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This is the annex to our paper ”Appearance Radii in Medial Axis Test Mask

for Small Planar Chamfer Norms” by Jérôme Hulin and Édouard Thiel, to
appear in DGCI #15.

This annex is available online at

http://pageperso.lif.univ-mrs.fr/~hulin/dgci09/

The annex contains the proofs of Lemmas 1 to 6 and Theorems 2 to 4. Other
technical lemmas are needed, they are numbered with small latin numbers (i, ii,
etc.).

In this document we introduce some additional notations.
Let us denote by rad(B) the representable radius of a given ball B. A G-cone of
Zn is the image of G(Zn) by a given symmetry σ in Σn. For any set of vectors
−→v1 , . . . ,

−→vk ∈ Zn, Gadj(
−→v1 , . . . ,

−→vk) stands for the relation: −→v1 , . . . ,−→vk all lie in a
common G-cone of Zn. Given a vector −→v ∈ Zn, we call ṽ the representative of
−→v in G(Zn), defined to be the (necessarily unique) vector in G(Zn) verifying
ṽ = σ(−→v ) for some σ ∈ Σn(O).

Also, we wish to generalize the Frobenius number for non-coprime numbers a,
b : let p = gcd(a, b), we see that all (a, b)-representable integers are multiples of p.
We define g′(a, b) to be the largest multiple of p which is not (a, b)-representable.
This number exists since a/p and b/p are coprime, and we have

g′(a, b) = p ∗ g
(a

p
,
b

p

)
=

ab

p
− a − b. (1)

For example, if we take a = 9 and b = 15, we have gcd(a, b) = 3 and g′(a, b) =
3∗g(3, 5) = 21. All integers greater than g(3, 5) = 7 are (3, 5)-representable, and
all multiples of 3 greater than g′(9, 15) = 21 are (9, 15)-representable:

{
[x]9,15

}
x∈N

= 9N + 15N = {0, 9, 15, 18, 24, 27, 30, 33, . . . } ;

= 3 ∗ (3N + 5N) = 3∗ {0, 3, 5, 6, 8, 9, 10, 11, . . . } .

Lemma i (Covering radius) Let ‖.‖ be a norm, −→v be a vector in Zn, and B
a ball of centre p ∈ Zn. We have Rp−−→v (B) 6 rad(B) + ‖−→v ‖.

Proof. Let q = p−−→v , and r = rad(B) denote the representable radius of B. Let z
be a point of B which maximizes the distance to q (see Fig. 2). The representable
radius of the ball Hq(B) is Rq(B) = d(q, z). According to the triangle inequality,
we can write Rq(B) = d(q, z) 6 d(q, p) + d(p, z). However, z belongs to B so
d(p, z) 6 r; furthermore d(q, p) = ‖−→v ‖, so Rq(B) 6 ‖−→v ‖ + r. �

Lemma ii Let −→u ,−→v ∈ Z2. If ¬Gadj(
−→u ,−→v ) then for any 2-dimensionnal G-

symmetrical norm ‖.‖, we have ‖−→u + −→v ‖ 6 ‖ũ + ṽ‖.
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Fig. 11. The 8 G-cones of Z2 (delimited by dotted lines); two G-adjacent vectors −→u
and −→v . The inverses of −→u by all the σ ∈ Σ2 are depicted by black vectors, the inverses
of −→v by the σ ∈ Σ2 are the gray vectors. The points {x + σ(−→v )} are contained in the
convex hull of the O + σ(−→u + −→v ).

Proof. Suppose −→u and −→v belong to the same G-cone C. We want to show
that ∀σ ∈ Σ2, ‖−→u + σ(−→v )‖ 6 ‖−→u + −→v ‖. Let x = O + −→u , p = x + −→v , and
p1, . . . , p7 be the images of p by all the symmetries σ ∈ Σ2 \ {Id} (see Fig. 11).
In other words, {p, p1, . . . , p7} = {O +σ(−→u +−→v ), σ ∈ Σ2}. Finally, let E be the
convex hull of the points p, p1, . . . , p7. Now we use the fact that ∀σ ∈ Σ2, the
point z = x + σ(−→v ) is included in E. At worst, two such points belong to the

boundary of E : the points q and q′ defined by −→xq = s(−→xp) and
−→
xq′ = s′(−→xp),

with s and s′ being the symmetries about each axis surrounding C. According
to the symmetries, we have that q belongs to the line segment [pp7], therefore
−→
Oq = λ

−→
Op + (1 − λ)

−−→
Op7 for some 0 6 λ 6 1. Then, by convexity of the norm,

we deduce that ‖
−→
Oq‖ 6 λ‖

−→
Op‖ + (1 − λ)‖

−−→
Op7‖. Furthermore, by definition of

p7, we have Op = Op7, hence ‖
−→
Oq‖ 6 ‖

−→
Op‖. Similar considerations apply to the

point q′ ∈ [pp1]. �



3

Lemma iii (Covering the generator) Let −→v be a vector in G(Z2), ‖.‖ be a

2D G-symmetrical norm, and B a ball of centre O. There is at least one point p

in G(B) verifying RO−−→v (B) = ‖−→v +
−→
Op‖.

Proof. Let q be a point of B that maximizes the distance to O −−→v , and define
−→u =

−→
Oq; we have RO−−→v (B) = ‖−→v + −→u ‖. The ball B is G-symmetrical so the

point p = O + ũ belongs to B. Furthermore, −→v ∈ G(Z2), hence lemma ii states
that ‖−→v +ũ‖ > ‖−→v +−→u ‖. As a consequence, p is a point of G(B) that maximizes
the distance to O −−→v . �

Lemma iv (Corollary of Lemma iii) Let ‖.‖ be a 2D G-symmetrical norm,

B be a ball of centre O and B′ a ball of centre O − −→v for some −→v ∈ Z2. If

G(B) ⊆ B′ then B ⊆ B′.

Proof. Set O′ = O − −→v . According to Lemma iii, there is a point p ∈ G(B)
for which d(O′, p) = RO′(B). Moreover, G(B) ⊆ B′ implies p ∈ B′, hence
rad(B′) > O′p = RO′ (B). Consequently, B ⊆ B′. �

Lemma 1 (Representable radius) Let C(−→v1 ,
−→v2) be an influence cone of a

given 2D chamfer norm, and assume the vectors −→v1 and −→v2 have repective weights

w1 and w2. If r is (w1, w2)-representable then for any vector −→v in C(−→v1 ,
−→v2),

RO−−→v

(
B(O, r)

)
= r + ‖−→v ‖.

Proof. Write B = B(O, r), B′ = HO−−→v (B) and r′ = rad(B′). The integer r is
(w1, w2)-representable, so there is a point p in the cone C(O,−→v1 ,−→v2) s.t. Op = r
(see Fig. 12). Furthermore, O belongs to the cone C(O′,−→v1 ,

−→v2). Accordingly,
there is a minimal chamfer path between O′ and p passing through O. Hence
O′p = O′O + Op = ‖−→v ‖ + r. since p ∈ B′, we have r′ > O′p, and thus r′ >

‖−→v ‖+r. However, we know from Lemma i that r′ 6 ‖−→v ‖+r. Hence r′ = r+‖−→v ‖.
�

−→v1

−→v2

O

p

O′

Fig. 12. A point p in the influence cone C(O,−→v1 ,−→v2).
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Lemma 2 (Covering a cone) Let C(−→v1 ,
−→v2) be an influence cone of a given

2D chamfer norm, and B be a ball of centre O. For any vector −→v in the cone

C(−→v1 ,
−→v2), we have B ∩ C(O,−→v1 ,

−→v2) = HO−−→v (B) ∩ C(O,−→v1 ,
−→v2).

In other words, the balls B and HO−−→v (B) coincide in the cone C(O,−→v1 ,
−→v2).

Proof. Write r = rad(B), O′ = O −−→v and B′ = HO′(B). By definition we have
B ⊆ B′. Now, consider a point p ∈ B′ ∩ C(O,−→v1 ,−→v2); we want to show that
p ∈ B. The point O belongs to the cone C(O′,−→v1 ,

−→v2), and p belongs to the cone
C(O,−→v1 ,

−→v2), hence there is a minimal path between O′ and p passing through
O. So we can write

O′p = O′O + Op = ‖−→v ‖ + Op. (2)

Moreover, p belongs to HO′(B), so O′p 6 rad(B′). It follows from (2):

‖−→v ‖ + Op 6 rad(B′). (3)

Furthermore, Lemma i yields

rad(B′) 6 r + ‖−→v ‖. (4)

Combining (3) with (4), we deduce that Op + ‖−→v ‖ 6 r + ‖−→v ‖, and, in conse-
quence, Op 6 r. �

Lemma 3 Let M be a minimal norm mask 〈a, b〉, then we have: ∀−→u ,−→v ∈
G(Z2

∗), −→u ≻ −→u + −→v .

Proof. Let B be a ball of centre O and representable radius r. Since there is

only one influence cone C(−→a ,
−→
b ) in the generator, Lemma 1 gives RO−−→u (B) =

r + ‖−→u ‖ and RO−−→u −−→v (B) = r + ‖−→u + −→v ‖. Moreover −→u and −→v belong to
the same influence cone, therefore ‖−→u + −→v ‖=‖−→u ‖ + ‖−→v ‖. Thus, the difference
between RO−−→u −−→v (B) and RO−−→u (B) is ‖−→v ‖; so Lemma i leads to HO−−→u (b) ⊂
HO−−→u −−→v (B). �

Lemma v (Construction of the sequences Rk−→a and R
k
−→
b
) Let B be a ball

of centre O. For abbreviation, we write R−→v instead of RO−−→v (B). For any k ∈ N,

we can express R(k+1)−→a and R
(k+1)

−→
b

as

R(k+1)−→a = max
{

[Rk−→a ]a,c + a, [Rk−→a ]b,c + c − b
}
;

R
(k+1)

−→
b

= max
{

[R
k
−→
b
]a,c + c − a, [R

k
−→
b
]b,c + b

}
.

Proof. Given a vector −→v ∈ G(Zn), R−→v = maxp∈B

{
d(O − −→v , p)

}
. Since any

norm is translation invariant, we have

R−→v = max
p∈B

{
d(O, p + −→v )

}
= max

−→u ∈Z2,‖−→u ‖6r

{
‖−→u + −→v ‖

}
. (5)
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Fig. 13. Covering a ball B = B(O, 16) — drawn with bullets — in direction −→v (3, 2),
for the norm mask 〈5, 7, 11〉. The radius of HO−−→v (B) is given by the maximum value
of the d(O, p′

i): here RO−−→v (B) = Op′
3 = 33.

Since we consider G-symmetrical masks, it is sufficient by Lemma iv to con-
sider p ∈ G(B) and −→u ∈ G(Z2) in equation (5), see Fig. 13 for an example,
so

R−→v = max
−→u ∈G(Z2),‖−→u ‖6r

{
‖−→u + −→v ‖

}
. (6)

Now Consider the case where −→v = −→a . We decompose (6) depending on
whether −→u belongs or not to the influence cone C(−→a ,−→c ). We obtain

R−→a = max
‖−→u ‖6r

{
max

−→u ∈C(−→a ,−→c )

{
‖−→u + −→a ‖

}
, max

−→u ∈C(−→c ,
−→
b ),−→u 6∈C(−→a ,−→c )

{
‖−→u +−→a ‖

}}
. (7)

If −→u ∈ C(−→a ,−→c ), then −→u +−→a ∈ C(−→a ,−→c ), and since the elementary displace-
ment δx is δx = a in this cone, we get ‖−→u +−→a ‖ = ‖−→u ‖+a. If −→u /∈ C(−→a ,−→c ), then
−→u and −→u + −→a both belong to C(−→c ,

−→
b ) (−→u + −→a may also belong to C(−→a ,−→c ));

since δx = c − b in this cone, we have ‖−→u + −→a ‖ = ‖−→u ‖ + c − b.
Hence we can deduce from (7) that

R−→a = max
‖−→u ‖6r

{
max

−→u ∈C(−→a ,−→c )

{
‖−→u ‖

}
+ a, max

−→u ∈C(−→c ,
−→
b ),−→u 6∈C(−→a ,−→c )

{
‖−→u ‖

}
+ c − b

}
.

But C(−→a ,−→c ) ∩ C(−→c ,
−→
b ) = −→c N, so

R−→a = max
‖−→u ‖6r

{
max

−→u ∈C(−→a ,−→c )

{
‖−→u ‖

}
+ a, max

−→u ∈C(−→c ,
−→
b ),−→u 6∈−→c N

{
‖−→u ‖

}
+ c − b

}
. (8)

We necessarily have ‖−→u ‖ + a > ‖−→u ‖ + c − b because a > c − b for any minimal
norm 〈a, b, c〉. Since the term ‖−→u ‖ + a appears for −→u ∈ −→c N in the second max
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of equation (8), we can also take −→u ∈ −→c N in the third max:

R−→a = max
‖−→u ‖6r

{
max

−→u ∈C(−→a ,−→c )

{
‖−→u ‖

}
+ a, max

−→u ∈C(−→c ,
−→
b )

{
‖−→u ‖

}
+ c − b

}
. (9)

The norm of a vector −→u ∈ C(−→a ,−→c ) can be expressed as a positive linear com-
bination of a and c, therefore

max
−→u ∈C(−→a ,−→c ), ‖−→u ‖6r

{
‖−→u ‖

}
= max

t∈aN+cN, t6r

{
t
}

= [r]a,c .

In the same manner in C(−→c ,
−→
b ), we can write

max
−→u ∈C(−→c ,

−→
b ), ‖−→u ‖6r

{
‖−→u ‖

}
= max

t∈bN+cN, t6r

{
t
}

= [r]b,c .

Then we can rewrite (9) using representable integers only:

R−→a = max
{

[r]a,c + a, [r]b,c + c − b
}
. (10)

The next step is to compute R2−→a by

R2−→a = max
−→u ∈Z2:‖−→u ‖6r

{
‖−→u + 2−→a ‖

}
= max

−→u ∈Z2:‖−→u ‖6r

{
‖−→u + −→a + −→a ‖

}
(11)

that is decomposed whether −→u + −→a belongs to C(−→a ,−→c ):

R2−→a = max
‖−→u ‖6r

{
max

−→u +−→a ∈C(−→a ,−→c )
{‖−→u + −→a ‖ + a}, max

−→u +−→a ∈C(−→c ,
−→
b ),−→u +−→a 6∈−→c N

{‖−→u + −→a ‖ + c − b}
}

= max
‖−→u ‖6r

{
max

−→u +−→a ∈C(−→a ,−→c )
{‖−→u + −→a ‖} + a, max

−→u +−→a ∈C(−→c ,
−→
b ),−→u +−→a 6∈−→c N

{‖−→u + −→a ‖} + c − b
}
.

(12)

Again, since a > c − b, we can insert the case −→u + −→a ∈ −→c N in the third max:

R2−→a = max
‖−→u ‖6r

{
max

−→u +−→a ∈C(−→a ,−→c )
{‖−→u + −→a ‖} + a, max

−→u +−→a ∈C(−→c ,
−→
b )

{‖−→u + −→a ‖} + c − b
}

= max
{

max
‖−→u ‖6r,−→u +−→a ∈C(−→a ,−→c )

{‖−→u + −→a ‖} + a, max
‖−→u ‖6r,−→u +−→a ∈C(−→c ,

−→
b )

{‖−→u + −→a ‖} + c − b
}
.

(13)

Then, using the notation of representable integer, we obtain

R2−→a = max
{

max
‖−→u ‖6r,−→u +−→a ∈aN+cN

{‖−→u + −→a ‖} + a, max
‖−→u ‖6r,−→u +−→a ∈bN+cN

{‖−→u + −→a ‖} + c − b
}

= max
{[

max
‖−→u ‖6r

{
‖−→u + −→a ‖}

]

a,c
+ a,

[
max

‖−→u ‖6r

{
‖−→u + −→a ‖}

]

b,c
+ c − b

}
.

(14)
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By definition of R−→v in (5), we deduce

R2−→a = max
{

[R−→a ]a,c + a, [R−→a ]b,c + c − b
}
. (15)

In that manner, we can construct the sequence Rk−→a by induction:

R(k+1)−→a = max
{

[Rk−→a ]a,c + a, [Rk−→a ]b,c + c − b
}
. (16)

In order to compute the sequence R
k
−→
b
, we revisit equation (6), replacing −→v

by
−→
b . Then we decompose in two cases, whether −→u belongs to the cone C(−→c ,

−→
b )

or not:

R−→
b

= max
‖−→u ‖6r

{
max

−→u ∈C(−→c ,
−→
b )

{
‖−→u +

−→
b ‖

}
, max

−→u ∈C(−→a ,−→c ),−→u 6∈C(−→c ,
−→
b )

{
‖−→u +

−→
b ‖

}}
. (17)

In the influence cones C(−→a ,−→c ) and C(−→c ,
−→
b ), the displacements δx + δy are

c − a and b, respectively. Hence, in the same way as in (9), we can write

R−→
b

= max
‖−→u ‖6r

{
max

−→u ∈C(−→c ,
−→
b )

{
‖−→u ‖

}
+ b, max

−→u ∈C(−→a ,−→c )

{
‖−→u ‖

}
+ c − a

}
. (18)

Next, we replace each max{‖−→u ‖} by its arithmetical expression, obtaining

R−→
b

= max
{

[r]a,c + c − a, [r]b,c + b
}

. (19)

Using a similar reasoning as the one for Rk−→a , by distinguishing the two cases
−→u +

−→
b ∈ C(−→c ,

−→
b ) and −→u +

−→
b 6∈ C(−→c ,

−→
b ), we can finally deduce by induction

the terms of the sequence R
k
−→
b
:

R
(k+1)

−→
b

= max
{

[R
k
−→
b
]a,c + c − a, [R

k
−→
b
]b,c + b

}
. (20)

�

The construction of the sequence R
k
−→
b

is illustrated in Fig. 14 for a ball B
of radius 46, with the norm ‖.‖〈9,12,19〉. The integer 46 is (9, 19)-representable,
but is not (12, 19)-representable: By (19) and (20) it is sufficient to consider,
for each influence cone, the propagation of the maximal (representable) distance
value within B. In C(O,−→a ,−→c ), this maximal value is [46]9,19 = 46, while in

C(O,−→c ,
−→
b ) this maximal value is [46]12,19 = 43.

Lemma 4 (Domination along −→a N and
−→
b N) For any minimal norm mask

〈a, b, c〉 and any k ∈ N∗, we have k−→a ≻ (k + 1)−→a and k
−→
b ≻ (k + 1)

−→
b .

Proof. Let B be a ball of centre O and radius r, where r is (a, c)- or (b, c)-
representable. Let k ∈ N∗, we set O′ = O − k−→a , O′′ = O − (k + 1)−→a = O′ −−→a ,
B′ = HO′(B) and B′′ = HO′′(B) (see Fig. 15). Moreover, we set r′ = RO′(B)
and r′′ = RO′′ (B). Our aim is to show that B′ ⊆ B′′: consider a point q in the
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candidates for computing R
k
−→
b
(B), for even integers k

candidates for computing R
k
−→
b
(B), for odd integers k

108

96 103

84 91 98

72 79 86 93

60 67 74 81 88

48 55 62 69 76 85

36 43 50 57 66 75 84

24 31 38 47 56 65 74 83

12 19 28 37 46 55 64 73 82

O 9 18 27 36 45 54 63 72 81

B

108

96 103

84 91 98

72 79 86 93

60 67 74 81 88

48 55 62 69 76 85

36 43 50 57 66 75 84

24 31 38 47 56 65 74 83

12 19 28 37 46 55 64 73 82

O 9 18 27 36 45 54 63 72 81

cone C(O,−→a ,−→c ) (minus O + −→c N)

cone C(O,−→c ,
−→
b ) (minus O + −→c N)

B

Fig. 14. Construction of the radii R
k
−→
b

(circled values) for a ball B of radius 46 (delim-
ited by the thick line), with the norm ‖.‖〈9,12,19〉 . By induction: R−→

b
= 56, R

2
−→
b

= 67,
R

3
−→
b

= 79, etc. Left: induction steps. Right: The two influence cones within the gener-
ator.

ball B′, we are going to show that q ∈ B′′, i.e., O′′q 6 r′′.

Let B′
g denote the generator of B′ about centre O′, i.e., B′

g = B′ ∩C(O′,−→a ,
−→
b ).

Given that −→a ∈ G(Z2), Lemma iv tells us that if all points from B′
g belong to

B′′ then B′ ⊆ B′′. It is therefore sufficient to consider q ∈ B′
g. We know from

Lemma v that
r′′ = max

{
[r′]a,c + a, [r′]b,c + c − b

}
. (21)

Let us evaluate O′′q knowing that
−−→
O′′q =

−→
O′q + −→a . Two cases are to be consid-

ered:

⊲ If q ∈ C(O′,−→a ,−→c ), then O′′q = O′q + a (elementary displacement δx = a in
the influence cone C(−→a ,−→c )). But we also have O′q ∈ aN + cN, so

O′′q 6 [r′]a,c + a. (22)

Combining (21) and (22) gives O′′q 6 r′′.

⊲ If q 6∈ C(O′,−→a ,−→c ), then
−→
O′q and

−→
O′q +−→a both belong to the cone C(−→c ,

−→
b ),

and so O′′q = O′q+c−b (elementary displacement δx = c−b in the influence

cone C(−→c ,
−→
b )). Since we also have O′q ∈ bN + cN, it comes

O′′q 6 [r′]b,c + c − b. (23)

In the same way, equations (21) and (23) give O′′q 6 r′′.
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OO′O′′

k−→a−→a

Fig. 15. Influence cones about centres O, O′ = O − k−→a and O′′ = O − (k + 1)−→a .

We can rewrite the proof of the lemma by exchanging (−→a , a) with (
−→
b , b). The

elementary displacement to be considered are δx + δy = b in the cone C(−→c ,
−→
b )

for the first case, and δx + δy = c − a in the cone C(−→a ,−→c ) for the second case.

Thus we obtain the domination relation along the
−→
b N axis. �

Lemma 5 (Domination by addition of −→c ) For any minimal norm mask

〈a, b, c〉 and any −→v ∈ G(Z2
∗), we have −→v ≻ −→v + −→c .

Proof. Consider a ball B of centre O and radius r = rad(B). Set O′ = O − −→v ,
O′′ = O−−→v −−→c , r′ = RO′ (B), r′′ = RO′′(B), B′ = HO′(B) and B′′ = HO′′(B).
We are reduced to proving B′ ⊆ B′′. Let p be a point in G(B) which maximizes
the distance to O′ (see Fig. 16). The vector −→v belongs to G(Z2

∗), so by Lemma
iii we have O′p = r′.
We observe that all minimal paths from O′′ to p contain at least one occurrence

of −→c . Actually, these paths are expressed as α−→a + β−→c or α
−→
b + β−→c , but they

can not be composed of −→a only or
−→
b only. Hence, there is a minimal path from

O′′ to p passing through O′, and so

O′′p = O′′O′ + O′p = c + r′. (24)

By definition, the point p belongs to B, therefore p also belongs to B′′, and so

O′′p 6 r′′. (25)

Combining (24) and (25) yields c + r′ 6 r′′. Furthermore we know from Lemma
i that RO′′(B′) 6 r′ + c, this implies that RO′′(B′) 6 r′′, and so HO′′ (B′) ⊆ B′′.
Since by definition B′ ⊆ HO′′(B′), we finally have B′ ⊆ B′′. �

Theorem 2 For any minimal norm mask M = 〈a, b, c〉, we have

{−→a ,
−→
b

}
⊆ TM ⊆

{−→a ,
−→
b ,−→c

}
.



10

−→
b

O′

p
G(B)

O

−→c

−→v

O′′ −→a

Fig. 16. One occurrence of −→c in any minimal path linking O′′ to p.

Proof. Let −→v ∈ G(Z2
∗), different from −→a ,

−→
b and −→c . If −→v is a multiple of −→c ,

then we know from Lemma 5 that −→v ≺ −→c . Otherwise, there are two possibilities:
either −→v belongs to C(−→a ,−→c ), in that case −→v = k−→a + l−→c for some k, l ∈ N∗. If
l 6= 0 then Lemma 5 gives k−→a ≻ −→v ; and by Lemma 4 we deduce −→a ≻ −→v . Or,
−→v belongs to C(−→c ,

−→
b ), in that case −→v = k

−→
b + l−→c for some k, l ∈ N∗. If l 6= 0

then Lemma 5 yields k
−→
b ≻ −→v ; and by Lemma 4 we obtain

−→
b ≻ −→v . �

Lemma 6 (Arithmetical expression of Rapp(
−→c )) For any minimal norm mask

〈a, b, c〉, we have

Rapp(
−→c ) = min

{
r ∈ N :





r + c − b <
[
[r]a,c + a

]

b,c

r + c − a <
[
[r]b,c + b

]

a,c

}
+ c .

Proof. To shorten the notation, let Ha(B) = HO−−→a (B), Hb(B) = H
O−

−→
b
(B)

and Hc(B) = HO−−→c (B). We also set Oa = O−−→a , Ob = O−
−→
b and Oc = O−−→c .

Similarly, we write Ra(B) = RO−−→a (B), etc.

Given that only −→a ,
−→
b and −→c may appear in T , we deduce that −→c ∈ T iff

there is a ball B of centre O which satisfies the following conditions:
{

Ha(B) * Hc(B) (i)

Hb(B) * Hc(B). (ii)
(26)

Let r be the smallest radius of B satisfying this system (assuming there is such
a r), then Rapp(

−→c ) = Rc(B) = r + c. With the notation Br = B(O, r), we can
write

Rapp(
−→c ) = min

{
r ∈ N : Ha(Br) * Hc(Br) and Hb(Br) * Hc(Br)

}
+ c . (27)

Considering (27), we first examine the set {r ∈ N : Ha(Br) * Hc(Br)}: it con-
sists in finding which r ∈ N implies the existence of a point q in Ha(Br)\Hc(Br).
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It suffices to look for such a point q in the cone C(Oa,−→a ,
−→
b ): actually Oa−Oc =

−→
b ∈ G(Z2) so by Lemma iii, Ha(Br) ⊆ Hc(Br) iff Ha(Br) ∩ C(Oa,−→a ,

−→
b ) ⊆

Hc(Br). Moreover, such a point q can not belong to the cone C(O,−→a ,−→c ),
since Lemma 2 states that Ha(Br) ∩ C(O,−→a ,−→c ) = Hc(Br) ∩ C(O,−→a ,−→c ) =
Br ∩ C(O,−→a ,−→c ).
On account of these two observations, it is sufficient to look for q in the cone

C(Oa,−→c ,
−→
b ), see Fig. 17. Therefore,

Ha(Br) * Hc(Br) ⇔ ∃q ∈ C(Oa,−→c ,
−→
b ) :

{
q ∈ Ha(Br)

q 6∈ Hc(Br) ;

that is to say:

Ha(Br) * Hc(Br) ⇔ ∃q ∈ C(Oa,−→c ,
−→
b ) :

{
Oaq 6 Ra(Br) (α)

Ocq > Rc(Br) . (β)
(28)

Suppose there is such a point q, and set p = q + −→a . The point p belongs to the

cone C(O,−→c ,
−→
b ). The vectors

−−→
OaO and −→qp are equal; since all chamfer distances

are translation invariant, (28.α) is equivalent to

Op 6 Ra(Br) . (29)

We now turn to the inequality (28.β): we know that r is either (a, c)-representable,

or (b, c)-representable. Furthermore−→c belongs to both cones C(−→a ,−→c ) and C(−→c ,
−→
b ).

Oa + −→c N +
−→
b N

O + −→a N + −→c N

Oa O

Oc

Fig. 17. The cone C(Oa,−→c ,
−→
b ) (top), and the cone C(O,−→a ,−→c ) (bottom).

By Lemma 1, we deduce

Rc(Br) = r + c . (30)

Besides, we have
−−→
Ocq =

−−−→
OcOa +

−−→
Oaq =

−→
b +

−→
Op . (31)
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However,
−→
Op =

−−→
Oaq belongs to the cone C(−→c ,

−→
b ), as does

−→
b ; it follows from

(31) that
Ocq = b + Op . (32)

Applying (29), (30) and (32), we can reformulate (28):

Ha(Br) * Hc(Br) ⇔ ∃p ∈ C(O,−→c ,
−→
b ) :

{
Op 6 Ra(Br)

b + Op > r + c .

⇔ ∃p ∈ C(O,−→c ,
−→
b ) : r + c − b < Op 6 Ra(Br) . (33)

Besides, we know that Ra(Br) = max
{
[r]a,c + a, [r]b,c + c − b

}
(see Lemma v).

The inequality in (33) can not be satisfied if Ra(Br) = [r]b,c +c−b, for [r]b,c 6 r.
Accordingly, we can rewrite (33):

Ha(Br) * Hc(Br) ⇔ ∃p ∈ C(O,−→c ,
−→
b ) : r + c − b < Op 6 [r]a,c + a . (34)

For any p in the influence cone C(O,−→c ,
−→
b ), the distance Op can be expressed

as a non-negative linear combination of b and c. Hence, the inequality in (34) has
a solution iff the greatest (b, c)-representable integer no greater than [r]a,c + a is
larger than r + c − b :

Ha(Br) * Hc(Br) ⇔ r + c − b <
[
[r]a,c + a

]

b,c
. (35)

This provides an arithmetical description of the set {r ∈ N : Ha(Br) * Hc(Br)}.
Similar arguments apply to describe the set {r ∈ N : Hb(Br) * Hc(Br)},

while interchanging (−→a , a) and (
−→
b , b): we look for a point q in Hb(Br)\Hc(Br),

and show that it suffices to look for q in the cone C(Ob,
−→a ,−→c ). Assuming q to

exist, we set p = q +
−→
b and observe that Rb(B) must be equal to [r]b,c + b, thus

we obtain
Hb(Br) * Hc(Br) ⇔ r + c − a <

[
[r]b,c + b

]
a,c

. (36)

We finally complete the proof by substituting (35) and (36) into (27).
�

Lemma vi Let a, c be two positive integers and let p = gcd(a, c). For any x >

g′(a, c) + p and any k ∈ N we have [x + kp]a,c = [x]a,c + kp.

Proof. Let x > g′(a, c)+p, we denote by α and β the quotient and the remainder
of the Euclidean division of x by p. By definition of g′, we have [x]a,c = αp.
Besides, we can write [x + kp]a,c = [(α + k)p + β]a,c. The remainder of the
Euclidean division of x + p by p is β, so we have [(α + k)p + β]a,c = (α + k)p,
and thus [x + kp]a,c = αp + kp = [x]a,c + kp. �

Theorem 3 (Appearance of −→c ) For any minimal norm mask M = 〈a, b, c〉,

−→c ∈ TM ⇔ gcd(a, c) + gcd(b, c) 6 2 (a + b − c) .
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Proof. −→c belongs to T iff the system in Lemma 6 has a solution. If this system
is satisfied for a given r, then it is also satisfied for r + c, since by definition of
[.]a,c we have [r]a,c + c 6 [r + c]a,c and [r]b,c + c 6 [r + c]b,c. This shows that
if the system admits a solution, then it admits an arbitrary large solution. Set
p = gcd(a, c), q = gcd(b, c) and M = max{g′(a, c)+p, g′(b, c)+ q}, we can write

−→c ∈ T ⇔ ∃r > M :

{
∃α ∈ bN + cN : r + c − b < α 6 [r]a,c + a

∃β ∈ aN + cN : r + c − a < β 6 [r]b,c + b .
(37)

According to the definition of g′, any integer multiple of q and greater than
g′(b, c) + q is (b, c)-representable, so r > M implies that the smallest integer
(b, c)-representable larger than r is [r]b,c + q. Likewise, r > g′(a, c) + p implies
that the smallest integer (a, c)-representable larger than r is [r]a,c + p. We can
thereby reformulate (37):

−→c ∈ T ⇔ ∃r > M :

{
[r + c − b]b,c + q 6 [r]a,c + a

[r + c − a]a,c + p 6 [r]b,c + b .
(38)

Given that r > M and that q (resp. p) divides c−b (resp. c−a), Lemma vi gives
[r + c − b]b,c = [r]b,c + c − b (resp. [r + c − a]a,c = [r]a,c + c − a). Consequently,

−→c ∈ T ⇔ ∃r > M :

{
[r]b,c + q 6 [r]a,c + a + b − c

[r]a,c + p 6 [r]b,c + a + b − c .
(39)

With the notation ∆ = a + b − c, we obtain

−→c ∈ T ⇔ ∃r > M : q − ∆ 6 [r]a,c − [r]b,c 6 ∆ − p . (40)

To finish the proof, we beforehand need a result on representable integers:

Lemma vii Let a, b and c be three positive integers, p = gcd(a, c) and q =
gcd(b, c). If p and q are coprime, then for any integer x ∈ [1− p, q − 1], there is

an arbitrary large integer r verifying [r]a,c − [r]b,c = x.

Proof. At first, we establish the proof for x ∈ [0, q− 1]. The integers p and q are
coprime, so we know by Bezout’s theorem that there are two positive integers
α and β such that αp − βq = x. Moreover, α and β can be chosen arbitrarily
large, take any such couple (α, β) verifying βq > max{g′(a, c), g′(b, c)}, and set
r = αp = βq + x. We have p|r and r > g′(a, c), it follows that [r]a,c = r. On the
other hand, r = βq +x belongs to [βq, (β +1)q[, hence [r]b,c = βq. Consequently,
[r]a,c − [r]b,c = αp − βq = x. The proof concerning x ∈ [1 − p, 0] is obtained in
the same manner, exchanging (a, p) with (b, q). �

Let us consider (40) again; remember we want to establish −→c ∈ T ⇔ p+ q 6

2∆. It is obvious from (40) that −→c ∈ T implies q − ∆ 6 ∆ − p, that is to say,
p + q 6 2∆. Conversely, if p + q 6 2∆, then there is at least one integer in the
interval [q−∆, ∆− p]. Besides, given that the mask 〈a, b, c〉 is minimal, we have
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∆ = a + b − c > 1, and so 1 − p 6 ∆ − p and q − ∆ 6 q − 1. We can find
an integer x which belongs to both intervals [1 − p, q − 1] and [q − ∆, ∆ − p],
for instance x = max{1 − p, q − ∆}. The fact that x ∈ [1 − p, q − 1] allows us
to claim (thanks to Lemma vii) that there is an integer r arbitrarily large s.t.
[r]a,c − [r]b,c = x. The fact that x ∈ [q − ∆, ∆ − p] proves the converse. �

Theorem 4 Let M = 〈a, b, c〉 be a minimal norm mask. If −→c ∈ TM then

Rapp(
−→c ) < bc.

Proof. From Lemma 6, we search an upper bound for the smallest r satisfying

r − b + c <
[
[r]a,c + a

]

b,c
(i) and r − a + c <

[
[r]b,c + b

]

a,c
(ii) . (41)

We have already seen at the beginning of the proof of Thm. 3 that if this system
has a solution, then it admits an arbitrary large solution too. Set p = gcd(a, c),
q = gcd(b, c) and M = max

{
g′(a, c) + p, g′(b, c) + q

}
.

First, we show that if (41) is satisfied for a given r > M , then it is also
satisfied for all r−kpq s.t. k ∈ N and r−kpq > M . Suppose r−kpq > M ; p|kpq

so Lemma vi gives
[
[r−kpq]a,c+a

]

b,c
=

[
[r]a,c +a−kpq

]

b,c
. Furthermore, kpq is

a multiple of q and [r]a,c +a > r so again, Lemma vi yields
[
[r]a,c +a−kpq

]

b,c
=

[
[r]a,c + a

]

b,c
− kpq. Inequality (i) is therefore equivalent to (r − kpq)− b + c <

[
[r − kpq]a,c + a

]

b,c
. The same reasoning applies to (ii), exchanging a with b;

this shows that r − kpq satisfies (41). The smallest r − kpq > M belongs to the
interval [M, M + pq− 1]. Adding the term +c of Lemma 6, we obtain the bound

Rapp(
−→c ) 6 M + c + pq − 1. (42)

Now, let us expand g′(a, c) and g′(b, c) in (42):

Rapp(
−→c ) < max

{ac

p
− a − c + p,

bc

q
− b − c + q

}
+ c + pq,

and so Rapp(
−→c ) < max

{ac

p
− a + p(q + 1),

bc

q
− b + q(p + 1)

}
. (43)

Consider the continuous functions f(p) = ac
p
− a + p(q + 1) for p ∈ [1, a], and

h(q) = bc
q
− b + q(p + 1) for q ∈ [1, b]. We first study the variations of f in [1, a].

We have ∂f
∂p

= −ac
p2 + q + 1 = p2(q+1)−ac

p2 , which vanishes at p0 =
√

ac
q+1 . We

always have p0 > 1, and distinguish two cases: if p0 > a, then f is decreasing
from 1 to a, and ∀p ∈ [1, a], f(p) 6 f(1); if p0 < a, then f is decreasing over
[1, p0] and is increasing over [p0, a]. Hence ∀p ∈ [1, a], f(p) 6 max{f(1), f(a)}.
We can easily find upper bounds for f(1) and f(a) : f(1) = ac − a + q + 1 6

ac − a + b + 1, but one of the norm conditions is 3b 6 2c, so ac − a + b + 1 6

c(a + 2/3)− a + 1 < bc− a + 1 < bc. f(a) = aq + c, but another norm condition
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is 2a 6 c, so aq + c 6 c(q/2 + 1) 6 c(b/2 + 1). Since any minimal norm mask
〈a, b, c〉 satisfies b > 4, we have b/2 + 1 < b, hence f(a) < bc.
The same upper bound for h(q) is obtained by exchanging (a, p) with (b, q). ∂h

∂q

vanishes for q0 =
√

bc
p+1 > 1. The two cases are: if q0 > b, then h is decreasing

from 1 to b and ∀q ∈ [1, b], h(q) 6 h(1); if q0 < b, then h is decreasing over
[1, q0] and increasing over [q0, b]. Hence ∀q ∈ [1, b], h(q) 6 max{h(1), h(b)}. An
upper bound for h(1) is h(1) = bc− b + p + 1 6 bc− b + a + 1 6 bc. Concerning
h(b), we can write h(b) = bp + c, the norm condition 3b 6 2c then leads to
h(b) 6 c(2p/3+1) 6 c(2b/3+1). Since any minimal norm mask 〈a, b, c〉 satisfies
b > 4, we have 2b/3 + 1 < b, and so h(b) < bc. �


