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Abstract

Medial Axis (MA), also known as Centres of Maximal Disks, is a useful representation of a shape for image description and analysis.

MA can be computed on a distance transform, where each point is labelled to its distance to the background. Recent algorithms allow one to

compute Squared Euclidean Distance Transform (SEDT) in linear time in any dimension. While these algorithms provide exact measures, the

only known method to characterise MA on SEDT, using local tests and Look-Up Tables (LUT), is limited to 2D and small distance values

[Borgefors, et al., Seventh Scandinavian Conference on Image Analysis, 1991]. We have proposed [Remy, et al., Pat. Rec. Lett. 23 (2002)

649] an algorithm which computes the LUT and the neighbourhood to be tested in the case of chamfer distances. In this article, we adapt our

algorithm for SEDT in arbitrary dimension and show that results have completely different properties.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Blum [2] proposed the medial axis transform (MAT),

which consists in detecting the centres of the maximal disks

in a 2D binary shape. Following Pfaltz and Rosenfeld [12], a

disk is said to be maximal in a shape S; if it is not completely

covered by any single other disk in S: The medial axis MA

of S is the set of centres and radii of maximal disks in S; an

example is given in Fig. 1. Pfaltz and Rosenfeld have shown

that the union of maximal disks in S is a covering, thus MA

is a reversible coding of S:

MA is a global representation, centred in S; allowing

shape description, analysis, simplification or compression.

While MA is often disconnected and not thin in Z
n; further

treatments are applied to achieve shape analysis. In this

way, MA is an important step for weighted skeleton

computation [20]. A maximal disk can be included in the

union of other maximal disks; so the covering by maximal
0262-8856/$ - see front matter q 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.imavis.2004.06.007

* Corresponding author.

E-mail addresses: eric.remy@up.univ-mrs.fr (E. Remy),

edouard.thiel@lim.univ-mrs.fr (E. Thiel).
1 http://www.iut-arles.up.univ-mrs.fr/eremy/
2 http://www.lim.univ-mrs.fr/wthiel/
disks, which is unique by construction, is not always

minimal. Minimising this set while preserving reversibility

can be interesting for compression, see Refs. [4,6,11].

One attractive solution to detect MA is to use a distance

transform, denoted DT. In a distance transform on S; each

pixel is labelled with its distance to the background; it is also

the radius of the largest disk in S; centred on the pixel. A

reverse distance transform (RDT) allow recovering the

initial shape from MA.

Rosenfeld and Pfaltz have shown in Ref. [17] for the city

block and chessboard distances d4 and d8, that it is sufficient

to detect the local maxima on the DT image. For chamfer

(i.e. weighted) distances using 3!3 masks, Arcelli and

Sanniti di Baja [1] proved that some labels have to be

lowered on the DT before identifying the local maxima; but

their solution cannot be extended to larger masks. Borgefors

[3] presented a method to extract MA in the case of a 5!5

chamfer mask (namely, h5,7,11i), using a look-up table

(LUT). Borgefors, Ragnemalm and Sanniti di Baja had

previously used the same method for SEDT in Ref. [5], but

giving a partial LUT, which cannot be used for radius

greater than
ffiffiffiffiffi
80

p
:

The principle of the LUT is general: it gives for

each radius value read in the DT, the minimum value of
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Fig. 1. Medial axis with circles.

Fig. 2. The generators GðZnÞ for nZ2, 3 and 4 in projection.
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the neighbours that forbids a point to be in MA. The

problem is to systematically compute the LUT associated

with a distance function, for any radius, and also to compute

the test neighbourhood (which is not necessarily 3!3 as

seen later). In Ref. [15] we have shown an efficient

algorithm which computes both of them for any chamfer

norm in any dimension.

The first Euclidean distance transforms (EDT), proposed

by Danielsson [7] and Ragnemalm [13], give approximate

results, which where improved afterwards by many authors.

Saito and Toriwaki [18] have presented an efficient

algorithm computing exact SEDT (S for Squared) in

arbitrary dimension. Recently, Hirata [9] and Meijster

et al. [10] have optimised this algorithm to linear time

complexity in the number of pixels. Reverse SEDT are

presented in Refs. [6,19].

These exact and fast transforms bring about renewed

interest in MA computation for Euclidean distance. We

present in this article (which is an extended version of

Ref. [16]) an adaptation of Ref. [15], which efficiently

computes the LUT for SEDT in any dimension. Our

algorithm also computes the test neighbourhood, and

certifies that this neighbourhood is sufficient up to a given

radius. We recall in Section 2 some basic notions and

definitions. We present and justify in Section 3 our method.

Results are given in Section 4 in the 2D and 3D cases, and

we finally conclude in Section 5.
2. Definitions
2.1. Generator and grid symmetries

The rectilinear grid of Z
n has a number of natural

symmetries, which we employ to simplify our study. We

denote SGðnÞ; the group of axial and diagonal symmetries in

Z
n: The cardinal of the group is ]SGðnÞZ2nn! (which is

8, 48 and 384 for nZ2, 3 and 4). A subset X of Z
n is said to

be G-symmetrical if for all s2SGðnÞ we have s(X)ZX. We

call generator of X the subset

GðXÞ Z fðx1;.; xnÞ2X : 0%xn%xnK1%.%x1g: (1)

If X is G-symmetrical, the subset G(X) is sufficient to

reconstruct X with the G-symmetries. Fig. 2 shows GðZnÞ

for nZ2 (an octant), nZ3 and 4 (cones).
2.2. Balls and reverse balls

We call direct ball B and reverse ball BK1 of centre

p2Z
n and radius r 2N; the G-symmetric sets of points

Bðp; rÞ Z fq2Z
n : d2

Eðp; qÞ%rg (2)

BK1ðp; rÞ Z fq2Z
n : r Kd2

Eðp; qÞO0g: (3)

Since d2
E is an integer function, balls and reverse balls are

linked by the relation

Bðp; rÞ Z BK1ðp; r C1Þ: (4)

We point out that on DT, the value DT[p] for any shape

point p is the radius of the greatest reverse ball centred in p

inside the shape, namely BK1(p, DT[p]).

2.3. Look-up tables

In the following, we denote MLut a G-symmetric set of

vectors, Mg
Lut ZGðMLutÞ and ~v

gZGð~vÞ for any vector

~v 2MLut:

A shape point p is the centre of a maximal disk if there is

no other shape point q such that the ball BK1(q, DT[q])

entirely covers the ball BK1(p, DT[p]). The presence of q

forbids p to be a MA point. Suppose that it is sufficient to

search q in a local neighbourhood MLut of p. Suppose also

that we know for each DT[p] the minimal value DT[q],

stored in a look-up table Lut, which forbids p in direction

~vZ ~pq: The minimal value for p and ~v is stored in the array

entry Lut½~v	½DT½p		: Because of the G-symmetry, it is

sufficient to store only the relative values to Mg
Lut; hence the

minimal value for p and ~v is accessed using Lut½~v
g
	½DT½p		:

Finally we have the following criterion:

p2MA5DT½pC~v	!Lut½~v
g
	½DT½p		; c~v2MLut: (5)
3. Computation of Lut and MLut for SEDT

3.1. Computing an entry of Lut

The computation of an entry Lut½~v	½r	 in the LUT

for rZDT[p] in direction ~v; consists in finding the

smallest radius R of a ball BK1ðpC~v;RÞ which completely



Fig. 5. Fast cone distance transform. Input: L the side length. Output: CTg

the Ln distance image to the origin for d2
E :

Fig. 3. Balls inside the shape.
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covers BK1(p,r) (see Fig. 3). Since all considered balls are

convex, G-symmetric and ascending by inclusion (i.e. such

that if r1%r2 then B(O,r1)4B(O,r2)), we can limit the

covering test by restricting the two balls to GðZnÞ: One can

find R, as illustrated in Fig. 4, by decreasing the radius RC

while keeping the ball BK1(q,RC) covering the ball BK

1(p,r), where qZpC~vZpK~v
g

by symmetry. A basic

method, using a reverse SEDT for each step, would be

prohibitive. We avoid it by using relation (4), and another

distance image denoted CTg, resulting from the cone

transform in Fig. 5, where each point of GðZnÞ is labelled

with its distance to the origin (see example Fig. 6a).

The covering of the ball BK1(q,RC) over BK1(p,r) can be

tested by simply scanning CTg; moreover, the smallest

radius R can be read in CTg during the scan. We propose to

translate both BK1(p,r) and BK1(q,R) to the origin as shown

in Fig. 7. We scan each point p1 of G(BK1(O,r)), which

by translation of vector ~v
g

gives p2. Values d2
EðO; p1Þ and

d2
EðO; p2Þ are read in CTg. We have

RZmaxfd2
EðO;p2Þ:p2Zp1C~v

g
; p12GðBK1ðO;rÞÞg;so (6)

RZmaxfd2
EðO;p1C~v

g
Þ:p12GðBK1ðO;rÞÞg: (7)

This process can be efficiently implemented (see Fig. 8),

because all the covering relations (r,R) in a direction ~v
g

can

be detected during the same scan (lines 2–7). Let ~v
g
x1 be the

x1 component of ~v
g
; and L be the side length of the CTg

image (chosen sufficiently large, see Section 4.2). To

remain in the bounds of CTg, the x1 scan is limited to

LK~v
g
x1K1: For each point p1, we look for the corresponding

radius r1 which is CTg[p1]C1 by Eq. (4). Then we look
Fig. 4. Covering test on two balls restricted to GðZ2Þ:
or the radius r2 of the ball passing via the point p2. Its value

is CTg½p2	C1ZCTg½p1C~v
g
	C1; by Eq. (4). During the

scan, we keep in Lut½~v
g
	½r1	 the greatest value found for r2,

which at the end, is R by Eq. (7).

At this stage, our algorithm gives a set of local covering

relations, which stands for a partial ordering on the covering

of balls. This ordering is not total since one can observe in

Lut, cases where ra!rb while Lut½~v
g
	½ra	OLut½~v

g
	½rb	; it

means that the ball covering BK1(O,ra) is bigger than the

ball covering BK1(O,rb), which is impossible. Thus, we

correct the table by assuming that in this case, Lut½~v
g
	½rb	

should at least equal Lut½~v
g
	½ra	; building this way a

compatible total order (Fig. 8, lines 8–10).
3.2. Computing MLut

Let us assume that a given Mg
Lut is sufficient to extract

correctly the MA from any DT which values do not exceed

RKnown. This means that Mg
Lut enables to extract, from any

ball B(O,R) where R%RKnown, a MA which is by definition,

the sole point O. At the beginning, Mg
Lut is empty and

RKnownZ0.

So as to increase RKnown to a given RTarget, we propose to

test (lines 3–17, Fig. 9) each ball B(O,R), where RORKnown,

each time extracting its DT (line 9) and then its MA (line 11),

until whether R reaches RTarget, or a point different from O is

detected in the MA of B(O,R). If R reaches RTarget, then we

know that Mg
Lut enables one to extract the MA correctly, for

any DT containing values lower or equal to RTarget. Thus, this

value RTarget must be kept as the new RKnown.

On the contrary, if one extra point p is found in MA

during the scan (line 11), then Mg
Lut is not sufficient to

properly extract the MA, since by construction B(O,R)

covers BK1(p,DTg[p]). In this case we add a new vector ~Op

in Mg
Lut (line 13) and keep R for further usage, see Section

4.2. This vector is necessary and sufficient to remove p from

the MA of the ball B(O,R) because the current Mg
Lut is

validated until RK1; thus it enables to find all the direct

balls covering BK1(p,DTg[p]) of radii lower or equal to

RK1. Hence, the only direct ball which is not tested is the

only ball of radius R, namely B(O,R). This ball is in

direction ~pO from p and must be searched by Mg
Lut to

remove p. Since MLut is G-symmetric, B(O,R) is detected

by adding ~Op in its generator.

After having added the vector, we compute the

corresponding new column in Lut (line 14). Then, we

ensure that this new MLut is sufficient to remove p (line 15).

This is actually a consistency test of the Lut column

computation algorithm of Fig. 8, because we are sure that

the new MLut is correct.



Fig. 6. Appearance of vector (2, 1) in MLut for RZ101 in Z
2: In (a), B(101) is obtained using points %101 from CTg, and gives after SEDT, BK1(104) in (b), on

which MA is extracted. In (c), BK1(65) (in gray) is not overlapped by BK1(80) in direction (1, 0), nor in (d) by BK1(85) in direction (1, 1), but is overlapped in

(e) by BK1(104) in direction (2, 1).
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Once p is removed, we resume the scan for current

R. Other extra points p may be detected sequentially, each

time giving a new vector and Lut column. The computation

of Mg
Lut is finished when R reaches RTarget.

The full algorithm, presented in Fig. 9, uses an adapted

version of MA extraction (see Fig. 10), working on GðZnÞ

with Mg
Lut in a single scan. Note also that the computation

of DTg (function CompSEDTg called Fig. 9, line 9), using a

slightly modified SEDT working in GðZnÞ; is mandatory,

since the MA is extracted from the DT to the background. In

fact, a simple threshold on image CTg to the radius R gives

only the G(B(O,R)) set, but not the correct DTg labels (see

Fig. 6, where values of (a) differ from (b)).
4. Results for SEDT

4.1. Computing costs

While the function d2
E is not a metric (triangular

inequality is not satisfied), its balls respect sufficient
Fig. 7. Translated covering test on CTg.
conditions for the validity of our method (convexity,

G-symmetry and ascending by inclusion). The same can

be applied for discrete functions round (dE), bdEc and ddEe

(successfully tested).

For CompSEDTg (not presented), we have chosen to use

a modified version of the algorithm in Ref. [18], which

provides exact results and can be relatively easily adapted to

GðZnÞ: In particular, backward scans can be suppressed [14,

Section 6.5.2]. Note that SEDT on a ball is the worst case for

the complexity of Ref. [18], and that optimised algorithms

[9,10] are noticeably more efficient for large radii.

The complexity in Z
n of CompSEDTg for a ball of radius

R is O(nRn) with Refs. [9,10] or O(nRnC1) with Ref. [18].

The complexity of CompLutCol is O(Rn) (one scan of GðZnÞ

plus one scan of a Lut column). The complexity of IsMAg,

with a number k of directions to test, is O(kRn) in the worst

case, that is to say, when p is detected as a MA point. Since

this event is seldom, the algorithm returns almost always

early, hence the real cost of IsMAg is negligible. In

CompLutMask, the complexity of one iteration of the main

loop (lines 4–16 in Fig. 9) is thus the complexity of
Fig. 8. Lut column computation. Input: CTg the cone, L the side length, ~v
g

the direction of the search, Rmax the greatest radius value to be verified in

Lut. Output: the column Lut½~v
g
	 is filled with the correct values.



Fig. 9. Full Mg
Lut and Lut Computation. Input: L the side length, Mg

Lut;

RKnown and RTarget. Output: Lut, Mg
Lut and RTarget. At first call, Mg

Lut and

RKnown must be set to :and 0, respectively. After exit, RKnown must be set

to RTarget.

Fig. 11. Beginning of Mg
Lut for Z

2 (appearance rank i, coordinates,

appearance radius R).
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CompSEDTg. As CompLutMask makes radius R increase,

its total cost grows quite fast.

We present the results of our method in 2D and 3D in

Figs. 11 and 12. Computing the Mg
Lut shown Fig. 11 takes

590 s, while computing one corresponding Lut column takes

0.004 s, for LZ400 and from RKnownZ0 to RTargetZ
128 200 (on a Pentium 4 at 2.26 GHz with Debian Gnu/

Linux 2.4.19). This load is explained by the systematic test

of about 26 000 balls. As expected, CompLutCol is very

fast, whereas CompLutMask is much slower, and its

resulting (and compact) Mg
Lut should thus be saved for

further re-usage.

The memory required to store Lut is mRe, where m is the

number of columns in Mg
Lut for R, and e is the size of one

long integer (to store d2
E values). Since R grows with the

square of the radius in pixel of the largest Euclidean ball

tested, the memory cost of Lut becomes important for large

images (for instance the size of the Lut corresponding to

Fig. 11 is 23 MB). In Fig. 13 we have shown the behavior of

the number m of vectors in Mg
Lut according to the

appearance radius in pixels
ffiffiffi
R

p
; up to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3036452

p
z1742

in 2D (left) and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
16384

p
Z128 in 3D (right).

Memory can be saved by storing only possible values

of d2
E: The set of possible values in nD is SZ fx2

1C/C
x2

n%R : xi 2½0::R	g: The Lut entries are then accessed by

Lut½~v
g
	½index½r		; where index is a table of size RC1, built

in a single scan on CTg, which gives for any r2[0.R]
Fig. 10. Fast extraction of MA points from G(B). Input: p the point to test,

Mg
Lut the generator of the Lut neighbourhood, Lut the look-up table, DTg

the distance transform of the section of the ball. Output: returns true if point

p is detected as MA in DTg.
the rank index[r] in S. To express the gain of Lut space in nD

we introduce the fraction d(n,r) of numbers smaller or equal

to r that are expressible as the sum of n squares. Since any

positive integer can be decomposed into sum of four

(or more) squares (Lagrange’s thm., see [8, Section 20.5]),

we have d(n,r)Z1 for nR4. Lagrange also stated that
Fig. 12. Beginning of Mg
Lut for Z

3 (appearance rank i, coordinates,

appearance radius R).



Fig. 13. Behavior of the number m of vectors in Mg
Lut according to the appearance radius in pixels

ffiffiffi
R

p
in 2D (left) and in 3D (right).
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numbers expressible as the sum of three squares are those

not of the form 4a(8bC7) for a,bR0. (see for instance [22]);

therefore limr/Ndð3; rÞZ1K 1
40 C 1

41 C 1
42 C/

� �
, 1

8
Z1K

4
3

, 1
8
Z 5

6
with fast convergence. For nZ2 we have slow

convergences limr/Nd(2,r)Z0 and limr/Ndð2; rÞ
ffiffiffiffiffiffiffi
ln r

p
Z

K; where Kz0.764223653 is known as the Landau–

Ramanujan constant, see Ref. [22]. Accordingly, in 4D or

more, no space can be saved by the use of such indexes. In

3D, a gain of 1/6 may be achieved. In 2D a substantial gain

is obtained: for the Lut corresponding to Fig. 11, about 78%

may be saved, with only 5.1 MB remaining to store.
Fig. 14. Beginning of Lut for Z
2 (radius r, next columns Lut½~v

g
	½r	).
4.2. Extracting medial axis

A sample usage of the Lut given by Fig. 14 and formula

(5) is: a point valued 4 on DT is not a MA point if, following

third entry in table, it has at least a (1, 0)-neighbour R6, or a

(1, 1)-neighbour R9, or a (2, 1)-neighbour R14, etc. As

explained above, the table only shows possible radii r.

In Figs. 11 and 12 are given the vectors of Mg
Lut in 2D and

3D, respectively, and also their appearance radius R during

CompLutMask. Keeping this radius is important because it

allows one to limit the number of directions to test for each

point during whole MA extraction. In a DT where the greatest

value is Rmax, it is necessary and sufficient to take the subset

MRmax

Lut Z fð~v;RÞ2MLut : R!Rmaxg as the test neighbour-

hood to detect all MA points. In fact, CompLutMask guaran-

tees that MRmax

Lut is necessary and sufficient up to RKnownZ
RmaxK1 in CTg (as a radius of direct ball), thus by Eq. (4), up to

Rmax in DT (as a radius of reverse ball). For example in Fig. 11,

if RmaxZ101 on DT, then the test neighbourhood will be

limited to (1, 0)-neighbours and (1, 1)-neighbours.

During CompLutMask, both images CTg and DTg need

to be large enough to contain all tested direct balls, and

especially the greatest one B(RmaxK1). Therefore we use

images of size Ln, where L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rmax K1

p� �
þ 1 is the radius

of B(RmaxK1) in number of pixels.

The extraction of MA from a binary image I can be

divided in the following steps. One must first compute

SEDT, then search Rmax in the resulting DT. Next,

CompLutMask is applied using the Rmax value as RTarget;

this step can be avoided if a sufficient Mg
Lut; computed once

for all, is already stored. The subset MRmax

Lut is then used to
extract MA, which is initialised to shape points. To

minimise memory usage, we propose to allocate only one

Lut column at a time, instead of computing for Rmax and

]MRmax

Lut the whole Lut, which might be very large as seen in

Section 4.1: for each vector ~v
g

in MRmax

Lut ; we overwrite the

previous column using CompLutCol, then reject from MA

all the points which do not fulfill Eq. (5) with the G-

symmetries of ~v
g
: This way, the MA set often decrease

extremely fast at each step.
4.3. On vectors appearance in Mg
Lut

Two reverse balls of radii r and r 0 are said equivalent if

the sets of pixels BK1(O,r) and BK1(O,r 0) are the same.



Fig. 15. Medial axis of a 2D Euclidean ball: computed with MLut limited to (a) the 3!3 neighbourhood; (b) 5!5; (c) 7!7; (d) using MRmax

Lut :
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The equivalence class of a reverse ball is the interval of radii

for which the reverse balls are equivalent. In Z
n; the

equivalence classes are easily obtained by underlining

possible values in DT (i.e. integers which can be written in

sum of n squares); the equivalence class of a possible value

b is {a,.b} where aK1 is the largest possible value less

than b. The first equivalence classes in 2D are {1}, {2},

{3,4}, {5}, {6,7,8}, {9}, {10}, {11,12,13}, etc.

Equivalence classes of size greater than 1 exist in 2D and

3D because the sums of two or three squares do not fill N:

All the balls are different for dimension nR4 because of the

Lagrange’s theorem; we think that this might have

implications over properties of MLut and Lut which are

linked to equivalence classes.

Our algorithm CompLutCol in Fig. 8 gives the lowest

bound of each equivalence class. We remark that the values

published in Ref. [5] correspond to the highest bounds; in

that sense, the two tables must be considered as equivalent.

Fig. 11 also confirms the 3!3 test neighbourhood used in

Ref. [5] for radii less than 80 in 2D, because the third

direction only appears for RZ101.

We illustrate in Fig. 6 the appearance of the direction

(2, 1) in MLut for RZ101 in Z
2: The radius RZ101 of a

direct ball (Fig. 6a) corresponds by Eq. (4) to radius

R 0Z101C1 of reverse ball. Since equivalence class of 102

is {102, 103, 104}, CompSEDTg labels O to 104 (Fig. 6b).

When extracting MA with two test directions (0,1) and

(1,1), the point labelled 65 is detected since its reverse ball is

not completely overlapped by the reverse balls of its
neighbours (Fig. 6c and d), while it is overlapped in

direction (2,1) (Fig. 6e).

Extracting MA using a subset N of MRmax

Lut ; for instance a

(2kC1)n neighbourhood (kO0), provides a superset of MA,

because a number of points, called spurious points, can be

detected, which do satisfy Eq. (5) for N but not for MRmax

Lut :

To illustrate the presence of spurious points, we show in

Fig. 15 in 2D and Fig. 16 in 3D the MA obtained with some

(2kC1)n neighbourhoods on euclidean spheres (in Fig. 15, a

sphere of radius 15,000 corresponding to a diameter of 245

pixels; in Fig. 16, radius 2257 and diameter 99 pixels). By

definition, their exact MA is the origin. Figs. 15 and 16 show

that numerous spurious points are detected when k is small.

In the 3D example, 22% of the original shape points are still

present for kZ1 (3!3!3 neighbourhood Fig. 16 (b)); 6%

of shape points are still present in (c) for kZ2, 1.7% in (d)

for kZ3 and 0.6% in (e) for kZ4.
4.4. Conjecture

Our experiments in 2D and 3D suggest that MLut is not

bound for d2
E; unlike chamfer distances (see Ref. [15]) Fig.

17 geometrically represents the set of vectors in Mg
Lut from

Fig. 11 with their rank of appearance. While layout seems

random, one can note that all MLut points are visible points.

A point (x1,.,xn) is said visible (from the origin) if

gcd(x1,.,xn)Z1; the set of visible points in Z
n is denoted

Vn (see Ref. [21]). When carrying on computation of Mg
Lut

with CompLutMask, all visible points seems to be gradually



Fig. 16. Medial axis of a 3D Euclidean ball (a) computed with MLut limited

to (b) the 3!3 neighbourhood; (c) 5!5; (d) 7!7; (e) 9!9; (f) using

MRmax

Lut :

Fig. 17. Representation of Mg
Lut points (values show appearance ranks,

white squares are visible points, grey squares non-visible).
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detected, while non-visible points never are. We therefore

propose the conjecture:

lim
R/N

MR
Lut Z Vn: (8)

These properties for d2
E are very different from those of

chamfer distances (see Ref. [15]), where MLut are always

bound, Lut are bound in most cases, and non-visible points

may appear in MLut: We think this is linked to the number

of normals of the balls, which is unbound for infinite

Euclidean balls, while bound for chamfer balls.
5. Conclusion

The computation of the MA from the SEDT is detailed

for arbitrary dimension. The principle of MA extraction

using Lut was already published for d2
E in 2D for small

values and 3!3 neighbourhood in Ref. [5], but no general

method to compute them was given. We have introduced the

mask MLut; which stores the test neighbourhood used

during the MA extraction. We showed that, in the general

case, the mask MLut is greater than just the 3n neighbour-

hood. We have presented and justified efficient algorithms

which compute both Lut and MLut for d2
E: Our algorithms

certify that MLut is sufficient up to a given ball radius.

We give a sample Lut table in 2D for comparison with

Ref. [5]. We give two sets of Mg
Lut in 2D and 3D, which

enable a simple MA extraction using only the Lut table

computation algorithm (provided that the greatest radius R

in the image is lower than 128, 178 in 2D and 947 in 3D).

Our experimentations point out that, in the case of d2
E; the

neighbourhood MLut to test is a set of visible points. Unlike

seen in the case of chamfer distances in Ref. [15], this set

seems to grow forever as the radius R of the greatest

possible ball in the image grows. A further work needs to be

done to get a better understanding of the inclusions of

discrete Euclidean balls and to find arithmetical rules.
6. Electronic appendix

Some more examples of medial axes, Lut and Mg
Lut in

several dimensions and program sources (in C language) are

available at

http://www.lim.univ-mrs.fr/wthiel/IVC2004/
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