(S)
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z<
y<
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σ4(S)
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Figure 2: Planes delimiting S (a) and associated symmetries (b) by projection.

Definition 1 (Discrete distance) An application d : E× E→ N is a discrete distance
on E iff ∀ p, q, r ∈ E

1. d(p, q) ≥ 0 positive

2. d(p, q) = 0 ⇔ p = q defined
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3. d(p, q) = d(q, p) symmetric

4. d(p, q) ≤ d(p, r) + d(r, q) triangular inequality

Definition 2 (Discrete norm) Let d be a discrete distance on E. The function n(p) =
d(O, p) is a discrete norm iff ∀p ∈ E

5. n(λp) = |λ|n(p) ∀λ ∈ Z homogeneous

Definition 3 (Weighting) We name weighting M(x, y, z, w) a point (x, y, z) ∈ Z3 as-
sociated with a weight w ∈ N.

A chamfer maskM consists in a neighbourhood centered in O, of size (2N + 1)3, in which
some displacements are authorized and weighted. In other words, M is a 48-symmetric
set of m weightings

M = {Mi(xi, yi, zi, wi) , 1 ≤ i ≤ m } (4)

on which we will add some constraints. We call generator Mg of a mask M the part
M∩ S, from which are deduced all other weightings by the 48-symmetry.

Having a mask M, a path P is a sequence of displacements

P = n1M1 + . . .+ nmMm , ni ≥ 0 ; (5)

the associated cost W (P) of this path is

W (P) =
m∑

i=1

niwi . (6)

Definition 4 (Chamfer distance) The chamfer distance dM between 2 points A and
B is the minimum of the associated costs to all the paths PAB from A to B:

dM(A,B) = min
PAB

W (PAB) . (7)

In the following, we aim at establishing the strict norm conditions from the geometry of
the chamfer ball BM of radius R ∈ N defined as

BM(R) =
{
p ∈ Z3 : dM(O, p) ≤ R

}
(8)

where R is an arithmetical radius, different from the radius in number of voxel. We will
see later that BM is a discrete polyhedron.

3 Visible points

Definition 5 (Visible points) A point P (x, y, z) ∈ Z3 is said visible (i.e visible from
the origin) if no other point of the fundamental lattice is located on (OP ) between O and
P . A necessary and sufficient condition is gcd(x, y, z) = 1 [Har78].
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The gcd of 3 integers can be expressed with the gcd of 2 integers by

gcd(x, y, z) = gcd(x, gcd(y, z)) (9)

in a commutative way; we recall that by definition gcd(x, 0) = x; finally we remark that
if x, y, z are prime and distincts, we have

gcd(xy, yz, zx) = 1 (10)

by (9) without any gcd of two of these terms beeing equal to 1.

We denote Vn the set of visible points of Sn

Vn = { (x, y, z) ∈ Sn : gcd(x, y, z) = 1 } (11)

and we call layer n the subset VnrVn−1 .

Vn can be obtained with a sieve upon the periods of visible points, by scanning Sn on
x, y, z. Visible points are numbered v0, v1, v2, . . . using the lexicographic order of their
coordinates x, y, z ; the points of V4 are named a, b, c, . . ., v in the same order. We give
figure 3 the cartesian coordinates of the points of V4, and in figure 4 we represent the
points of V4 using the projection π.

v0 a (1, 0, 0)
v1 b (1, 1, 0)
v2 c (1, 1, 1)

v3 d (2, 1, 0)
v4 e (2, 1, 1)
v5 f (2, 2, 1)

v6 g (3, 1, 0)
v7 h (3, 1, 1)
v8 i (3, 2, 0)
v9 j (3, 2, 1)
v10 k (3, 2, 2)
v11 l (3, 3, 1)
v12 m (3, 3, 2)

v13 n (4, 1, 0)
v14 o (4, 1, 1)
v15 p (4, 2, 1)
v16 q (4, 3, 0)
v17 r (4, 3, 1)
v18 s (4, 3, 2)
v19 t (4, 3, 3)
v20 u (4, 4, 1)
v21 v (4, 4, 3)

Figure 3: Visible points V4 (number, name, coordinates) grouped by layers of x.

In a chamfer mask, a weighting (x, y, z, w) generates by translation the periods
(2x, 2y, 2z, 2w), (3x, 3y, 3z, 3w), etc. To get the homogeneity property of definition 2,
it is self-evident that a mask should be only formed of visible points.

4 Farey

The Farey series Fn are the increasing sequences of fractions in their lowest terms, be-
tween 0 and 1, whose denominator does not exceed n [Har78]. They are the fundamental
theoretical element on which are lying the properties and norm conditions of chamfer
masks in 2D [Thi94]. Their extension to Q2 are Farey sets [Gra92].

Definition 6 (Farey set) Farey sets F̂n of order n are sets of points
(
y
x
, z
x

)
in their

lowest terms, i.e gcd(x, y, z) = 1, between [0, 0] and [1, 1] whose denominator does not
exceed n.
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Figure 4: Visible points in projection (point • of VnrVn−1 , point ◦ of Vn−1).

So,
(
y
x
, z
x

)
∈ F̂n if x ≤ n, 0 ≤ y ≤ x, 0 ≤ z ≤ x, and if gcd(x, y, z) = 1. Therefore

(x, y, z) ∈ Vn or (x, z, y) ∈ Vn by (11), and from (3) it comes the correspondence between
visible points in Q2 and Z3

F̂n =
{ (y

x
,
z

x

)
: (x, y, z) ∈ Vn ∪ σ1(Vn)

}
. (12)

The application mapping (x, y, z) to
(
y
x
, z
x

)
is the projection π, defined in §2 with (2). For

all point A of Z3 we denote Â = π(A) the corresponding point in Q2. We define +̂ in Q2

by (y
x
,
z

x

)
+̂

(
y′

x′
,
z′

x′

)
=

(
y + y′

x+ x′
,
z + z′

x+ x′

)
. (13)

Given two points Â and B̂ of Q2, we call mediant of Â and B̂ the point Â+̂B̂. From (13)

we see that Â+̂B̂ corresponds to A+B in Z3, that is to say

π(A)+̂π(B) = π(A+B) . (14)

Let (Q,R, S) be a triple of points of Z3. We denote ∆Q,R,S the integer

∆Q,R,S =

∣∣∣∣∣∣

xQ xR xS
yQ yR yS
zQ zR zS

∣∣∣∣∣∣
(15)

which is the signed volume of the parallelepiped (O,Q,R, S) (cf §6.1).
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Definition 7 (regular triangle) A triple (Q,R, S) of points of Z3 forms a regular tri-
angle if ∆Q,R,S = ±1.

If ∆Q,R,S = ±1 then (OQ,OR,OS) forms a base of Z3, but we only focus on the subspace
generated by positive linear combinations of the base vectors, as seen §5.1. Actually, a
regular triangle corresponds to the notion of consecutive points in a Farey serie, and has
the following properties.

Theorem 1 (Minkowsky) The parallelepiped (O,Q,R, S) does not contain any point
of the fundamental lattice of Z3 other than its vertices iff ∆Q,R,S = ±1 [Har78]. A point
is said to be contained in an object, if it is included in its interior, border or vertices.

Therefore, if 3 visible points (Q,R, S) form a regular triangle, then the parallelepiped
(O,Q,R, S) does not contain any other visible point (figure 5).

b ba a

c c

∆a,b,c

= 1
= 1

a d b

c

1 1

1
f j

1

d

f

1

2

e e

e

∆a,b,e

1

= 1

∆b,c,e

Figure 5: Regular triangles (in projection) with visible points. The triple (d, f, e) is not a
regular triangle since ∆d,f,e = 2; in fact, the parallelepiped (O, d, f, e) contains j.

When 3 points are consecutive in a Farey serie, the second point is the mediant of the
two others [Har78]. In Farey sets this is written:

Theorem 2 (Mönkemeyer) Let (Q̂, R̂, Ŝ) be a regular triangle of F̂n. Let P̂ be a point

of F̂n+1, included in the triangle and distinct from the vertices; then P̂ is the mediant of
2 of the vertices [Gra92].

A Farey triangulation denoted F
�

n , also known as Farey net, is the Farey set F̂n, asso-

ciated with a triangulation on points of F̂n, such that all the triangles are regular. The
triangulation in the Farey series is always unique; in a Farey set, it is almost never unique.
A sequence of Farey triangulations is said to be compatible if the triangulation of F

�

n is a
refinement of the triangulation of F

�

n−1.

By the theorem 2 we have a construction process of F̂n+1 from a F
�

n . The figure 6 gives
some examples of compatible triangulations.

5 Geometry of the ball

5.1 Influence Cone

We call cone (Q,R, S) the subspace of S delimited by the planes (O,Q,R), (O,R, S) and
(O,S,Q). A cone (Q,R, S) is said regular if the triangle (Q,R, S) is regular.
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Figure 6: Compatible sequences of Farey triangulations in F̂2.

Theorem 3 If a cone (Q,R, S) is regular, then every point of the cone is reached by a
path starting from O, only formed with the displacements Q, R and S [Rem00].

Every point P of a regular cone (Mi,Mj,Mk) is therefore reached from O by a path
niMi + njMj + nkMk. The cost of this path is W = niwi + njwj + nkwk from definition
(6). The distance dM(O,P ) is W if this cost is the minimum of the costs of every
path reaching P . In this case, only the weightings Mi, Mj and Mk are involved in the
computation of the distance.

Definition 8 (Influence cone) We call influence cone (Mi,Mj,Mk) a regular cone in
which only the weightings Mi, Mj and Mk of the mask are involved in the computation of
the distance from O to any point of the cone.

The notion of influence cone is the expression of the triangular inequality on a weighted
lattice: a path of the influence cone is the “most direct” possible in the lattice associated
with the mask.

5.2 Elementary displacements

In the following, we denote ∆i,j,k = ∆Mi,Mj ,Mk
. We define the discrete gradient (dx, dy, dz)

using the elementary displacements :

Definition 9 (Elementary displacements) We call elementary displacements dx, dy
or dz, the cost of a unit-length displacement along x, y or z, respectively.

Theorem 4 In an influence cone (Mi,Mj ,Mk), the elementary displacements are con-
stant in the whole cone and their values are (see [Rem00]) :

dx =
1

∆i,j,k

∣∣∣∣∣∣

yi yj yk
zi zj zk
wi wj wk

∣∣∣∣∣∣
, dy =

−1

∆i,j,k

∣∣∣∣∣∣

xi xj xk
zi zj zk
wi wj wk

∣∣∣∣∣∣
, dz =

1

∆i,j,k

∣∣∣∣∣∣

xi xj xk
yi yj yk
wi wj wk

∣∣∣∣∣∣
. (16)

Elementary displacements in a cone are obviously to be considered between any two 6-
neighbour points both included in this cone (a cone might not always be 6-connected).

We remark that if ∆i,j,k 6= ±1, i.e (Mi,Mj,Mk) is not a regular triangle, then the ele-
mentary displacements, computed using theorem 4, may not be integers. In the distance
map, displacement values are no more constant but periodical, and theses values can be
found again by average among the period.

In figure 7, we give the computing formulas of the elementary displacements from theorem
4, applied to regular triangles of visible points.
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Triangle dx dy dz
(a, b, c) a b − a c− b
(a, b, e) a b − a e− a− b
(b, c, e) e− c b + c− e c− b
(a, d, e) a d− 2a e− d
(d, b, e) d − b 2b − d e− d
(b, f, e) b + e− f f − e f − 2b
(f, c, e) e− c f − e 2c− f

Figure 7: Elementary displacements in regular triangles.

5.3 Discrete polyhedron

An important corollary of theorem 4 is that the intersection of an influence cone with its
ball BM(R) is

x dx+ y dy + z dz ≤ R (17)

which is the equation of a discrete half-space, whose normal is (dx, dy, dz). If a partition
of the mask’s generator in influence cones exists, then the chamfer ball is a discrete
polyhedron.
Such a partition corresponds to a Farey triangulation of the mask’s weightings by defini-
tion. In part §6, we determine from a given Farey triangulation, the exact constraints to
be satisfied on the mask’s weights, so that the triangulation will correspond to the actual
influence cones.

5.4 Equivalent rational ball

Given a mask M = {Mi(xi, yi, zi, wi) }, we consider the integer R =
∏

k wk , and we
define the points M ′′

i = R
wi
Mi . For every i we have

R

wi
=

∏
k wk
wi

=
∏

k 6=i
wk (18)

which is an integer, thus M ′′
i is a period of Mi ; since dM(O,Mi) = wi by definition, we

have
dM(O,M ′′i ) =

∏

k 6=i
wk . dM(O,Mi) =

∏

k 6=i
wk . wi = R . (19)

Let us consider now the ball BM(R) defined by (8). Every point M ′′
i belongs to the ball,

since by (19) its distance to O is exactly R. This means that M ′′
i is a border point of the

ball in the direction (O,Mi):

Theorem 5 For every weighting Mi of the maskM, the point M ′′
i is the last point of the

ball BM(R) on the line (O,Mi).

The ball is a discrete polyhedron based on the influence cones, therefore the points M ′′
i are

the vertices of the polyhedron. The coordinates of the points M ′′
i are

(
R
wi
xi,

R
wi
yi,

R
wi
zi
)

.

The geometry of the ball remains the same while changing the arithmetical radius R. It
is therefore interesting to take this radius back to 1 to simplify computations.
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Definition 10 (Equivalent rational ball) We call equivalent rational ball B ′M the ball

with vertices M ′
i

(
xi
wi
, yi
wi
, zi
wi

)
in Q3.

6 Norm conditions

We want to establish the exact conditions for a chamfer mask to induce a norm. Our
strategy is based of theorem 6, which gives the norm condition under a geometrical aspect.

Theorem 6 A function is a norm iff its ball is convex, symmetric and homogeneous
[Ber78].

By construction, every chamfer mask is symmetric towards the origin, so the chamfer
ball is symmetric. In the previous section, we showed that the chamfer ball is a discrete
polyhedron. We will now make this polyhedron convex and homogeneous, from a local
convexity criterion between two faces of the polyhedron, and then from the gathering of
these local convexities inside a Farey triangulation.

6.1 Signed volumes

Let P,Q,R, S be points of Z3; we denote δp(P,Q,R, S) the signed volume of the oriented

parallelepiped, defined by the vectors
−→
PQ,

−→
PR and

−→
PS,

δp(P,Q,R, S) =

∣∣∣∣∣∣∣∣

xQ xR xS xP
yQ yR yS yP
zQ zR zS zP
1 1 1 1

∣∣∣∣∣∣∣∣
; (20)

The trihedron (
−→
PQ,
−→
PR,
−→
PS) is right-handed if δp(P,Q,R, S) > 0, left-handed if δp < 0;

the points P,Q,R, S are coplanar iff δp = 0.

6.2 Local convexity criterion

We will establish the local convexity criterion between 2 faces of the chamfer ball in term
of constraints on the weights wi. The key point of the reasoning is to go back to the
equivalent rational ball B ′M (cf §5.4).

The weightings of a chamfer mask M being Mi(xi, yi, zi, wi), the vertices of B ′M are

M ′i

(
xi
wi
, yi
wi
, zi
wi

)
. We denote δ′i,j,k,l = δp(M ′i ,M

′
j,M

′
k,M

′
l ) and ∆i,j,k = δp(O,Mi,Mj,Mk).

We choose 4 weightings Mp, Mq, Mr and Ms of M, defining 2 oriented regular triangles
(Mp,Mq,Ms) and (Mq,Mr,Ms). Two triangles are said to be locally convex on B ′M if
δ′p,q,r,s ≥ 0. Factoring the 1

wi
, we have

δ′p,q,r,s =
1

wpwqwrws

∣∣∣∣∣∣∣∣

xq xr xs xp
yq yr ys yp
zq zr zs zp
wq wr ws wp

∣∣∣∣∣∣∣∣
, (21)
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whose expansion with respect to last line gives

δ′p,q,r,s =
1

wpwqwrws
(wp∆q,r,s − wq∆r,s,p + wr∆q,s,p −ws∆q,r,p) . (22)

The local convexity condition δ ′p,q,r,s ≥ 0 is then written by (22):

Theorem 7 (Local convexity criterion) Let (Mp,Mq,Ms) and (Mq,Mr,Ms) be 2 ori-
ented regular triangles. The local convexity criterion between the 2 corresponding faces on
the ball, denoted LCC(Mp,Mq,Mr,Ms), is

wp∆q,r,s − wq∆r,s,p + wr∆q,s,p − ws∆q,r,p ≥ 0 . (23)

6.3 Global convexity and homogeneity

Consider a 48-symmetric chamfer mask M, whose generator is formed of visible points,
and a Farey triangulation of these points.

The global convexity is obtained with a LCC system between all couples of adjacent
triangles where at least one of them is interior to S. If in the couple, one of the triangle
is exterior, then it is symmetric to the interior triangle.

The theorem 7 translates the LCCs in a system of constraints on the weights. If the mask’s
weightings satisfy this system, then the facetization of the ball is convex. Moreover, the
facetization of the ball (i.e the splitting into influence cones) corresponds by construction
to the Farey triangulation of the beginning, and so every triangle of the triangulation
defines its own influence cone.

We deduce by §5.3 that the chamfer ball is a convex discrete polyhedron made of influence
cones. Since the influence cones are homogeneous, the theorem 6 is satisfied and the mask
actually induces a norm.

The choice of a Farey triangulation guarantees that every corresponding cone is regular. If
a LCCs system is established for a triangulation which is not Farey, then the elementary
displacements may not be constant in some cones (homogeneity is lost), in particular
when the determinants are not divisible by ∆i,j,k in (16). In this case, the corresponding
face is not delimited by a discrete plane, but is for instance jagged, or presents a light
concavity.
To conclude, the construction of the generator of a chamfer mask is done in four steps:

1. take a set of visible points in S;

2. choose a Farey triangulation of these points;

3. determine the LCCs system;

4. compute weights satisfying the LCCs.

7 Constraints

In this section, we apply theorem 7 to some small masks, so as to obtain norm constraints.
In §8, we will optimize the weightings with respect to these constraints. Given a visible
point v, we denote vi = σi(v); for instance b2 stands for σ2(b).
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7.1 Constraints for the mask (a, b, c)

The Farey triangulation of the mask (a, b, c) is unique in S. To make the ball convex
and homogeneous, it is sufficient to satisfy the local convexity criteria (LCCs) from §6.2
between the face (a, b, c) and the 3 other adjacent faces, as in figure 8-T1.

When a triangle (q, r, s) is on the border of S, it is adjacent to its symmetric (q, s, ri)
towards the border. We note that if the edge (q, s) is changed to the edge (r, ri), another
triangulation is obtained, named co-triangulation, which is “astride” S. Sometimes the
co-triangulation is still a Farey triangulation; but adjacent faces are not the same for the
LCC. This phenomenon is illustrated figure 8 with the T2 triangulation.

We extract from figure 8 the quads on which to apply the LCC; the order of the points is
significant, the sign depends on it. Then we apply theorem 7 to compute the constraints
on weights, and this gives the table of figure 8.

c2

a3a a b

c c

(T1) (T2)
b4

b5

b

b1 b1

(a3, a, b, c) b ≤ 2a
T1 (b1, a, b, c) a + c ≤ 2b

(c2, a, b, c) b ≤ c
(b4, a, b, b1) a ≤ b

T2 (a, b, c, b1) 2b ≤ a + c
(b5, b, c, b1) 2c ≤ 3b

Figure 8: The 2 triangulations and the norm constraints for the mask (a, b, c).

7.2 Constraints for the mask (a, b, c, j)

The mask (a, b, c, j) is very attractive: indeed, the Farey triangulation of the mask is
unique in S (figure 9-T1), but each of its three triangles is on a border; we have therefore
the choice between edges (a, b) or (j, j2), (b, c) or (j, j3), (c, a) or (j, j1): there is a total of
8 different triangulations (figure 9-T8).

Nevertheless, we observe that none of the triangles (a, j2, j), (j2, b, j), (b, j3, j), (j3, c, j),
(c, j1, j), (j1, a, j) is a Farey triangle; so no one co-triangulation is Farey, and the T1 trian-
gulation is the unique Farey triangulation of the mask.

The theorem 7 is applied for the T1 triangulation as depicted figure 9. One remarks that
the LCC on edges (a, j), (b, j) and (c, j) is expressed by the sole LCC(c, a, b, j). Finally, one
sees that if the 4 weights are substitued by their Euclidean distance, the T8 triangulation
is obtained, and the T1 constraints are no more satisfied.

7.3 Constraints for the mask (a, b, c, e)

While looking for a better approximation of dE (see §8.4), it becomes evident that refining
the mask (a, b, c) using e is far more interesting than using j.
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(T1) (T8)

a b

c

j

j2

j3

a b

c

j2

j3
j

j1 j1

(j2, a, b, j) a + 2b ≤ j
T1 (j3, c, j, b) 3b + 2c ≤ 2j

(j1, a, j, c) 3a + 3c ≤ 2j
(c, a, b, j) j ≤ a + b + c

Figure 9: Triangulations and norm constraints for the mask (a, b, c, j).

The triangulation T1 of the mask (a, b, c, e) is unique in S (figure 10-T1). Considering the
symmetries towards the borders, there is a total of 4 different triangulations (for instance
figure 10-T4); but only T1 is Farey.

Applying the theorem 7 on the T1 triangulation gives the table of figure 10. One should
notice that the LCCs on both edges (a, e) and (e, c) gives the same inequality.

e3 e3

cc

e6

(T4)

e

e7

(T1)

b1

e2

b

e2

e

aba

(e2, a, b, e) a + b ≤ e
(e3, b, c, e) b + 2c ≤ 2e

T1 (b1, a, b, e) e ≤ 2b
(b1, e, b, c) e ≤ 2b
(a, e, b, c) e ≤ a + c

Figure 10: Triangulations and norm constraints for the mask (a, b, c, e) .

8 Optimization

8.1 Relative error and scale factor

One of the chamfer mask’s interest is the possibility to approximate at will the Euclidean
distance dE. First, we choose a weighting mask, which determines the computational load,
but also restricts the approximation; once fixed the mask, we compute weights in order
to optimize a criterion. Other needs are to be considered: for instance, it is interesting to
choose small weights, to be able to keep distance maps of greater objects; so we bound to
255 the weight of a.

The error relative to dE is computed by taking back dM to a scale factor ε; this error is
therefore 1

ε
dM − dE. Generally ε = a is taken, because this gives a coherent definition of

level intervals within a distance map; but a real value may also be choosed to get closer to
dE. The error must be normalized by dE to preserve the isotropy of the measure. Finally,
the relative error is

G =
1
ε
dM − dE
dE

, (24)
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and G is optimized for every point of S. In every point, dM can be computed from the
influence cones and their elementary displacements. But it is far simpler to generate DT g

(fast distance transform from O in S, detailled in [Rem00]) and to compute the relative
error G on a sufficient part of DT g. Thus, the minimal τmin and maximal τmax relative
errors are computed. The error rate is τa = max(|τmin|, |τmax|).
The real scale factor which enables to get the error back to the mean of the interval
|τmax − τmin| is denoted εopt. It is proved in [Thi94] that

εopt = a

(
τmin + τmax

2
+ 1

)
(25)

and that the corresponding error rate τopt is

τopt =
a

εopt
(τmax + 1) − 1 . (26)

The most frequent optimization criteria in publications rely on τa and τopt [Thi94]. For-
mulas (25) and (26) enable to get back to Verwer’s results in [Ver91b].

8.2 Optimization for the mask (a, b, c)

Constraints computed in §7.1 on the 2 different possible triangulations are equivalent to

T1 : a ≤ b ≤ 2a , b ≤ c ≤ 2b − a ;
T2 : a ≤ b ≤ 2a , 2b− a ≤ c ≤ 3

2
b . (27)

Using the following algorithm, it is possible to generate every possible mask

for a = 1 . . . 255, for b = a . . . 2a, for c = b . . . 3
2

b (28)

giving 4.218.943 different masks. The optimization consists in generating each mask,
computing for each one the error rates and keeping each mask which do better than the
previous ones. The results of the optimization process using respectively the τa and τopt
criteria are given in figure 11 and figure 12. The triangulation is indicated in the 4th

column like in (27); an = means that c = 2b − a, i.e that faces (a, b, c) and (a, c, b1) are
coplanar.

It is interesting to note that the best rates are almost always reached by values of a about
20, and that beyond, the gain is quiet small, or even null. The τa criterion tends to center
the error interval τmin . . . τmax around 0, while the τopt criterion tends to get τmin back to
0.

8.3 Optimization for the mask (a, b, c, j)

Constraints computed in §7.2 on the unique Farey triangulation T1 are equivalent to

T1 : a ≤ b ≤ 2a , b ≤ c ≤ 2b− a ,

max(a + 2b, 3b+2c+1
2

, 3a+3c+1
2

) ≤ j ≤ a + b + c . (29)
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a b c T τmin τmax τa τopt εopt
1 1 1 = −42.26497 0.00000 42.26497 26.79492 0.78868
1 2 2 1 0.00000 41.42136 41.42136 17.15729 1.20711
2 2 3 2 −29.28932 6.06602 29.28932 20.00000 1.76777
2 3 3 1 −13.39746 11.80340 13.39746 12.70167 1.98406
3 4 5 = −5.71910 10.55416 10.55416 7.94457 3.07253
5 7 8 1 −7.62396 9.54451 9.54451 8.50259 5.04801
7 9 11 = −9.27353 7.85478 9.27353 8.62534 6.95034
10 13 16 = −8.07612 8.62780 8.62780 8.32899 10.02758
12 16 19 1 −8.58621 8.33333 8.58621 8.47048 11.98483
17 22 27 = −8.49206 8.30560 8.49206 8.40667 16.98415
22 29 35 1 −8.14882 8.42194 8.42194 8.27408 22.03004
29 38 46 1 −8.42030 8.26934 8.42030 8.35112 28.97811
34 45 54 1 −8.30319 8.38289 8.38289 8.33972 34.01355
39 51 62 1 −8.21611 8.34656 8.34656 8.27594 39.02544
51 67 81 1 −8.30319 8.33517 8.33517 8.31785 51.00815
56 73 89 1 −8.24255 8.33413 8.33413 8.28454 56.02564
68 89 108 1 −8.30319 8.31131 8.31131 8.30691 68.00276
85 111 135 1 −8.30319 8.30560 8.30560 8.30430 85.00102

Figure 11: Optimal masks (a, b, c) for the τa criterion in %.

Using the scanning algorithm as (28) with the bounds (29), we are able to generate every
possible mask. Due to the high number of masks, we restrict a to 200. The result of the
optimization process using τopt criterion is given figure 13. This table does not include
the masks where j = a + b + c, which are actually (a, b, c) masks.

8.4 Optimization for the mask (a, b, c, e)

The greatest error relatively to dE is reached for a point on the plane (O, a, c), thus it is
much more interesting to refine (a, b, c) using the mediant of a and c, which is e, rather
than j. In fact, table 14 demonstrates a better τopt (around 4 % vs. 6%). The constraints
computed in §7.3 for the unique Farey triangulation T1 are equivalent to

T1 : a ≤ b ≤ 2a , b ≤ c ≤ 3
2
b , max(a + b, b+2c+1

2
) ≤ e ≤ min(a + c, 2b) .

(30)

8.5 3D views and conclusion

We give in figure 15, the balls BM(R) using different chamfer masks. The sphere (a) is
the ball B3,4,5(54), which faces (a, b, c) and (a, c, b1) are coplanars. The sphere (b) is the
ball B19,27,33(342), which is a T1 triangulation from figure 8, and performs one of the best
τopt of figure 12.

The sphere (c) is the ball B11,16,19, j=45(198); it illustrates the T1 triangulation from figure
9, and performs one of the best τopt for the mask (a, b, c, j), giving τopt = 5.99710 %. The



54 Eric Remy and Edouard Thiel

a b c T τmin τmax τa τopt εopt
1 1 1 = −42.26497 0.00000 42.26497 26.79492 0.78868
1 2 2 1 0.00000 41.42136 41.42136 17.15729 1.20711
2 3 3 1 −13.39746 11.80340 13.39746 12.70167 1.98406
2 3 4 = 0.00000 22.47449 22.47449 10.10205 2.22474
3 4 5 = −5.71910 10.55416 10.55416 7.94457 3.07253
4 6 7 1 0.00000 14.56439 14.56439 6.78789 4.29129
7 10 12 1 −1.02567 12.48583 12.48583 6.38962 7.40111
11 16 19 1 −0.27586 13.18091 13.18091 6.32055 11.70978
12 17 21 1 0.00000 13.34559 13.34559 6.25538 12.80074
19 27 33 1 0.00000 13.00479 13.00479 6.10540 20.23546
26 37 45 1 −0.07399 12.85394 12.85394 6.07573 27.66139
41 58 71 1 −0.01983 12.80151 12.80151 6.02559 43.62024
183 259 317 1 0.00000 12.82262 12.82262 6.02503 194.73270
198 280 343 1 −0.00510 12.81414 12.81414 6.02382 210.68094
224 317 388 1 0.00000 12.81876 12.81876 6.02332 238.35701
239 338 414 1 0.00000 12.81197 12.81197 6.02032 254.31030

Figure 12: Optimal masks (a, b, c) for the τopt criterion in %.

a b c j τmin τmax τa τopt εopt
8 12 14 33 0.00000 13.19231 13.19231 6.18799 8.52769
11 16 19 45 −0.27586 12.44834 12.44834 5.99710 11.66949
15 22 26 62 0.00000 12.74356 12.74356 5.99011 15.95577
26 37 45 107 −0.07399 12.58660 12.58660 5.95757 27.62664
30 43 52 123 0.00000 12.64475 12.64475 5.94642 31.89671
41 58 71 168 −0.01983 12.59174 12.59174 5.93285 43.57724
56 80 97 230 0.00000 12.60586 12.60586 5.92921 59.52964
153 217 265 627 −0.00142 12.60205 12.60205 5.92824 162.63948

Figure 13: Optimal masks (a, b, c, j) for the τopt criterion in %.

weighting j enables a finer (and more aesthetic) triangulation of the sphere, but does not
really improve the error rate in comparison with the mask (a, b, c).

The sphere (d) is the ball B7,10,13,e=18(189), giving τopt = 4.6396%. Sphere (d) illustrates
our strategy to enhance the approximation while limiting computational load: choose a
refinement of the mask using a Farey mediant close to the direction of the maximal error
relatively to dE. This way, after adding e to (a, b, c) to get (a, b, c, e) mask, the next step
is to add d, giving (a, b, c, d, e) mask.

Experimentally, tables show that the computed error rates converge to Verwer’s optimal
theoretical rates (see [Ver91b]), but with chamfer masks actually inducing norms. We
notice that convergence is so fast that it is sufficient to use small values for a.
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a b c e τmin τmax τa τopt εopt
3 4 5 7 −5.71910 5.40926 5.71910 5.57281 2.99535
5 7 9 13 −1.00505 9.54451 9.54451 5.05878 5.21349
7 10 12 17 −1.02567 8.79676 8.79676 4.72752 7.27199
7 10 13 18 0.00000 9.73065 9.73065 4.63960 7.34057
10 14 18 25 −1.00505 8.16654 8.16654 4.42727 10.35807
12 17 21 30 0.00000 8.65337 8.65337 4.14725 12.51920
17 24 30 42 −0.17316 8.30560 8.30560 4.07373 17.69126
24 34 42 59 0.00000 8.40723 8.40723 4.03404 25.00887
41 58 71 101 −0.01983 8.36292 8.36292 4.02353 42.71033
41 58 72 101 0.00000 8.36292 8.36292 4.01363 42.71440
53 75 92 130 0.00000 8.32724 8.32724 3.99719 55.20672
58 82 101 142 −0.04956 8.26104 8.26104 3.99142 60.38133
82 116 143 201 0.00000 8.30383 8.30383 3.98640 85.40457
111 157 193 272 0.00000 8.29265 8.29265 3.98125 115.60242
140 198 243 343 0.00000 8.28610 8.28610 3.97823 145.80027
169 239 293 414 −0.00088 8.28180 8.28180 3.97669 175.99738

Figure 14: Optimal masks (a, b, c, e) for the τopt criterion in %.
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