
Chordal Axis on Weighted Distance Transforms
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Abstract. Chordal Axis (CA) is a new representation of planar shapes
introduced by Prasad in [1], useful for skeleton computation, shape analy-
sis, characterization and recognition. The CA is a subset of chord and
center of discs tangent to the contour of a shape, derivated from Medial
Axis (MA). Originally presented in a computational geometry approach,
the CA was extracted on a constrained Delaunay triangulation of a dis-
cretely sampled contour of a shape. Since discrete distance transforma-
tions allow to efficiently compute the center of distance balls and detect
discrete MA, we propose in this paper to redefine the CA in the discrete
space, to extract on distance transforms in the case of chamfer norms,
for which the geometry of balls is well-known, and to compare with MA.

Keywords: image analysis, shape description, chordal axis, medial axis,
discrete geometry, chamfer or weighted distances.

1 Introduction

Shape description consists in extracting features from a binary image, like area,
width, number of holes, etc. To this purpose, Blum first proposed the notion
of Medial Axis (MA) of a shape S in [2]. Then Pfaltz and Rosenfeld defined
it in [3] as the set of centers of maximal discs in S, a disc being maximal in
S if it is not completely overlapped by any other disc included in S. MA has
become an important tool in image analysis and shape description, because it
is a reversible coding and a global representation, centred in the shape, which
allows to simplify, compress, or compute a skeleton of a shape.

Among several approaches in image analysis, we distinguish : the continuous
approach with analytical pieces of curves, which is in general case difficult to
tackle; the semi-continuous approach, which consists in sampling the contour
of a shape, and then deals with computational geometry in Euclidean space, as
Voronöı diagram, convex hull, etc; the discrete approach, which keeps the shape
bitmap (or sample a continuous shape on the rectilinear grid) in discrete space
Z

n and makes use of discrete geometry, often needing to redefine continuous
properties in discrete ones.

MA has been studied in this three frameworks. A continuous MA is obtained
in [4] with pieces of lines and arcs. The semi-continuous MA is an approximation
of continuous MA, extracted from the Voronöı Diagram of the sampled contour
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(e.g., see [5]). The discrete MA is generally extracted by local tests on a Distance
Transform (DT), which is an image where each shape point is labelled with its
distance to the background.

Working on semi-continuous framework, Prasad proposed in [1] a new repre-
sentation of shapes, called Chordal Axis (CA). The aim was to correct sensitive-
ness to noise in sampled contour for semi-continuous MA. The definition is close
to MA, but has different properties. A Maximal Chord of Tangency (MCT) of
a shape S is a chord of a maximal disc D of S, which separates the boundary of
D into two arcs such that one at least is not tangent to the boundary of S; the
CA is the set of midpoints of the MCTs, plus the set of centers of maximal discs
having at least three MCTs. Prasad then extracted a semi-continuous CA from
a Delaunay triangulation of sampled contour. In order to fix some zigzags in the
result, Prasad introduced in [6] a valuation of certain internal edges, leading to
a shape decomposition process.

We have recently proposed an algorithm for extracting discrete MA from a
DT for any chamfer norm in [7] and for Squared Euclidean Distance in [8]. The
algorithm computes a test neighbourhood and Look-Up Tables and then extracts
the centers of maximal balls for the given distance by local tests on DT. In this
paper we naturally propose to adapt the CA in discrete framework, in the case
of 2D chamfer norms. A chamfer (or weighted) distance is an integer distance
defined by a mask [9]; such a distance allows very fast computation of DT with a
sequential algorithm in two raster scans given in [10,11]. We focus on the masks
inducing a norm, for which the geometry of ball is established (a discrete convex
polyhedron, see [12]).

We recall in Section 2 some basic notions and definitions. We present and
justify our method in Section 3. Results are given in Section 4, and finally we
conclude in Section 5.

2 Definitions

2.1 Chordal Axis

Consider a shape S in R
2 and B a maximal ball in S. Following Prasad in [1], a

chord of B is called a Maximal Chord of Tangency (MCT) if at least one of the
arcs subtended by the chord is free of points of tangency with the boundary of
S. Fig. 1 gives some examples of MCTs.

The Chordal Axis (CA) of a shape is the set of all pairs (p, δ), where p and δ
are either the midpoint and half the length of a maximal chord of tangency, or
the center and radius of a maximal ball which has at least three maximal chords
of tangency. We call α-points the midpoints of MCTs and β-points the centers
of maximal balls having at least three MCTs.

In the continuous domain (see Fig. 1), the CA is generally non-connected,
contrary to the MA. Indeed, the connectedness is broken as soon as a maximal
disc inside a shape contains at least three maximal chords of tangency (MCTs).
However, connectedness may easily be obtained if, in such maximal discs, we
draw a segment from the center of the disc to the middle of each MCT.
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chordal axis

maximal ball

MCT

Fig. 1. Three maximal balls inside a
shape and their MCTs; chordal axis

circumcircle of Delaunay triangle

CAT skeleton

internal edge of the triangulation

Fig. 2. Delaunay triangulation of sam-
pled contour and CAT skeleton

(a) (b) (c) (d)

Fig. 3. Shape of chamfer balls for d4 (a), d8 (b), d〈3,4〉 (c), d〈5,7,11〉 (d)

In [1], Prasad defines the Chordal Axis Transform (CAT) as a semi-continuous
method to extract the CA: he starts with a discrete sample of the boundary of a
given shape S, then calculates the Delaunay triangulation of these points, inside
S. The MCTs of S are approximated by the internal edges of the triangulation
(the edges which are not on the boundary of S). Then a skeleton based on
the semi-continuous CA is constructed by connecting, inside each triangle, the
midpoints of two or three internal edges, depending on the number of edges
lying on the boundary of S. The resulting skeleton (see Fig. 2) is sensitive to the
irregularities of the samples of the contour of S, giving to it angularities. In [6],
a valuation on the edges of the triangulation is proposed in order to delete edges
considered as weak and to smooth the skeleton; or to detect strong edges which
split the object into significant parts, to achieve shape decomposition.

2.2 Chamfer Distances and Norms

Here we recall some results from [12]. A chamfer mask M in Z
n is a central-

symmetric set M = {(−→v i, wi) ∈ Z
n × Z+∗ }1�i�m containing at least a basis of

Z
n, where (−→v i, wi) are called weightings, −→v i vectors and wi weights. The chamfer

distance dM between two points p, q ∈ Z
n is

dM(p, q) = min
{∑

λiwi :
∑

λi
−→v i = −→pq , 1 � i � m, λi ∈ Z+

}
; (1)

it is shown that dM is always a metric. A chamfer ball B of center p ∈ Z
n and

radius R ∈ Z+ is BM(p, R) = { q ∈ Z
n : dM(p, q) � R }.
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Consider M′ = {O + −→v i/wi }1�i�m ∈ R
n and let B′

M = conv (M′), then B′
M

is a central-symmetric and convex polyhedron whose facets separates R
n in cones

from O. A facet F of B′
M is generated by a subset M|F = { (−→v j , wj) }1�j�n of

M; if ΔF = det {−→v j }1�j�n is such that |ΔF | = 1, then F is said unimodular.
If each facet of B′

M is unimodular, then dM is a norm in Z
n (the converse

is a difficult problem). Now let dM be a chamfer norm, F a facet of B′
M and

M|F = { (−→v j , wj) }1�j�n ; then for any point p = (y1, . . . , yn) in the cone (O,F)
we have dM(O, p) = y1 δ1 + · · · + yn δn, where

δk =
(−1)n+k

ΔF
·
∣∣∣∣∣
v1,1 · · · v1,k−1 v1,k+1 · · · v1,n w1
...

...
...

...
vn,1 · · · vn,k−1 vn,k+1 · · · vn,n wn

∣∣∣∣∣
T

(2)

is the elementary displacement for coordinate yk. Moreover, the chamfer ball B

has the same geometry as B′ (up to a scale factor), so
−→
δF = (δ1, . . . , δn) is a

normal vector of facet F .
In Z

2, a common way to denote small masks is 〈a, b〉 = { (1, 0, a), (1, 1, b) }
and 〈a, b, c〉 = { (1, 0, a), (1, 1, b), (2, 1, c) }. Widely used chamfer norms in image
analysis are d4 = �1 = d〈1,2〉, d8 = �∞ = d〈1,1〉, d〈3,4〉 and d〈5,7,11〉, see Fig. 3.

3 Discretization of Chordal Axis

In the following we work in Z
2 with a given chamfer norm dM. Let S be a shape,

a point p of S is called a boundary point if its distance to the complement of
S equals the smallest weight in M. Consider B a ball of dM included in S. A
point p is called a tangency point between B and S if p belongs to B and to
the boundary of S. A tangency zone is a maximal 8-connected set of tangency
points. We exhibit three properties about tangency of discrete balls, then present
our algorithms to generate the discrete CA. Our aim is to generate MCTs which
are meaningful with respect to description and shape analysis.

3.1 Point Threshold

In the discrete domain (see Fig. 4.b), the local intersection between a maximal
ball included in an object and the boundary of this object is seldom a unique
point. Let A and B be two tangency points between a maximal ball and the
boundary of a shape S. The chord [AB] is maximal if one of the two arcs ÂB is
free of points of tangency with the boundary of S. In the continuous case (Fig.
4.a), we have a unique MCT [AB]. In the discrete case (Fig. 4.b), two MCTs
([A1B2] and [A2B1]) appear, because the intersections between the ball and the
shape’s boundary are not single points anymore. Nevertheless only one chord
should characterize this ball, the extra chord being an artefact of the discretiza-
tion. For a given tangency zone, we need to decide whether it is considered as a
point or not. To this end we introduce a point threshold, denoted PTH (in pix-
els). We measure the farthest Euclidean distance d between the tangency zone
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Fig. 4. Maximal Ball in continuous (a) and discrete (b),(c),(d) space
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d

Fig. 5. Application of the point thresh-
old

p1

p2

p3 p4

extension ball

ETH

Fig. 6. Extension ball and protuberances
on the boundary: neglected (p1) and non
neglected (p2, p3 and p4); resulting MCTs

Â1A2 and the chord [A1A2] induced by the extremities of this zone (see Fig. 5).
If d is less then PTH, we contract the tangency zone to a single pixel, located
in the middle of the zone (case (b): one MCT). Otherwise each extremity of the
tangency zone becomes the endpoint of a MCT (case (a): two MCTs).

3.2 Extension Threshold

The local intersection between a maximal ball and the boundary of the shape
may be composed of several non-connected components. E.g. in Fig. 4 (c), we
observe that the discretization of the image splits each tangency zone into two
connected components. The immediate construction of MCTs would lead to the
appearance of two parasitic chords along the boundary of the object. Before
proceeding with the construction of the MCTs, we must determine for each
connected component, which tangency zone it should belong to. An appropri-
ate solution consists in exploring the peripheral domain of the maximal ball,
looking for a path in the boundary of the shape which connects some tangency
components.
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We introduce an extension threshold, denoted ETH. Given a maximal ball
(O, R), we consider the extension ball (O, R + ETH), see Fig. 6. A n-connected
path from p0 to pk is a sequence of points such that pi and pi−1 are n-neighbours
(n = 4 or 8, 1 � i � k); if there exists an 8-connected path of points of the
boundary of the object inside the extension ball which connects two (or more)
tangency components, then we merge these components into a single one.

This peripheral search has another utility: it allows to ignore some noise fea-
tures on the boundary of the shape. Indeed if a protuberance on the border is
small enough to be fully included in the extension ball (p1 in Fig. 6), we will not
generate any MCT at the base of this irregularity (unless the point threshold is
exceeded). Therefore the value of the extension threshold has direct influence on
the level of detail of our analysis. The higher the extension threshold is set to,
the less precise this analysis near the boundary of the shape.

3.3 Radius Increment

In the discrete space, a maximal ball included in an object may not yield any
MCT, as shown in Fig. 4 (d): several points belong to the boundary but our
point threshold reduces the tangency zone to a unique point (there may even
be a single tangency point in some configurations). This phenomenon does not
question our point threshold (which avoids the creation of a parasitic MCT along
the boundary of the object); it is only due to the fact that the working domain
is the discrete grid. The most simple example is the case of an object having an
horizontal or vertical branch with an even width. In this case the maximal balls
inside this branch will only be tangent to one side of the shape (the chamfer
balls are central-symmetrical so their diameter, measured horizontally in pixels,
is odd). No MCT would then appear in such a branch.

We propose to increment the radius of maximal balls with a certain value RI
(Radius Increment), before proceeding with the exploration of their boundaries.
Let a be the smallest weight of the chamfer mask. Then a equals the distance
between two 4-neighbours, and it is sufficient to take RI = a to make certain
that all maximal balls have at least two tangency zones with the boundary of
the shape. However, in most cases, we observe that an increment of value 1 is
enough to ensure that almost all balls have two tangency zones.

3.4 Algorithms to Generate the Discrete Chordal Axis

The three proposed thresholds are independant and in practice, they enable
to generate almost all useful MCTs, and avoid the creation of parasitic chords
(lying along the boundary of the shape or describing noise features of the border).
These thresholds are computed sequentially for each maximal ball, as follows:

1. calculate the new radius of the ball, by adding RI,
2. look for tangency zones in the peripheral region, using ETH,
3. decide for each tangency zone, if it should be contracted to a single point,

using PTH.
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We recall (see [7]) that on DT, the value DT(p) for any shape point p is the
radius of the greatest set

{
q ∈ Z

2 : DT(p) − dM(p, q) > 0
}

so the greatest ball
centred in p inside the shape is

{
q ∈ Z

2 : dM(p, q) � DT(p) − 1
}

which has
radius DT(p) − 1 (utilized line 4 in the procedure Gen CA).

The boundaries of maximal balls are inspected thanks to the equations given
in Section 2.2, or by consulting an image containing the distance values from any
point to the top-left point of the image (computed once), then using symmetries.

Input IN Shape image, DT Distance Transform, MA Medial Axis
Output CA Chordal Axis

Procedure Gen CA (IN, DT, MA, CA, PTH, ETH, RI )
1 Initialize CA to ∅
2 For all points p in IN do
3 If p ∈ MA then
4 R = DT(p) − 1
5 If R � a then Search MCTs (p, R, DT, CA, {Thresholds})

Procedure Search MCTs (p, R, DT, CA, {Thresholds})
1 IMAGE tmp //image storing tangency points, initialized to 0
2 INT nbtang = 0 //number of tangency zones
3 Generate C, the boundary of the ball of center p and radius R + RI
4 For all points q in C, counterclockwise, do
5 If tmp(q) = 0 and DT(q) = a then //new tangency zone
6 nbtang = nbtang + 1
7 Label recursively with the value nbtang in tmp the 8-neighbours nj

8 of q such that d(p, nj) � R + ETH and DT(nj) = a

9 For each tangency zone ÂB do
10 Compute the maximal distance d between ÂB and the MCT [AB]
11 If d � PTH then contract the tangency zone to a single point, in the

middle of the zone
12 Compute the midpoints of the segments bounded by the extremities of

the tangency zones, counterclockwise //may be empty in the case
of a single contracted zone

13 Insert these points as α-points in CA
14 If nbtang � 3 then insert p as β-point in CA //at least three MCTs

4 Results and Discussion

This section deals with the analysis of the chordal axis (CA) produced by our
algorithm. We present the CA of different objects, and give some results in terms
of shape description. We analyze the influence of the chosen chamfer norm, as
well as the threshold values, on the geometry of the CA. An application to
shape decomposition is presented; then a connection with the medial axis (MA)
is proposed. Finally we have a look at the complexity of the algorithms.
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(b)(a)

(c) (d)

Fig. 7. CA with thresholds on a rectangle (a) and a noisy rectangle (b); CA without
thresholds (c); MA (d). In (a), (b), (c) : α-points in black and β-points in white.

4.1 Characteristics of the Chordal Axis

Fig. 7 shows in (a), (b) and (c) the CA of rectangular shapes produced by our
algorithm, together with the MA (d), using the chamfer norm d〈5,7,11〉. The input
rectangle (in grey) in (b), (c) and (d) has a noisy boundary. In (a), (b), (c), black
points are α-points, i.e. midpoints of maximal chords of tangency, while white
points are β-points, i.e. centers of maximal ball having at least three MCTs (the
CA is composed of both α and β points). The CA in (b) is computed using
the thresholds method described at Section 3, while (c) is generated without
any threshold. The CA in (a) is coherent with the definition of the CA in the
continuous plane (see Fig. 1). The differences between (b) and (c) point out the
importance of the thresholds. On (b) the extension threshold ETH (set to 10 for
this example) erases parasitic α-points near the border of the shape; the point
threshold PTH (here at 4 pixels) avoids the apparition of superfluous β-points;
the increment threshold RI (set to 1) ensures the presence of α-points in the
middle of the object. Compared to the MA (d), the CA contains less points, is
free of parasitic points, and is less connected. We also observe a slight deviation
between the MA and the CA in the tips of branches of the shape, because α-
points may be quite far from centers of maximal balls.

The influence of the chamfer norm on the CA is illustrated in Fig. 8. When
using d4 (a) or d8 (b), we observe three annoying phenomenons with respect to
shape description:

– There are too many β-points. This is because the distances d4 and d8 badly
approximate the Euclidean distance (their balls are squares).

– In some places of the middle of the branches of the shape, there is a lack
of points in the CA. This is also due to the shape of the balls of d4 and
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(b)(a) (c) (d)

Fig. 8. CA with d4 (a), d8 (b), d〈3,4〉 (c), d〈5,7,11〉 (d). α-points appear in black, β-points
in white.

Optimal value If less than optimal If greater than optimal

1 � RI � a incomplete CA (see Section 3.3) increase of the number of tan-
gency zones ⇒ too many MCTs

a � ETH � 3a parasitic MCTs along the bound-
ary of the shape (see Section 3.2)

rough detail level, lack of MCTs
in thick branches

3 � PTH � 6 parasitic MCTs along the bound-
ary of the shape (see Section 3.1)

lack of MCTs in maximal balls
having a single tangency zone

Fig. 9. Influence of threshold values (a is the weight of the first vector of the chamfer
mask)

d8, which tends to create MCTs whose extremities are often located in the
vertices of the squares. In certain local areas, many midpoints of chords may
overlap.

– There is a strong anisotropy of the CA.

These features considerably attenuate when choosing d〈3,4〉 (c) and d〈5,7,11〉 (d);
with d〈5,7,11〉 we obtain the best results (the average approximation error com-
pared to dE is only about 2%).

An important characteristic of the CA concerns the localization of its two
different kinds of points:

– the α-points are located in the branches of the object, and are equidistant
from each side of their branch;

– the β-points are located at the center of branching zones of the shape.

The choice of optimal values of the thresholds, for which the CA describes the
shape as well as possible, has been experimentally determined by tests on dif-
ferent objects (with various branching zones and widths). Recommanded values
and problems resulting from bad values are listed in Fig. 9.
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Fig. 10. Maximal balls yielding
overlapping MCTs

(b)(a)

7

7 8

5

Fig. 11. CA in black and points of high
concentration in white (with values) (a);
cut chords (in black) (b)

(a)

(b)

Fig. 12. MA with d〈5,7,11〉 (a); C-CA with d〈5,7,11〉, RI = 1, ETH = 10, PTH = 4 (b)

4.2 Application to Shape Decomposition

The CA has an interesting characteristic: points of the axis may be superposed,
as shown in Fig. 10. The three maximal balls which are drawn have maximal
chords of tangency which overlap each other in the discrete space. We notice
that the local concentration of the α-points of the CA is high in the zones where
the object presents narrowings.

An interesting idea consists in counting, for each point of the image, the
number of points of the CA (during computation). We are then able to study the
concentration of points of the axis. Points of high concentration are represented
in white in Fig. 11 (a). If for a given point of the image, the number of overlapping
points of the CA is greater than a certain value, denoted cut threshold, then we
consider the corresponding MCT as a cut chord for shape decomposition. Each



Chordal Axis on Weighted Distance Transforms 281

cut chord splits the shape into two distinct parts. E.g. in Fig. 11 (b), the cut
threshold is set to 5.

Classic methods of shape decomposition are based upon the reckoning of a
skeleton, which must be thin and connected, and the study of gradient along
this skeleton. The main advantage of our method is that it does not previously
require the creation of a skeleton. The values of local concentrations of points of
the CA are directly calculated during the CA extraction.

4.3 Connections Between the Chordal Axis and the Medial Axis

We call C-Chordal Axis (or C-CA) of a shape S, the set of centers of all balls
included in S which admit at least a maximal chord of tangency. In R

2 the C-CA
is exactly the MA, because a ball is maximal in S if and only if it has at least
two points of tangency with the boundary of S (see [2]). This property is not
true in the discrete plane, however our threshold techniques allow the C-CA to
approximate the MA while filtering it. We adapt our algorithm of generation
of the CA to compute the set of centers of balls inside S which have at least
one MCT. Fig. 12 shows the MA and C-CA of different shapes, using d〈5,7,11〉
and standard thresholds. Notice that both axis have a majority of common
points, nevertheless there are significant differences. The C-CA is much more
connected than the MA (note that MA can be filtered by post-processing to
achieve connectedness, see for instance [13]). Furthermore the C-CA contains
much less isolated parasitic points, thanks to the sequence of thresholds which
play the role of noise filter when constructing the C-CA. The C-CA is not yet an
ideal filtering of the MA: it is not guarantied to be connected, and may also be
relatively thick in some configurations. A further study of the influence of the
threshold values should be realized.

4.4 Complexity of the Algorithms

Two preliminary algorithms operate before the very generation of the CA. The
first one is the distance transformation algorithm, which computes the DT of the
object in time O(m.L2) for an image of side length L and a chamfer mask having
m weightings. The second one is the MA extraction algorithm, whose complexity
is O(k.L2) (k being a constant close to m, see [7]). The CA is then produced from
the MA: for each point of the MA, the boundary of a maximal ball is checked.
A ball of radius R pixels has about 2Π.R boundary points, the examination of
the boundary of the ball takes O(R), R being smaller than L/2. Therefore the
overall complexity is O(m.L2 +nMA.L), with nMA being the number of points of
the MA. However these points represent only a little portion of the points of the
shape; in practice we observe that the time complexity is linear in the number
of points of the image.

5 Conclusion

In this paper, we have adapted Prasad’s continuous definition of the chordal axis
(CA) [1] in the discrete plane Z

2. We have proposed to extract it on a distance
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transform (DT) in the case of chamfer norms, which allows fast extraction of
medial axis (MA) [7]. We have introduced three quantities, namely point thresh-
old, extension threshold and radius increment, in the purpose of discretizing the
tangency of discrete balls to the boundary of a shape, and properly characteriz-
ing maximal chords of tangency (MCT). Then our algorithm extracts the MCTs
in near linear time. Changing thresholds enables to filter the noise in shapes,
and concentration of CA points allows shape decomposition. Comparison be-
tween discrete CA and MA is achieved, which shows a set of new properties
for shape description. Future work concerns local detection on DT, study of the
reversibility degree, and extension in 3D.
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