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Abstract

Medial axis, also known as centres of maximal disks, is a representation of a shape, which is useful for image de-
scription and analysis. Chamfer or weighted distances are discrete distances which allow to approximate the Euclidean
distance with integers. Medial axis extraction for chamfer distances is discussed in the literature, but only for simple
cases. The principle is to use local tests and look-up tables. In this paper, we give an algorithm which computes for any
chamfer distance in 2D or 3D, the look-up table and, very important, the neighbourhood to be tested. © 2002 Elsevier

Science B.V. All rights reserved.
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1. Introduction

In a digital shape &, a disk is maximal if it is
not completely covered by any single other disk in
the shape. The medial axis MA of & is the set of
centres of maximal disks; an example is given in
Fig. 1. If the radii of the disks are kept, MA is a
reversible coding of %; it is a global representa-
tion, centred in &, allowing shape description,
analysis, simplification or compression (see Ro-
senfeld and Kak, 1982). One attractive solution to
detect MA is to use a distance transform, denoted
DT. In a distance transform on %, each pixel is
labelled with its distance to the background; it is
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also the radius of the largest disk in ., centred on
the pixel. The shape of MA depends on the dis-
tance function used. The detection of MA has been
studied in the literature on some distance trans-
forms; the algorithms are tailored to each case.
Rosenfeld and Pfaltz (1966) have shown for the
basic city block and chessboard distances d,; and ds
that it is sufficient to detect the local maxima on
DT. For chamfer distances using the 3 x 3 neigh-
bourhood, such as d; 4, Arcelli and Sanniti di Baja
(1998) proved that some labels have to be lowered
on the DT before identifying the local maxima; but
their solution cannot be extended to larger neigh-
bourhoods. Borgefors (1993) presented a method
to extract MA for the distance ds7,;, using a look-
up table. A partial look-up table was also given in
(Borgefors et al., 1991) for the Euclidean distance
dg. The principle is general: the look-up table gives
for each distance value the minimum value of the
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Fig. 1. Medial axis with circles.

neighbours which forbids a point to be in MA. The
remaining problem is to compute the look-up table
associated with a distance function.

In this paper, we present an efficient algorithm
which computes the look-up table for any chamfer
distance in 2D or 3D. Moreover, we show that the
local neighbourhood to test can be completely
different from the chamfer mask. Our algorithm
computes the neighbourhood of the look-up table,
and certifies that this neighbourhood is sufficient
up to a given radius. We recall in Section 2 some
basic notions and definitions. In Section 3 we
study the existing methods to extract MA. We
present and justify in Section 4 our method to
compute both the look-up table and the neigh-
bourhood. Finally results are given in Section 5 in
the 2D and 3D cases.

2. Basic notions
2.1. Maximal disks

The medial axis transform (MAT) is an image
representation scheme proposed by Blum (1967).
The essential idea was to find a minimal set of
upright squares whose union corresponds exactly
to a shape .%. Pfaltz and Rosenfeld (1967) have
introduced the notion of maximal disks in &
(named “‘maximal neighbourhoods). They have
shown that the union of the maximal disks is a
covering of . The families of disks they have
considered are the distance balls from d; and ds
(lozenges and squares).

The definition of maximal disk can be extended
to any family of disks with a radius and a centre
such that any centre is included in its disk, and the
disk of radius 0 equals its centre. For instance,
Jenq and Sahni (1992) have developed sequential

and parallel algorithms to compute MAT with
rectangular disks; geometric properties are ex-
tracted in (Wu et al., 1986; Cordella and Sanniti di
Baja, 1989).

A maximal disk can be included in the union of
other maximal disks; so the covering by maximal
disks, which is unique by construction, is not al-
ways a minimal covering. Minimizing the set of
maximal disks while preserving reversibility can be
interesting for compression. Davies and Plummer
(1980) have worked on iterative algorithms with dg
on the hexagonal grid. More recently, Nilsson and
Danielsson (1997) have presented an algorithm
with dg in 2D, with a relation table for the pixel
coverage on the border of the disks. Borgefors and
Nystrom (1997) have described a comparable
method for di in 2D, and for chamfer distances in
2D and 3D.

Sanniti di Baja and Svensson (2000) have in-
troduced the notion of maximal geodesic disks in a
surface. They present a distance transform for
surfaces in 3D images. It is used to identify the set
of centres of maximal geodesic disks, with the
criterion of local maxima. The method is shown
for the 3D distances ds, dy and ds45.

The medial axis is a powerful tool in image
analysis; while it is a reversible coding, centred in
the shape, it is often not thin and disconnected.
Further treatments are generally applied to
achieve shape analysis. In this way, the medial axis
is an important step for weighted skeleton com-
putation (see Sanniti di Baja and Thiel, 1996) and
implicit surface reconstruction (see Mari and Se-
queira, 2000).

2.2. Chamfer distances

Chamfer distances can be defined in the fol-
lowing way: a chamfer mask ¢ is a set of vectors,
each of them associated with an integer weight
(also called “‘local distance”). The chamfer distance
dc between two points is the cost of the path of
least cost joining them, only formed with vectors
of the mask.

Borgefors (1984) has popularized chamfer dis-
tances in any dimension. Afterwards, many opti-
mization methods were proposed to approximate
the Euclidean distance dg; a major contribution is
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due to Verwer (1991a) in two and three dimen-
sions. A comparison of different optimization
methods and transformation formulas between
them can be found in (Thiel, 1994). More recently,
new results have been obtained in 3D (see Borg-
efors, 1996; Remy and Thiel, 2000) and in 4D (see
Borgefors, 2000).

Chamfer distances have many advantages,
which justify their success in applications. They are
local distances, i.e. they permit to deduce a dis-
tance from the distances of close neighbours, un-
like dg. All computations are performed on
integers using elementary operations {+, —, <}. As
we will see, the computation of the medial axis can
also be done by local tests. The major attraction is
the high speed — and simplicity — of the distance
transform algorithm (DT), due to Rosenfeld and
Pfaltz (1966). The DT is global, and operates in
two scans on the image, independently of the
thickness of the shape in the image, and of the
dimension. The reverse distance transform (RDT)
allows to recover a shape from its medial axis, also
in 2 scans.

2.3. Distances and norms

Let E be 7> or Z°. Consider a function
d: E x E — N and the properties

d(p,q) =0 Vp,q €E, (1)

definite: d(p,q) =0 < p=gq Vp,q€E, (2)

positive:

symmetric: d(p,q) =d(q,p) Vp,q €E, 3)
triangle inequality:

d(p,q) <d(p,r) +d(r,q) Vp,q,r €E, 4)

translation invariant:

dip+r,q+r)=d(p,q) Vp.q,r€E, (5)
homogeneity:
d(p,2q) = || -d(p,q) Vi€ Z, Vp,q€E.
(6)

The function d will be called a discrete distance if it
satisfies (1)—(4), and a discrete norm if it satisfies
(1)~(6). The direct ball B; and the reverse ball B}

of centre p € E and radius » € N are the sets of
points

Ba(p,r) ={q € E:d(p,q) <r}, (7)
B, (p,r) ={q € E:r—d(p,q) >0}, (8)

which are central-symmetric if d is a distance. An
important property is that the balls are convex if d
is a norm.

Any chamfer mask induces a discrete distance
(see Verwer, 1991a, p. 20). On the other hand, a
chamfer mask does not necessarily induce a dis-
crete norm; some conditions must be fulfilled on
the choice of vectors of .# ¢ in one side, and on the
choice of associated weights on the other side.
Having a norm is important in applications for the
homogeneity in DT, the convexity of the chamfer
balls and to ensure that any shortest path is
monotonic. We have established exact conditions
for a chamfer mask to induce a norm in 2D (Thiel,
1994) and in 3D (Remy and Thiel, 2000).

Borgefors (1996, 2000) has established criteria
of validity for another notion, called regularity.
Kiselman (1996) has compared the regularity and
the notion of norm (called “positively homoge-
neous subadditive function”). While the two no-
tions are very close, we point out that norm
implies regularity, but not the contrary (homoge-
neity on the grid is not guaranteed).

2.4. Weightings and generator

Our workspace is the cubic (resp. square) grid,
associated with the fundamental lattice A of Z°
(resp. Z*). The cubic grid is symmetric with respect
to planes of axes and bisectors; these planes divide
7? into 48 cones (48 = 23 - 3! with 23 sign combi-
nations and 3! coordinates permutations) versus 8
octants in Z>. We call 48-symmetry (resp. 8-sym-
metry) this set of symmetries, and we denote the
48th of space (resp. 8th of plane) represented in
Fig. 2 by:

1

glzz{(x,y)elzz0<y§x}, 9)
and

1

RZ3:{(x,y,z)€Z3:O<z<y<x}. (10)
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Fig. 2. The regions {7 and £7°.

In the following, we use equally 17* or L7°, de-
pending on the context (2D or 3D), as they rep-
resent the same notion; for instance, 2D figures use
17> whereas the text and the algorithms use £7°.

We call weighting M = (3,w) a vector U=
(x,,2) € Z* associated with a weight w € N*, also
denoted W[v]. In our workspace, a chamfer mask
M 1s a 48-symmetric set of m weightings

Mc = {M;(xi,y1,zi,wi), 1 <i<m}. (11)

The generator ¢ of a mask .#c is the part
McNL7’, from which are deduced all other
weightings by the 48-symmetry. The cardinal of
A 1s denoted by mg. Given a vector ¥ in .#¢, we
name ¥ the corresponding vector in .#% by the 48-
symmetry.

When defining chamfer norms, each weighting
(x,y,z,w) generates by translation the periods
(2x,2y,2z,2w), (3x,3y,3z,3w), etc. For the sake
of efficiency during DT, it is self-evident that
A% should only be formed of points such that
gcd(x,y,z) = 1. The points having this property
are said to be visible from the origin (see Hardy
and Wright, 1978, Chapter 3). The set of visible
points of ﬁf can be obtained with a sieve upon
the periods of visible points by scanning ﬁf
on x,y,z. Visible points are named a,b,c,...
in the sieve order; we also denote by a,b,c,...
their corresponding weights, following Borgefors,
since no confusions may arise between directions
and weights. We give Fig. 3 the Cartesian co-
ordinates of the first visible points in ﬁZ?
Properties of the choice of visible point sub-
sets in a chamfer mask are studied in (Remy and
Thiel, 2000). Chamfer distances are named us-
ing their constituent weights, e.g. d71013e-18 re-
fers to the mask .#% ={(a,7), (b,10), (c,13),
(e, 18)}.

oo 5150
b (1,1,0) i (372’0)
c|(1,1,1) ; (3’271)
d|(2,1,0) k (3?2,72)
el LT3 5 0)
fFlzn) | (3.3.2)

Fig. 3. First visible points in 3D.

3. Existing methods to extract MA
3.1. Local maxima

After the DT, each shape point p is labelled to
its distance DT[p] to the background. DT|p] is also
the radius of the largest disk in the shape, centred
in p, which is by definition of DT and (8), the re-
verse ball B;!(p, DT[p]).

Let ¥ be a vector of the mask .#c. The point
p + U is deeper inside the shape than p (see Fig. 4)
if DT[p + 6] > DT|p|. Because of the definition of
the chamfer distances, the greatest possible value
of DT[p + t] is DT|[p] + W[v]. If this happens, then
the point p propagates to p + ¥ the distance in-
formation during the DT. We deduce that the disk
centred in p + ¥ completely covers the disk centred
in p (see Fig. 4), thus p € MA.

On the contrary, if p does not propagate any
weighting, then p is called a local maximum. Such a
point verifies

DT[p+7] < DT[p| + W[§] V5 € 4, (12)

which we name local maximum criterion (LMC).
The set of points detected by the LMC includes the
MA by construction. Rosenfeld and Pfaltz (1966)
showed that for the basic distances such that a = 1

Fig. 4. Balls inside the shape.
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(dy and dg in 2D, dg, dig and d In 3D), the LMC
set is exactly the MA.

The LMC set is no more the MA from the
moment that a > 1, since the LMC detects the
MA plus erroneous points, which are not centres
of maximal disks. The LMC set is still reversible;
but the erroneous points are generally numerous,
in particular close to the border of the shape,
and they make the LMC set completely unusable
for applications. The detection of erroncous

points comes from the presence of equivalent
disks.

3.2. Equivalent disks

Two disks of radii r and # are equivalent if the
sets of pixels B;(O,r) and B;(O,r) are the same
(even if the labels of the pixels on the DT are
generally different). The equivalence class of a disk
is the interval of radii for which the disks are
equivalent to it. The conductor y is the lowest ra-
dius from which the cardinal of all the equivalence
classes is 1, i.e. from which all the disks are dif-
ferent. The computation of the conductor y is re-
lated to the Frobenius problem (see Sylvester,
1884; Hujter and Vizvari, 1987). It is obvious that
if a=1 then y = 1. The equivalence class of the
single pixel reverse ball is [1..a], hence y > a.

The LMC checks in (12) the difference between
disk radii; this test is biased by the equivalence
classes. Thus, the LMC is inadequate if at least one
of the radii is lower than or equal to y, which
happens on the DT if a > 1.

Arcelli and Sanniti di Baja (1998) showed in the
2D case for 3 x 3 masks that it is sufficient to bring
down each value on the DT to the lowest term in
its equivalence class; then the LMC is exact on the
modified DT. For instance, d;4 simply needs to
bring each 3 down to 1 and each 6 down to 5.
Their method is inappropriate for masks greater
than 3 x 3 in 2D and 3 x 3 x 3 in 3D, because of
the appearance of influence cones in chamfer balls
(see Borgefors, 1993; Thiel, 1994). Nacken (1994)
showed how to compute the medial axis for the 2D
distance ds 71, with mathematical morphology; but
his approach is rather complex and cannot be
easily extended to larger masks of either higher
dimensions. Arcelli and Frucci (1992) have used a

medial axis for ds;;;, but they do not details to
how they identify the medial axis.

3.3. Look-up tables

The most general and efficient solution in the
literature is the method of the look-up tables
(LUT), which stores the corrections to the LMC.

A shape point p is a maximal centre if there is
no other shape point ¢ such that the ball
B;'(¢,DT[g])  entirely  covers the  ball
B;'(p, DT[p]). The presence of ¢ forbids p to be an
MA point. Suppose that (i) it is sufficient to search
¢ in a local neighbourhood of p and (ii) that we
know for each DT[p] the minimal value DT[g],
stored in a look-up table Lut, which forbids p in
direction ¥ = pq .

(1) The local neighbourhood of vectors to be
tested is denoted by .4, and is 48-symmetric. The
generator of .#y, is denoted by .#%, Given
¥ € M1y, we name ¥ the corresponding vector by
the 48-symmetry in .5 .

(i1) The minimal value for p and ¥ is stored in
Lut[v][DT[p]]. Because of the 48-symmetry, it is
sufficient to store only the values in .#% ; hence
the minimal value for p and ¥ is accessed using
Lut[#*][DTp]].

Finally we have the following criterion:

peEMA < DT[p+7
< Lut[#|[DT)p]] V&€ My (13)

The first use of LUT is due to Borgefors et al.
(1991) for dg in 2D. The look-up table is computed
via an exhaustive search; the complexity is huge,
but the computations are done once for all. The
table is given for radii less than v/80. Afterwards,
Borgefors (1993) has given the look-up table
for the 2D distance ds;;;, whose entries differ
from the LMC for radii less than y = 60; but
she did not generalize her look-up table compu-
tation method.

In a previous work, Thiel (1994) has proposed
an efficient algorithm to compute the LUT for any
chamfer mask in 2D, assuming that .4, = 4.
But he pointed out that for large masks, erroneous
points are still detected, which cast doubt over the
validity of the whole method.
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We have recently discovered that the assump-
tion .41 = M actually is false. In fact, the two
masks often completely differ, and we propose in
the following, a correct and efficient algorithm
which computes both .#, and Lut in 3D. Our
method is immediately applicable to the 2D case
by skipping any reference to z (and also to the 4D
case by adding a fourth coordinate ).

4. Proposed method to compute Lut and .4/
4.1. Starting point

The computation of an entry Lut[#][r] in the
look-up table for » = DT|p| in direction ¥ con-
sists in finding the smallest radius R of a ball
B;'(p+7,R) which completely covers B;'(p,r)
(see Fig. 4). One can find R, as illustrated in
Fig. 7, by decreasing the radius R, while keeping
the ball B;'(q,R,) covering the ball B;'(p,r),
where ¢ = p+ ¥ = p — ¥ by symmetry. Unfortu-
nately, each decreasing step needs a prohibitive
RDT. To avoid this, we introduce the following
lemma which links the results of DT and RDT,
i.e. balls and reverse balls. From (7) and (8) we
have:

Lemma 1. B,(p,r) =B, (p,r +1).

While the sets are the same, it is important to
note that the resulting labels have different values
on DT and RDT, as shown in Fig. 5. Lemma 1 is
the starting point of our method: we will show that
it is sufficient to compute the DT in ﬁl’% only once
at the beginning and to test all the coverings on the
resulting image.

(a)

Fig. 5. Difference of labeling between (a) By, (6) and (b)
Bl(6+1).

d34

4.2. Cone transform

We restrict to distances defined by a norm, as
presented in Section 2.3, and whose triangulation
is a refinement of triangle (a,b,c) (see also Remy
and Thiel, 2000). Thus, all the considered balls
are (iii) convex and (iv) 48-symmetric and such
that (v) if r; <r, then B;(O,r)) C B;(O,r,); we
have also (vi) all paths involved in distance
computation of d(0, p), where p € 4'—823 , remain in
+7°. Hence with (iii)—(vi), we can limit the cov-
ering test by restricting the two balls to ﬁZ"%,
which gives Fig. 7.

We denote CT®, the image resulting from the
cone transform, which gives for any point of éZ3
its distance from the origin (see Fig. 6(a)). The CT*
can be obtained for any chamfer norm satisfying
(vi), using the fast algorithm given in Fig. 9; it
computes CT® in a single scan and only using .#%..

4.3. Computing an entry of Lut

The covering of the ball B;'(q,R;) over
B;'(p,r) can be tested by simply scanning CT¥;

1411 7 5

21 18 14 10 5

0 5 10 15 20 25| |28 25 20 15 10 5
(a) (b)

Fig. 6. Difference between (a) CT® and (b) DT computed on
Bds.7.11 (27) n ézz‘

Fig. 7. Covering test on two balls restricted to éZz.



E. Remy, E. Thiel | Pattern Recognition Letters 23 (2002) 649-661 655

Fig. 8. Translated covering test on CT%.

moreover, the smallest radius R can be read in CT?
during the scan. We propose to translate both
B;'(p,r) and B;'(q,R) to the origin as shown in
Fig. 8. We scan each point p; of B;'(0,r)NL2Z°,
which by translation of vector ¥ gives p,. Values
d(O,p) and d(O, p,) are read in CT®. We have

R= max{d(O,pz) ‘P =p+ T,

pi €B,'(0,r) ﬂ41823} (14)

SO

1
R = max {d(O,pl + ) :p € B,'(0,r) 0@23}

(15)

This process can be efficiently implemented (see
Fig. 10), because all the covering relations (r, R) in
a direction #* can be detected during the same scan
(lines 2-7). To remain in the bounds of the CT®
image, the x scan is limited to L — v¢¥ — 1 (where v¥
is the x component of #¥). For each point p;, we
look for the corresponding radius »; which is
CT¢[p;] +1 by Lemma 1. Then we look for the
radius 7, of the ball passing via the point p,.
Its value is CT*[p,]+1=CT¢p, +1¥]+1 by
Lemma 1. During the scan, we keep in Lut[t¥][r]
the greatest value found for r,, which at the end, is
R by (195).

At this stage, our algorithm gives a set of local
covering relations, which stands for a partial or-
dering on the covering of balls. One can observe in
Lut, cases where r, <r, while Lut[z®][r,] >
Lut[v*¥][r,], which means that the ball covering
B;'(O,r,) is bigger than the ball covering B!
(O, ). But any dc is a distance function (see Ver-
wer, 1991a, p. 20), and thus for any dc, the property
(v) in Section 4.2 holds. We therefore correct the
table by assuming that in this case, Lut[t%][r,]
should at least equal Lut[t¥][r,], building this way a
compatible total order (Fig. 10, lines 8-10).

4.4. Computing M1y

We now focus on the computation of the set of
weightings .5 ., which gives by symmetry .#/y,.

Procedure ComputeCT? ( L, M%, CT9 ) ;

CT9](0,0,0)] =

forr=1to L—1,for y=0to z, for =0 to y do

{

1

2

3

4 min = 400 ;
5 for each
0

7

8

(ml’ y/7 Z/>

9 in MY do

(x,y,2)— 09

if («/,y,2) € Z° and CTg[( "y 2]+ WD < min
9 then min = CTI(2',y, 2 )} W@ ;
10 }
11 CT9(x,y,z)] = min ;
12}

Fig. 9. Fast cone distance transform algorithm. Input: L the side length, .#% the generator of the dc mask. Output: CT* the L* distance

image to the origin.
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Procedure ComputeLutCol ( CTY, L, 09, Ryaz, Lut[v9] ) ;

{
r=CT9(x,y,2)]+1;
ry = CTo((x . )+ 79 +1;

}

’I”b:O;
for r, =0 to R, do

SO oY CuA o 09

~

for r =0 to Ryq, do Lut[09][r] =0 ;
forr=0to L—-v—1,for y=0to z,for z=0to y do

// Initializes Lut[0] to 0

// radius of the ball where p; is located

// same for po

if r1 < Ryar and 1o > Lut[v079][r1] then Lut[79][r1] = ro;

if Lut[09][r,] > 1 then r, = Lut[0"][r,] else Lut[v9][ra) =14 ;

Fig. 10. Lut column computation algorithm. Input: CT® the cone, L the side length, #* the direction of the search, R, the greatest
radius value to be verified in Lut. Output: the column Lut[t¢] is filled with the correct values.

Let us assume that a given set .#§ , is sufficient
to extract correctly the MA from any DT image
whose values does not exceed Rgpown. 1This means
that .#%, enables to extract, from any ball
B,(O,R) where R < Rinown, @ medial axis which is
by definition the sole point O (the origin). At the
beginning, .3, is empty and Rgnown = 0.

So as to increase Rgnown tO RTarget, WE Propose to
test each ball B,(O,R), where R > Rknown, €ach
time extracting its DT and then its MA, until
whether R reaches Rraget O @ point different from
O is detected in the MA of B,;(O,R). If R reaches
Rrarger, then we know that .#§ , enables to extract
the MA correctly for any DT containing values
lower than or equal to Rryue. Thus this value
Rrarger must be kept as the new Rgnown-

On the contrary, if one extra point p is found in
MA during the scan, then .#% , is not sufficient to
properly extract the MA, since by construction
B4(O,R) covers B! (p, DT[p]). In this case we use:

Lemma 2. Adding the weighting (p, CT¢|pl) in 45,
is necessary and sufficient to remove p from the M A
of the ball B;(O,R).

Proof. The current .#% , is validated until R — 1,
thus it enables to find all the direct balls covering
B;'(p, DT[p]) of radii lower than or equal to R — 1.
So, the only direct ball which is not tested is the
only ball of radius R: B;(O, R) itself. This ball is in
direction pO from p and must be searched by
MY, to remove p. Since .y, is symmetric,

B,(O,R) is detected by adding FI; in its generator,
ie. by adding the weighting (p,CT¢[p]) in
M. O

After having added the weighting, we compute
the corresponding new column in Lut. Then, we
ensure that this new mask is sufficient to remove p.
This is a consistency test of the Lut column com-
putation algorithm in Fig. 10, because we know
that the new mask is correct. Failing this test may
only come from the impossibility to construct a
Lut column enough restrictive to remove p. In this
case, there are no possible .#f , and Lut for this
distance.

Once p has been removed, we resume the scan
for current R. Other extra points p may be detected
sequentially, each time giving a new weighting and
Lut column. The computation of .#5 , is finished
when R reaches Rrarge-

Finally, if the chosen distance satisfies (iii)—(vi)
in Section 4.2, and if a sufficient .#%, exists for
any given Rrage, then our algorithm computes it
with its corresponding Lut. If not, this means that
the whole method of the LUT of Section 3.3 is
incorrect for this distance, which is also detected
by our algorithm. Note however that if any of
(iii)—(vi) does not hold, results are unpredictable.

4.5. Related algorithms

The full algorithm presented in Fig. 11 uses two
other algorithms given in Figs. 12 and 13. They are
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Procedure ComputeAndVerifyLut(MZ, LMY ., Rknown, R Target, Lut);
1 ComputeCT9(L, M%, CTY) ;

2 for each 79 in MY, do ComputeLutCol(CTY, ©'9, Ryapger, Lut ) ;
3 for R = Rgnown + 1 to Rrygger do

4 A

5 for xt=0toL—1,fory=0to z, for z=0to y do

6 if OT9(x,y,2)] <R

7 then DTY[(z,y,2)] =1

8 else DT9((z,y,2)]=0; // Copy Ba(R) N 7P to DT?
9  ComputeDT9I(ME, L, DTY) ;

10 forr=1toL—1,fory=0to z, for z=0to y do

11 if DTY((x,vy,2)] # 0 and IsMAY((x,y, z), MY, Lut, DT9) then
12

18 M = (z,y,2,CT(x,y, 2)]) : // Build a new weighting M
14 MG = MG, U{M} // Add M to MY, and Lut
15 ComputeLutCol(CTY, L, (z,y, 2), Rrarget, Lut[(z,y,2)] ) ;

16 if IsMAY ( (z,y,z), M{,,, Lut, DTY ) then error ;

17 }

18}

Fig. 11. Full Lut computation algorithm with determination of .45 . Input: .#¢ the generator of the chamfer mask, L the side length
of the images, .44, the generator of the Lut neighbourhood, Rgnown the last verified radius, Rryeec the maximum radius to be verified.
Output: Lut the look-up table, Rraree: the new verified radius. At first call, .41, and Rgnown must be set to ( and 0, respectively. On
successful exit, Rgnown Must be set to Rraree to memorize that the new .4, is valid until Rryree(

Procedure ComputeDT9 ( MY, L, DTY ) ;

1 forz=L—-1to0,fory=L—-—1toz,forxz=L—1toydo
2 if DT9[(z,y,z)] # 0 then
3
4 min = 400 ;
5 for each v'9 in MY, do
o
7 (Y, ) = (z,y,2) + + 0
8 if 2’ < L and DTY[(«',y/,2)] + W[TY] < min
9 then min = DTY[(«/,y/, )] + W[T7] ;
10 }
11 DT9(z,y, z)] = min ;
12 }

Fig. 12. Fast distance transform in ‘Z3 Input: .#% the generator of the dc mask, L the side length, DT® the shape (limited to 123)
Output: DT® the distance map to the border of the shape.

adapted versions of the distance transform and rithms are only correct when assertions (iii)—(vi) in
medial axis extraction, whose average time is 482 Section 4.2 hold.

times shorter: they work on 1Z3 with the genera- Note that the computation of DT (Fig. 11, line
tors /¢ and 5, of the masks using a single 9) is mandatory, since the MA is extracted from

scan. As for the computation of CT*, these algo- the DT to the background. In fact, a simple
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Function IsMAY ( p, M{,,, Lut, DT9 ) ;

1 for each 77 in MY , do
2 if p— 09 € L7 then
3 it DTY[p—

4 return true ;

U9 > Lut[v9][DTYp]] then return false ;

. 173
// Test only in ;57

i

Fig. 13. Fast extraction of MA points from B; N ﬁZ? Input: p the point to test, .45, the generator of the Lut neighbourhood, Lut the
look-up table, DT? the distance transform of the section of the ball. Output: returns true if point p is detected as MA in DT?.

threshold on image CT?® to the radius R gives only
the B,(O,R) NkZ set, but not the correct DT la-
bels (see Fig. 6, where values of (a) differ from (b)).

5. Results

We give in Figs. 14-17 some LUT computed
with our algorithm in 2D and 3D. A sample usage
of look-up table using formula (13) and the first
line of Fig. 14 is: a point valued 5 on DT is not an
MA point, if it has at least a a-neighbour greater
than or equal to 6 or a b-neighbour greater than or
equal to 8 or a c-neighbour greater than or equal
to 12. We show in the tables only the values which
differ from the LMC (i.e. Lut[®][r] # r + W[v¥],
see (12) and (13)), and thus which represent the
irregularities. The tables are also compressed by
showing only the radii » which are possible in DT;
they may be detected in a single scan on CT®.

We give in Fig. 14 the result of our algorithm on
the well-known 2D distance ds 7 1;. Values in Fig. 14

R|a b c||R|la b c||R

516 8 12|21 27 38 44
711 12 17(125|28 30 34|39

10(12 15 19|27 33 40(44

11 17 28 34 42 48
14(17 19 231(29|33 46 52
15(19 30|34 49 55
16 22 31 37 53 59
18]22 23 28|32 38 60 66
20|23 26 30((35|39 41 45

Fig. 14. %, 45, and Lut for the 2D distance ds ;.

a=(1,0,14)
b=(1,1,20)

g __ Pt
Me= c=(2,1,31)
d=(3,1,44)
a=(1,0,14)
b=(1,1,20)
s} c=(2,1,31)
Miu=9\ 4= (3.1,44)
2c=(4,2,62)
i=(5,2,75)

Fig. 15. 4% and 475, for the 2D distance dja 2031 44

are different from (Borgefors, 1993) because we
compute the smallest radius in each equivalence
class, instead of the greatest. Since all disks are
equivalent between these two radii, the two tables
must be understood as identical.

Fig. 15 shows the differences between .#% and
MF,, which caused the errors observed in (Thiel,
1994, p. 81) when using the 2D distance d420 31 44
from Borgefors (1986). One must notice the pres-
ence of point 2c which is not a visible point, and
thus would not have appeared in .#% as seen in
Section 2.4.

The 3D distances used in Figs. 16 and 17 are
optimal norms for dg approximation (see Borgef-
ors, 1984; Verwer, 1991b; Remy and Thiel, 2000).
Fig. 16 shows some examples of Lut arrays for 3D
distances where .#¢ = 45 ,,. We give in Fig. 17 a
full example of both the computed mask .5, and
the Lut array for distance di ,19j-45. One must
notice the difference between .#¢ and .#§ , and, as
in Fig. 15, the presence of a non-visible point (3e).

While the computation of the Lut array in
Fig. 10 is very fast (less than a second '), the

' On a PC/Linux-2.2.16 PentiumIII 650 MHz.
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d3as d19,27,33
R|a b ¢ Rla b c||R|a b c||[R|a b c
314 5 6 19(20 28 34 || 76 | 93 101 107{|111]129 137 143
27139 47 53 || 79| 96 104 110||114|132 140 146
33|47 55 61 || 81|99 107 113||117]134 142 148
a,7.9=9,=10 38|53 61 67 || 84 |101 109 115122140 148 154
Rja b c d e 46|58 66 72 || 87 |105 113 119]|125|143 151 157
415 7 8 10 11| [52|66 74 80 || 90 {107 115 121||130|148 156 162
619 10 11 14 15| |54|72 80 86 || 92 |110 118 124||135|153 161 167
7110 57|74 82 88 || 95 |113 121 127||141|159 167 173
8|11 60|77 85 91 || 98 |115 123 129|144 |162 170 176
9 14 15 65|80 88 94 [|103|120 128 134|149|167 175 181
12|15 17 18 20 21| |71|86 94 100||106|124 132 138|168 |186 194 200
16/19 73191 99 105|]108{126 134 140
d7,10,13,e:18
ds45e=7 Rla b c e||Rla b c e||[Rla b c el||lR|c
Rla b ¢ e| |78 11 14 19{]20(26 29 32 37||28 40 38|50
314 5 6 &]||10[15 18 19 26(|23|29 32 34 40||30|36 39 42 47|/43|55
4 8 13|18 21 24 29/|24|29 33 45 46|58
6|8 14|19 25 37 34140 48|60
7 11 17122 25 27 33|26 37 35 47 56|68
18 29 27|33 36 47

Fig. 16. Examples of Lut for 3D distances for which .#¢ = .45 .

computation of .#% , in Fig. 11, involving its
verification, is slower, and its result should thus be
saved for further usage. Computing the .#5 , takes
41s! for the 3D distance di1619j-45 for L =100
and from Rgnown = 0 t0 Rrarger = 1066. This load is
explained by the systematic test of 1066 balls
B,(O,r). Each of them involves computations
(CT® and MA extraction) on O(r*) points. It is
therefore much more interesting to use chamfer
distances with small weight values of a since this
gives fewer balls to test and thus a faster result. In
this scope, in most cases, it is interesting to com-
pensate for the quality loss in dg approximation by
more weightings in .#%.. For example, the extrac-
tion of .5, for distance d710124=16e=17 fOI
L =100 from Rknown = 0 t0 Rrarger = 685 is faster
(29s"), while achieving a better approximation of
dg. Another way to reduce computation cost is to
test only once each equivalent ball. But in the case
of many chamfer distances, the gain is not no-
ticeable since equivalent balls only appear for
small radii where the verification is fast.

6. Conclusion

The computation of the medial axis (MA) from
a distance transform (DT) is detailed for any
chamfer norm in 2D and 3D. The MA extraction
process using LUT was already published with
tables corresponding to some common distances
(de and ds711), but no general method to compute
them was given. We introduce the new mask .4,
which stores the test neighbourhood used during
the MA extraction. We present and justify an ef-
ficient algorithm which computes both Lut and
M1y for any chamfer norm satisfying assertions
(iii)—(vi) in Section 4.2, in 2D or 3D (and higher
dimensions with minor changes). Our algorithm
certifies that ./, is sufficient up to a given ball
radius. We give results for various chamfer norms
proposed in the literature.

Our experimentations show that generally
speaking, the neighbourhood .#, to test is
completely different from the chamfer mask .Zc.
This is not surprising because .#y, comes from
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) )

,0
0>
1
1

)
Lut —

) )

l\.’))il—‘o

1
1
1
45

a=(1 1)
b=(1 6) g
c=(1 9)
i=G, )

) )

Rlabcf k d 3 j||R]|a

b ¢ f k d 3¢ j||R|Kk

11112 17 20 36 50 28 91 46 || 66
16|23 28 31 46 61 39 102 57 || 67

22|31 36 39 55 69 46 110 65 || 71
27|34 39 42 57 72 50 113 68 | 72
30139 44 46 62 76 55 117 73 || 73
32|42 46 50 65 80 57 121 76 || 74 |84
33 81 121 75
35|45 50 53 68 83 61 124 79 || 76
38146 52 55 71 84 62 125 81 || 79
41150 55 58 74 88 66 129 84 || 80
43|53 57 61 76 91 68 132 87 || 81

19128 33 36 52 65 44 106 62 || 70 |80 84 88 103 118 95 159 114|/111|145

90 109 101 121|155
110 124|158
113 127161
95 114 106 130|164

44 62 78 91 132 82 100 116 129 170 137|171
45 79 83 117 1401174
48|57 62 65 81 95 73 136 91 || 85 (95 100 103 119 133 111 174 129||143|177
49 97 136 86 101 120 112 146|180
51|61 66 69 84 99 77 140 95 | 88 122 149|183
52|62 100 78 140 89 123 156]190
54|64 68 72 87 102 79 143 98 | 92 110 126 140 181 159|193
95 103 144 93 141 182 162|196
o6 90 95 129 165|199
o7 91 96 122 1751209
59|69 74 77 93 107 84 148 103|| 98 132 178|212
60 78 94 107 148 99 133 1941228
61 95 101 135

63|73 78 81 97 110 89 151 107|102 136

64 79 98 90 104 122 138 152 193

84 100 114 155 105|139
101 108|142

119 159 114{148

106 117(151

91 107 121 162 118|152
122 100 163 120|154

129 170 133|167

Fig. 17. .4}, and Lut for the 3D distance d 16,19 j-ss-

inclusions of discrete chamfer balls. The geometry
of the borders of these balls is rather irregular,
which makes the analysis of inclusions much more
complicated than in the continuous case. Even if we
can reasonably conjecture that .#y, = .#c for
3x 3 and 3 x 3 x 3 neighbourhoods, a further
work needs to be done to get a better understand-
ing of the discrete phenomenons involved, and to
find arithmetical rules, if any. For instance, some
masks have a finite set of irregularities (see Section

5); finding an upper bound, i.e. the greatest radius
where an irregularity occurs, would limit the veri-
fication process; its computation could be related
to the notion of conductor y (see Section 3.2).

7. Electronic appendix

Some more examples and program sources
(in C language) to compute Lut and .#5, for
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dimensions 2, 3 and 4 are available at http://
www.lim.univ-mrs.fr/~thiel/PRL2001/ or http://
www.dil.univ-mrs.fr/~thiel/PRL2001/
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