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Abstract. The relative merits of performing local operations on a digitized picture in
parallel or sequentially are discussed. Sequential local operations are described which label the
connected components of a given subset of the picture and compute a *‘distance” from every
picture element to the subset. In terms of the ‘‘distance’’ function, a “‘skeleton’ subset is de-
fined which, in a certain sense, minimally determines the original subset. Some applications of
the connected component and distance functions are also presented.

1. Iniroduction

Computer programs for processing digitized pictorial information have received
increasing attention in recent years. Much of the work done in this field has in-
volved performing “local” operations on picture “neighborhoods.” As several in-
vestigators have shown, a wide variety of picture processing transformations can be
accomplished by applying such operations independently, or “in parallel,”’ to each
element of the given picture.

In this paper it is suggested that local operations performed on picture elements
taken in a definite sequence, using at each step the results obtained by operating on
the preceding elements in the sequence, may be preferable to the parallel approach
in some cases. It is shown that the parallel and sequential approaches are mathe-
matically equivalent, and that the latter should be competitive in plocessmg time
required if a sequential computer is used.

“Sequential” local operations for performing two basic picture transformations
are next described. The first of these labels the connected compdnents of any given
picture subset, while the second determines the “distance’” (in a certain sense) from
every picture element to the nearest element of a given subset. In connection with
the latter transformation, a “skeleton’” subset is defined which can be used in place
of the given subset to generate the same transformed picture by applying the “re-
verse’’ local operations sequentially. Examples of the outputs of sequential com-
puter programs which perform these transformations are given.

In the concluding sections of this paper, various applications of these basic
picture transformations to the analysis of picture subsets are indicated. Programs
are described which construct the graphs corresponding to dissections of a picture
into regions and which determine the orders of connectivity of the multiply con-
nected regions. Two approaches to the discrimination of elongated from non-
elongated regions or parts of regions using the distance transformation are pre-
sented, one of them involving components of the skeleton subset.

2. Sequential and Parallel Neighborhood Operations

T1. Operations on digitized pictures

A digitized picture, for the purposes of this discussion, is a finite rectangular
array of “points” or “elements,” each of which has associated with it one of a dis-
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crete finite set of “values.” If the array has m rows and n columns, any “point” in
1t is specified by a pair of numberg L7 (1=7sm 1< J = n) denoting its row
and column. The picture can thus be represented as an m by n matrix in which
each entry a;; has one of the “values,” Sy Ui, -+, ue. In practice, m and n are
usually not greater than 20 and [ is rarely greater than 2°. We assume in what
follows that the values are nonnegative integers.

By an operation on digitized picture is meant a function which transforms a
given picture matrix into another one. A genera] function of this type has mn

By a local operation or neighborhood operation on g picture is meant a function
which defines a value for each element in the transformed picture in terms of the
values of the corresponding element and g, small set of its neighbors in the given
picture. For example, such operations can be defined using a neighborhood which
consists of the given element and its eight immediate neighbors; an operation of
this type has only nine arguments and is of the form '

*
a5 = f(ai—-l,f-l » Qi1,5 Qiy g, Qi,i-1,y Gq,5, Fiyit1 5 Qiga,j Qitl,iy Gig1,541).

In what follows only operations of this type are considered.!

Local operations can also be used to define locg] properties of a picture. If fa; ;—
ai; is a local operation, one can speak of the property that al; = v, where v is g
picture element value.,

It is sometimes convenient to consider operations which involve more thar one
picture at a time. Strictly speaking, however, this is no more general than operat-
ing on a single picture. In fact, we have:

LeMMma.  Let (ai;), (bi;) be m by n pictures; then there exist an m by n picture
(ci;) and two Junctions g, h such that 9(eis) = ag, h(ci) = bi; for all z, J.

Proor. Letc;; = 9% 3%, so that C:; 1S & positive integer; let g = ¢, y ho= ¢,
where ¢, , ¢; are defined for positive integer z by

$2(x) = max {k | & honnegative integer; 2° divides z},
$3(z) = max [k | & nonnegative integer; 3* divides ).

COROLLARY. Let I be any function which takes a pair of m by n pictures into an m
by n picture, say F((aiz), (b)) = ¢ di;). Then there exist g picture (ci;) and a func-
tion 1 such that f*<c7,‘j> = (di;).

Proor. Take (¢i), g, I, as in the proof of the Lemma and define f*(c,-,-) =
fQgeis), hici)).

Bvidently thig argument generalizes immediately to operations on any number
of pictures. Note also that if Jislocal—in other words, if d;; depends onlyona; ;,;;,

! The function £ is not defined for “border” picture elements which do not have all eight
neighbors. To avoid such exceptions, one can “augment’’ the picture matrix by adding a
zeroth row and column, an (m-+1)-st row and an (n+1)-st column, giving these fictitious ele-
ments a value which does not occur in the ‘‘real” picture array, and defining the function ap-
propriately when some of its arguments have this value. In many of the cases considered in
what follows, one can avoid this complication by simply adding to the definition of f the phrase
“for whichever of these elements is defined.”’
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o @igrgp and on by sy, - -, brprjer—then ¥ is also local, since c¢;; depends
only on a;; and b;; . ' |
When processing a picture using local operations, it is often convenient to store
the results of intermediate processing steps as auxiliary pictures. By the Lemma and
the last remark, local operations involving such auxiliary pictures can be regarded
as operations on a single picture. In Section 3 and in the Appendix repeated ad-

vantage is taken of this convenience.

2.2 Parallel operations

Many useful transformations of a given picture can be achieved by performing a
single local operation, or at most a few of them in succession, on each point of the
picture. For example, a “noisy” picture can often be effectively “smoothed,” or an
‘“unsharp’ picture ‘“‘enhanced,” by a single neighborhood operation which takes a
local average or computes a finite-difference Laplacian. Similarly, a picture which
contains thick ‘“roads” (lines or curves of points having given values) can be
“thinned” by iterating a “border element deletion” operation, perhaps alternated
with a smoothing operation, where the number of iterations required is relatively
small since the roads are narrow compared to the picture size. Transformations of
these types have been demonstrated by Dinneen [1], Kirsch [2], Unger [3], Nara-
simhan [4] and others. These operations can also be used to define picture subsets
consisting of points which have smooth or broken neighborhoods, lie on edges or
roads, and so on.

Each of the local operations used in the examples just given is performed inde-
pendently on every point of the picture. The arguments (@i-1,j—1, "+, @it1,541)
are always the original picture matrix values; the new values ai; = f(@is1,j1,

<, Qiy1,541) are stored, but are not used until the operation has been performed
for every (7, 7), when they then become arguments for the next operation (if any).
Since the sequence in which the points are processed is thus entirely irrelevant, the
operation can be thought of as being performed ‘in parallel,” simultaneously for
every picture point. Extensive consideration has in fact been given to the design
of computers which actually do perform identical operations simultaneously on
each of a large number of stored quantities. Even when processing digitized pic-
tures on conventional sequential computers, many investigators have used pro-
grams which simulate the operation of such “parallel” machines.

The wide variety of picture transformations which can be performed using local
operations applied in parallel has given rise to the widespread belief that this ap-
proach is optimum for local picture processing in general. In this paper the counter-
suggestion is made that an alternative type of processing, in which sequential appli-
cation of local operations plays a crucial role, is equally general in scope, and may
even have significant advantages, particularly when processing is being done on a
sequential computer.

The concept of a Sequentially applied neighborhood operation will be defined in
what follows, and the relative merits of the parallel and sequential approaches
considered.

2.3 Sequenlial operations

Suppose that a local operation is applied to the points of a digitized picture in
some definite sequence. For simplicity, suppose that the points are processed row
by row beginning at the upper left—that is, in the sequence an, @2, -+, Gia,
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Gty * "y G2ny ", Gmi, ©c 0, Gma . Unlike the cases described in Section 2.2, |
however, suppose that as soon as a point is processed, its new value rather than the
original value 1s used in processing any succeeding points which have it as neighbor.
If this is done, the general form of the operation becomes

* * * * *
ai; = f(@i-1.5-1, Qi1 Qim1,j41 s Qivjei s Qi y Gijat , Gitliml, Gigd,j, Gitl,j41)

since points (¢—1, j—1), (¢—1, j), (i—1, 741) and (4, j—1) have already been
processed, while the remaining points have not yet been processed. Such an opera-
tion will be called sequential.

The particular processing sequence just described will be called the (forward)
raster sequence. There will be occasion in the next two sections to use other se-
quences as well.

At first glance, this type of operation seems more complex, and hence presumably
less basic, than the “parallel” type, which uniformly uses “old” values until the
entire picture has been processed. However, it is easily shown that the two types
of operation are entirely equivalent in the sense of the following.

THEOREM. Any piclure transformation that can be accomplished by a series of paral-
lel local operations can also be accomplished by a series of sequential local operations,
and conversely.

A proof of this Theorem is given in Appendix A.

In the proof, it is shown that any parallel local operation is equivalent to just
two sequential local operations; but to guarantee that a sequential local operation |
is matched by parallel local operations, a long sequence of the latter may be re-
quired. In practice, one can often obtain the result of a sequential operation using
relatively few parallel operations which produce the result without following the
stepwise progress of the sequential operation. However, it at least appears plausible
that there exist picture transformations which are more efficiently performed using
sequentially applied operations, particularly if a sequential computer must be used.

As an illustration, consider the distance transformation defined in Section 4.
It can be performed by two sequentially applied local operations, involving a total
of 2mn individual local operations. On the other hand, it is easily verified that this
transformation can also be accomplished by applying the local operation

f(a/i,j) = min (ai—l,fJ Qiy1,5, Qi 5—1, ai,i-H) + 1 if i, j = O: f(O) =:- O)

m-+n times in parallel to every picture element. If this is done on a sequential com-
puter, it involves mn(m+n) individual local operations—that is, (m-+n)/2 times
as many as required by the method of Section 4. Note, however, that if a parallel
computer is available, it need perform only m-+n local operations on the picture in
parallel, a saving by a factor of 2mn/(m-+n) over the method of Section 4. Thus
if m = n, parallel processing on a parallel computer is n times faster than sequen-
tial processing on a sequential computer; but this in turn is n times faster than
parallel processing on a sequential computer even when this efficient parallel
method of performing the transformation is used.

3. Sequential Operations for Connected Component Discrimination

A set of sequentially applied local operations which ‘“labels” the connected com-
ponents of any given picture subset is described in this section. For simplicity, it is
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Fie. 1. Examples of connected and nonconnected sets

assumed that the given subset consists of picture elements which have value 0,
while every other element has value 1. The results can be immediately extended to
subsets consisting of elements which have any given property; it suffices to first
transform the picture using the characteristic function of the complementary
property. '

3.1  Connectivity

A subset of a digitized picture is called connected if for any two points P and @
of the subset there exists a sequence of points P = Py, Py, Py, -+, Pu1, Pn = Q
of the subset such that P;is a neighbor of P;_;, 1 < 7 £ n. In Figure 1(a), the set
of 2’s and the set of blank points are both connected; in Figure 1(b), the z’s are con-
nected but the blanks are not; in Figure 1(¢), the blanks are connected but the
@’s are not. For these examples, the definition agrees with the intuitive concept of
connectivity. On the other hand, both the 2’s and blanks in Figure 1(d) are con-
nected, which runs counter to intuition. This results from the fact that a point is
connected to any of its eight neighbors, including the diagonal ones. If connec-
tivity were redefined to require that P; be one of the four horizontal and vertical
neighbors of P;_;, both the z’s and blanks in Iigure 1d would become disconnected,
which is still not consistent with intuition. The “paradox” of Figure 1d can be
rephrased as follows: If the “curve” of shaded points is connected (“gapless”),
it does not disconnect its interior from its exterior; if it is totally disconnected, it
does disconnect them. This is of course not a mathematical paradox, but it is un-
satisfying intuitively; nevertheless, connectivity is still a useful concept. It should
be noted that if a digitized picture is defined as an array of hexagonal, rather than
square, elements, the paradox disappears; this is because in the hexagonal case an
element has an edge in common with every one of its six neighbors.

In general, a subset of a picture (say the subset of “0” points) consists of a num-
ber of connected parts or components.®> The problem of distinguishing among these
components is now to be considered. Specifically, it is desired to construct a trans-
formed picture in which the O points have new values v;, - - -, vx (positive integers
each greater than 1), two points having the same value if and only if they belong
to the same connected component of 0 points on the original picture.

Neighborhood operations lend themselves naturally to the study of connectivity,
since it is defined in Terms of neighbors. If the operations are applied in parallel,
it is not easy to distinguish among connected components, since the parallel opera-
tions treat every point of the given set identically. Using sequentially applied
operations, however, one can ‘“‘track’” each connected region, assigning a value to
each point of it as the tracking proceeds. If two of the tracked regions merge, a

2 Formally, these components are the equivalence classes of picture points defined by the
relation ‘‘is connected to’’ (that is: ‘‘is a neighbor of a neighbor . . . of a neighbor of’’), which
is evidently an equivalence relation.
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special value is assigned. Further processing is then applied to these special values
<0 as to eliminate redundant values from the picture.

In Section 3.2 a sct of sequential local operations is defined which assigns to every
point of each connected region on the picture a value which labels the region. In
Section 3.3 a computer program is described which generally follows this sequence
of operations but which does not, adhere strictly to the requirement that only local
operations are permitted, and which in consequence is considerably more efficient.

3.2  Sequential operations for determining connected components of a prcture
Let f be the local opemhon which takes a; ; into a: ; defined by:
(a) Ifa.; = 1, thenar,; = 1.

(b) If a;; = 0, and a;:‘_.l,j_l = a;—l,j = az_l,,-g = q. ;1 = 1, then ai,,- = U,
where vy, is one of a set of as yet unused labels. (This indicates that a;,; is possibly the
start of a new connected component of 0’s. If it is not desired to allow an operation
which can draw on a set of labels in this way, one can simply use 2 37 as the label;
these labels are automatically dlstmct f01 all 7, 5.)

(¢) If a;; = 0 and each of Qi it ; Qi1 , @iey s41 a0d a. ;1 is either 1 or some
ve (but not all of them are 1), then at, ; is the smallest of the v’s. (If there is only
one v , this indicates that a: ; belongs to that same component. If there is more
than one, it indicates that two or more components were actually parts of the
same component. )

Turthermore, let f also create an auxiliary picture (b;;) in which b;; = 1 when
more than one v is involved in case (¢), and b; ; = .0 otherwise. (These 1’s thus
label points at which two or more components have “merged.” It is clear that (b:;)
could be combined with (ai ;), if desired, by the method of the Lemma in Section
2.1.) When f is applied to a binary picture sequentially, e.g., in forward raster se-
quence, it labels the 0’s in such a way that 0’s which get the same label must belong
to the same connected component; note, however, that the 0’s in a given component
may have several labels.

To complete the task of labeling the connected components, it remains only to
eliminate all labels which have merged with other ones. For example, if v, has
“met’’ v, , where v, < v, , one should replace all the v,’s prior to the meeting point
with v,’s.

1f one were not restricted to performing only local operations on the picture, it
would be fairly easy to eliminate the redundant labels by processing a list of the
redundant pairs. A method for doing this is described in Section 4. In the remainder
of this section, elimination of redundancies using local operations only is described.

After f has been performed, the redundancies are identified by 1’s in (b;;) at the
points where they were detected. To eliminate a redundancy, say of v, with v,
using only local operations, it is necessary to convey the information tlmt v, “‘equals”
v, to the neighborhood of every point (7, j) of the picture, so that if a:,; has value
v, it can be replaced by v, . This is done for one redundancy at a time by proceed-
ing as follows.

(1) Pick the first redundancy not yet processed. This can be done by applying a
Jocal operation to (b;;) inzigzag sequence (1, 1), -+ -, (I,n), (2,n), -+, (2, 1), (3, 1),

-(3,n), .-, (m, 1), o, (myn) ifmisodd; ---, (myn), -, (m1)ifm
is even. This operation g takes (b;;) into (bi‘j), and also generates an auxiliary pic-
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ture (e;), such that b1 = cip = 0 and the succceding clements are defined as%
follows: 1
For (¢, 7) 5= (1, 1), let (', ;) denote the predecessor of (7, 7) in the zigzag
sequence.
Ifcir jo = b;; = 0, Lhenbi]= c,J=O.
If co j —Oandb”——l thenb,jmoclndc”:l.
If ¢ = 1 or2, then bm = b;; and ¢;,; = 2.

Thus g “erases” the first 1 in (b;;) (“first” in the sense of the zigzag sequence)
and stores a 1 in the corresponding position in (c;;). (Note that the first 1 in (b:;)
cannot be in the first row, since components cannot yet have merged; hence setting
bii = c1 = 0 issafe.) As soon as it has done this, it stores 2’s in (c;;) thereafter;
this keeps it from mistaking subsequent 1’s in (b;;) for “first.” The reason for
~ using the zigzag sequence is to ensure that (¢, 7') is always a neighbor of (4, ), so
that g is local.

(2) “Transmat” the information about thes 1edundancy to every pomt Let ¢,y = 1,
and let v, <v, = v, = v, be labels of - 1 Gt v Gy, y410T a v—1- Itisdesired to

- express the fact that the labels v, , v, , v, are to be replaced by v, . This can be done
by using the integer v = 2°73°?%5""7"°% as a label, since this integer carries the values
Up, Vg, Ur, Us 1D retrievable form, as well as indicating which of them is to replace
the others. To get this information to every point, one constructs an auxiliary
picture every element of which has value ». Specifically, one defines the local opera-
tion Ay, taking (c;;) into (d;;) such that di; = 0 and:

If dir j» = Oand ¢;,; £ 1, then d; ; = 0.

If dirjy = 0 and ¢;,; = 1, then d;; = v, where v is defined in terms of the ele-

ments a;1,j1, Gi1,7, Gi1,;41 and a;, ;1 as described just above.

If dy ;» = v, then d; ; = v.

Thus /1, applied in zigzag sequence, constructs a picture (d;;) in which every
element after the 1 in (¢;;) is v. (In particular, d,,» = v.) To make the remaining
elements v’s, one need only apply a simple local operation ks, in reverse zigzag
sequence. Let (7, j”) denote the pledecessor of (4, 7 ) in this sequence, and let
Ry take (di;) into (df) such that di . = dw. = v, and di; = v whenever d;» ;» = v.

(3) Use this information to correct the redundancy. It remains only to deﬁne the

function by
7 . /
hiai;) = v, if a; ;= vg,v,0r0,
4 I .
has,;) = a; ; otherwise.

This is a local operation—indeed, it operates only on a single (¢, 7) at a time—
since (di.;) has brought these v’s to every (¢, 7); it can be applied in any sequence

The resulting tlansfmm of (a:;) has all its v.’s, v,’s and v,’s replaced by v,’s, and is
otherwise the same as au .

We now repeat the process described in (1)-(3), but starting with the new (a:;)
and with (b:;). Application of ¢ in zigzag sequence now erases the first 1 in (%),
say b.» (which was the second 1 in (b;;)), and leaves the rest of it unchanged; it
also constructs a new (¢;;) with a 1 in the (2, w) position. Application of i; and A,
then yields a new (d7;) with appropriate label v (not the same as the previous v).
It is quite possible that the redundancy at (2, w) involved only v,, v,, v, or v,
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and is now eliminated; in this case the new v reduces to 2, and application of A
does nothing to (ai;). In any event, this second cycle of (1)-(3) yields an (ai,-) in
which further possible redundancies have been eliminated.

Let this entire process be repeated as many times as necessary. (One can, of
course, stop when there are no more I’s in (b;;), but if only local operations are in-
volved, this can only be detected by, performing a counting operation on (b;;)
after each iteration. Certainly mn repetitions—in fact, considerably fewer—will
suffice to clear up all the redundancies in (a:;).)

In summary: Given (a;;) in which every element is 0 or 1, one can construct
(a.;) in which every connected component of 0’s has a unique label by proceeding as
follows: '

(a) Apply f to (ai;) in (e.g.) raster sequence (zigzag would do just as well).
(b) Iterate the following sequence mn times: (¢ in zigzag sequence; h; in
zigzag sequence; hy in reverse zigzag sequence; k in any sequence).

3.3  Programming considerations

A practical computer program for determining connected components along the
lines described above need not be as elaborate, since it need not restrict itself to
local operations alone. Some immediate shortcuts, once other types of operations are
permitted, include the following:

(a) The “redundancies” can be stored as a fable “outside” the picture; this
greatly reduces storage requirements.’

(b) Elimination of redundancies can be performed by processing this table.
When this has been done, the redundant picture element labels can be “translated”
into irredundant ones as the very last step, by making one scan of the picture,
“looking up”’ each value in the processed table and substituting the equivalent
irredundant value if different from the given value.

(¢) The table can be processed in many fewer steps than are required to process
redundancies within the picture, since (1) the table is in general much smaller;
(2) when a redundancy is being “reduced,” it need not be ‘“‘carried” through the
table, since processing is not constrained to neighborhoods within the table; (3) it
is easy to stop the processing when the table is exhausted, rather than blindly
repeating it mn times.

In the light of these simplifications, a program for labeling connected components
can proceed as follows: ‘

(1) Apply f as described in Section 3.2; but rather than generating an auxiliary picture (by;),
simply store the redundant labels in the first unused place in a table 7. The 7th entry in
this table thus has the form (v, , vo;, vey, v4), Where vy, < Vg, S vs; S vy

(2) To process the table:
(a) Order the emtries lexicographically (in order of increasing first value; for each of these,
in order of increasing second value; and so on).
(b) Store (Up, , Vg, ¥r, ¥s) in a second table 7. In the remaining entries, replace every
2, Un and vy by v, . Reorder each entry (if necessary) to re-establish v, < vy, S v
vy ; i all terms are equal, eruse the entry.

3 Since auxiliary tables which contain stored information about the picture are used in this
and the following steps, the operations performed are no longer local; the table makes avail-
able information about picture elements which are not neighbors of the element being proc-

essed.
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Repeat steps (a) and (b) until every entry has been erased or stored in 7. When this is
finished, T consists of a set of entries in lexicographic order. The first term of each entry
is the smallest representative of an equivalence class of redundant values; the remaining
terms of the entries which have first term v are the remaining elements of its equivalence
class.

(3) Scan the picture in any sequence, comparing the value of each element with the entries in
7". Whenever a value is found to be in 7”,.but not as a first term, replace it by the corre-
sponding first term. (If desired, gaps in the sequence of labels can be ‘‘closed up’’ before
output.)

Note that this program consists basically of a single sequentially applied local
operation (step (1), except that the redundancies are stored outside the picture
to simplify the remaining steps), followed by sequential processing of the table and
sequential relabeling of the picture. The approach is still essentially sequential,
even though for simplicity the restriction to “pure” neighborhood operations has
been relaxed. )

An IBM 7090/94 program along these lines has been written and tested. The
program, originally written in the Fap symbolic assembly language, has been
adapted so that it can be called as a ForTrAN subroutine. It accepts as input a
digital picture on magnetic tape. Each record on the tape contains information
about one row of the picture. A picture element can have any value from 0 to 2°—1,
and each row can consist of up to 2,000 elements. The number of rows is limited
only by the capacity of the tape.

The program selects any prespecified rectangular subpicture (rows » through
r=4u, columns s through s-+v, for example). It slices the picture element values
between any two prespecified levels 4, & (0 < 4 < £, < 2°—1), treating all
values between {; and ¢, as 0 and all values outside the range as 1. The program then
proceeds to label the connected components of the set of 0’s essentially as described
above. The labels used for processing are simply the integers. For printout purposes,
only the 46 distinct labels

ABCDEFGHIJKLMNOPQRSTUVWXYZ123456789+—/=|.) $+,(

are used, in that order. If there are more than 46 connected components, these
symbols are used over and over again, as many times as necessary. The output is a
matrix of alphanumerics in which the symbol printed at each 0 point is the label
of the connected component which contains the point; 1 points are left blank. A
labeled version of the picture is also written on tape for input to succeeding process-
ing routines.

An example of a simple picture input to the prograni is shown as Figure 2 (1 =
black, 0 = white). The corresponding output for this picture is shown as Figure 3.
In this picture, the component labeled I, for example, had three labels in the original
processing, since it was detected as a possible “new” component at each of the
three elements which are circled in the figure. Component D obviously had many
labels originally, while components A and C had unique labels throughout the
processing.

4. Sequential Operations for Distance Determination

Several investigators over the past decade have considered picture transforma-
tions in which a given subset is “propagated’” over the picture, or dually in which the
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Fra. 2. Picture input to Fra. 3. Connected component transform
processing programs of Figure 2
subset 1s examined by an expanding array of sensors. (For the latter approach see
y 5] antt Singer [6-8]; y St I 1 : digital
Harmon [5] antt Singer [6-8]; compare also Stevens [9].) In early work on igita
picture processing (Kirsch [2]), a transformation of this type was performed by a
sequence of local operations performed in parallel; this approach requires two
operations for each incremental propagation step. More recent discussions of this
type of transformation and its implications for shape description may be found in
. e o . M -
several papers by Blum [10-12] (see also Kotelly [13]), who also considers the pos-
sible role of such transformations in visual form perception.
[ 3§ 308 L3 18 1) " M . M . . M . (€4 N )y
Propagating” a subset over a picture is tantamount to finding the “distance,
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in the sense of the propagation process, between the subset and each point of the
picture. In this scction a simple “distance’” concept, appropriate to digitized pic-
tures, is introduced, and a transformation is defined which determines the distance
from every picture eclement to a given subset.

4.1 Daistance .

Let P and Q be any two distinet points in a digitized picture, and let (P, Q)
be the smallest positive integer such that there exists a sequence of distinct points
P =P, Py, -, P, =Q with P; a neighbor of P;,_y, 1 =+ = n. This d* is
called the distancefrom P to Q;if P = @, the distance between them is defined as zero.
The distance from P to a given subset S of the picture is defined as the smallest
of the distances from P to the points in S. ’

Like connectivity, the distance concept is defined by iterating the property of
being a neighbor. Here, however, the minimum number of iterations required -to
“reach’” @ from P is of interest, whereas in the case of conuectivity, the question
considered was whether @ could be reached at all from P using only points in a
given subset as intermediate points. As was pointed out for connectivity in Section
3.1, a distance can also be defined using only horizontal and vertical neighbors
as “steps.” If d(P, Q) is the distance from I’ to @ using this more restricted defini-
tion, it is clear that d = d*. For simplicity, the restricted definition is used in the
remainder of this paper.

Evidently, d(P, Q) (and similarly for d*) has all the properties of a metric.t It
should be emphasized, however, that d is not cven approximately the Iuclidean
distance. In fact, the locus of points at a given distance d > 0 from a given point
P is a diagonally oriented square of side d-+1 centered at P, rather than a circle.?

4.2 Dislance lransformalion

Given a digitized picture whose elements have only the values 0 and 1, it 18
desired to construct a distance transform of the picture in which each element has an
integer value equal to its distance from the set of 0’s. (It is assumed that the set of
0’s is nonempty.) Thus in particular, the 0’s remain unchanged, since they are at
zero distance from themselves; the 1’s which are horizontal or vertical neighbors of
0’s also remain unchanged; the 1’s which are horizontal or vertical neighbors of
such 1’s become 2’s; and so on.

This transform can be performed using just two sequentially applied local opera-
tions as follows. Let

filai;) =0 if ai; =0,
= min (ti—1,; + 1, a5 + 1) if (47) # (1,1) and a;; = 1,
=m+n if (4,7) =(1,1) and a1 =1,

fola: ;) = 1hin (ai;, @i + 1, ¢ + 1),

Ay
Since no two points of the picture can be distance m-+n apart, we know that a1
is at a distance less than m-+n from the set of 0’s, if this set is nonempty; thus the

¢+ It is positive definite by definition, and is clearly symmetric (the reversal of a sequence
from P to @ is a sequence from @ to P and vice versa). Moreover, since any two sequences
from P to @ and Q to R, respectively, can be put end to end to give a sequence from P to E,
it evidently satisfies the triangle inequality. .

s 'or the metric d*, the corresponding locus is an upright square of side 2 d+1 centered
at P.
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final value of a1 (or of any other element labeled m+n by f1) will be the value
assigned to it by Jz .

TaroreM. Let C = (c; ;) be the picture which results when f1 s applied to the prc-
ture A = (as,;) tn forward raster sequence, followed by [ in reverse raster sequence.
Then C 1s the distance transform of A.

Proor. Note first that if ¢;,; = 1 and a horizontal or vertical neighbor of a;,;
is zero, evidently ¢;; = 1, and conversely. Suppose now that c; ; is equal to the
distance from the (7, ) element to the closest zero element in 4 for all (4, 7) such
that this distance is less than k. Let B = (bs:,;) be the picture which results from
applying f1 in forward raster sequence to 4. If wmmwmxp\_mm%is
the distance from the (7, ) element to the nearest zero must be at least k. If it is
greater than k, by definition of distance it must be at least k for each of the (7, 7)
element’s horizontal and vertical neighbors. In particular, ¢i1,; and ¢i i1 each are
greater than or equal to k, so that ci,; = k implies b;; = k by definition of f;.
But then bi_i,; or b.;_1, say the former, must be k—1 by definition of fi, so that
ci1,; < k — 1; contradiction. )

The distance transforms for a circle, two rectangles’ and regions F, J and K of
Tigure 3 are shown as Iigure 4. These transforms illustrate the output of an IBM
7090/94 program, written in Fonrrran, which accepts nput digital picture data
as described in Section 3.3. For simplicity, only the odd distance values are printed
out modulo 10, while the even values are left blank; the points with value zero are
printed as X’s. .

;
i

4.3 Distance skeleton / ,
Blun1 has suggested [12] that the locus ff points at which the propagation wave
1

front “intersects itself” may be perceptually important. This locus defines a sort of
“gkeleton” (Blum: “medial axis’) for the original picture. In this subsection, a
skeleton subset is defined for the distance\transform introduced above,” and it is
shown that this skeleton is the smallest subset of the transform picture from which
the entire transform picture can be reconstl"c@reversing” the distance-
measuring process.

Define the local operations ¢; and g, by

¢1(a;) = max (@i, Gijm — 1, @i,y — 1),
g‘z(ai,j> = max (a:,j, Gij41 — 1, Qg5 — 1)'

Let G:i(P) be the picture which results when g; is applied to P in forward raster
sequence; Go(P), the result of applying g» to P in backward raster sequence; and
G(P) = G(Gi(P)).

Lemma 1. If A is any picture and G(A) = (ci;), then all of | ¢y — ¢t l,
leij — Cogarly | €y — Cimrj| and | cii — Ci.i—1 | which are defined are less than or
equal lo 1. -

Proor. Let 4 = (a:;), Gi(4) = (bi;). By definition of g1,

bi; = bija—1 and bi; = bia,; — 1, for all 7, 7,

s The two rectangles actually have the same proportions; the difference between their shapes
in the figure results from the unequal horizontal and vertical size of a character space. The
circle appears distorted for the same reason.

11t should be emphasized that since the distance considered here is non-Euclidean, as
already pointed out, the resulting skeleton is not likely to have any special significance for
visual form perception; however, it is still a useful picture processing tool.
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so that
bi i1

Similarly, by definition of

Ci,j =
£

2

Ci,i—1 Cy

where Go(B) = (ci5).

1

Ci i — 1,

F 1)

IN

F,

bij — 1 and big; = b;

DIGITAL PICTURE PROCESSING

J, X of Figure 3

F 11

== s

Ciy1,; — 1,

Ci—1,5 = Ci.; — 17
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Fie. 4b. Distance transforms of components

for all ¢, 7.

g2 we have for any B = (b;;) and for all 1, j,

If it can be shown that the above relations on the b’s remain true when the b’s
are replaced by ¢’s (that is, when g, is applied), the assertion made in Lemma 1 will

follow immediately, since (e.g.) ¢; ;1

alent to | ¢i,; — ¢y | £ 1.

= ci.]’”~1

and ¢; ;

¢i,j—1 — 1 are equiv-

Suppose that these relations hold for all the c¢’s through the (7, )-th in the sense
of the backward raster sequence. Since g can never decrease the value of a picture
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element, we have 0; ;4 = b;; + 1 = ¢;; + 1. By the induction hypothesis,
Cit1,-1 — 1 = ¢i1,5, and by the relations on the ¢’s, this is less than or equal to

¢;.; + 1. Hence
Cijmt = max (bij1, ¢y — 1, copnjor — 1) S ciy + 1,
proving the induction step. Finally, -
Cnon1 = MAX (bmnei; Cnn — 1) £ maX (Dun + 1, Cin + 1) = G + 1,

and similarly ¢n 1, £ ¢nn + 1. This completes the proof.

Lemma 2. Let A be a picture such that a;; = ai;1 — 1 and Gij = Qiq,; — 1
Jor all 1, j; then Gi(A) = A. Similarly, if A is such that a;; = a;, i+1— 1 and
ai,; 2 Qiga,; — 1 for all 2, 7, then Go(A) = 4. .

Proor. Clearly gl(au) = au. If Gi(4) = A for all elements up to the 7, jth
(In the sense of the forward raster sequence), then

gl(a,:,j) = max (a,:,j, gl<a-i,j—1> -1, gl(ai—l-i> - 1)
= max (a;,;, aij-1 — 1, @iq,; — 1)

by induction hypothesis, and this equals a,,; by the original assumption about 4.
The proof of the second part is exactly analogous.

CoroLLARY. Gi(Gi(4)) = Gi(4), Gu(Gi(4)) = Gx(4) and G(G(A)) =
G(A) for all A.

Proor. By the proof of Lemma 1, G;3(4) has the properties of the first part of
Lemma 2, so that Gi(G1(4)) = GI(A) similarly for G2(4). By Lemma 1, G(4)
has the properties of both parts of Lemma 2; hence by Lemma 2 G(G’(A))
G(Gi(G(A4))) = G(G(4)) = G(4).

Leaa 3. The distance transform of any picture has the property of Lemma 1.

Proor. By the Theorem of Section 4.2, in such a picture each element value
is equal to the distance from the element to a zero-valued element, and clearly
these distances for an element and any of its neighbors can differ by at most 1.

CoroLLaRY. [If T is any distance transform picture, G(T) =

Proof. The proof is as for the Corollary to Lemma 2.

Lemma 4. Let A = (aij), B = (bi;) be pictures such that ai,; = b;;foralli,g.
Let G(A) = (ci;), G(B) = (ds;), and let any = by = dps for some h, k. Then
An ke = Chik .

Proor. Lvidently we must have ¢;; < d; for all 7, 5, so that c, i S dhy =
anx - But G never decreases the value of a picture element; hence ay S Chi -

If P = (p:j) is any picture, P’ = (p;;) will be called a partial picture of P if
pi.; = pi;or 0.for all 4, 7.

CororLLARY. L&t T be any distance transform picture, T" any partial picture of T.
Then all the elements of T which are equal to the corresponding elements of T are in-
variant under G.

Proor. Take 4 = T°, B = T in Lemma 4. By Lemma 3, b;,; = d; ; for all

7, 7; hence for all axs such that anr = bax we have a, = cuy as required.
Lemma 5. Let A = (ai;) be a picture, G(A) = (ci;), and let ani < V; let
Cht k5 Chk—1, Chilk, Chit1 all be less than or equal to V. Then chy < V.
Proor. Let Gi(4) = (bi;). Since Gy never decreases the value of an element,
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we have b = G =V, bipr £ e <V, 50 that
Z)/{,/; = max (aM, bh—l,k — 1, b/L,k—l — 1) < V,
and
Cn = Max (b/;,k, b;(_;.l,k - 1, Z)/L,k+1 - 1) < V.
If 7= (t,]) is a distance transform picture, the partial picture 7% = (&)

defined by ¢f; = t.;, if none of £, gy biwtg, b s tij4118t;,; + 1; 0, otherwise,
will be called the skeleton of T'. In order words, 7™ is the sct of local mazima of the
distance transform. We assume that 7' is not the trivial picture every element of
which has value m-+n.

Turorey. G(T*) = T, and f 7" s any partial pactwe of T such that G(T'). =
T, then T* 4s a partial picture of T'. In other wor ds, T* is the partial picture of T
with fewest nonzero elements such that G(77%) = 7.

Proor. If P is any picture with integer-valued elements, let Pi be the set of
elements of P which have value k. Let NV be the highest value of any element of T,
then by definition, (7 )N = Ty, so that by the Comﬂaly to Lemma 4, G(T™)y =
Tw . Suppose that G(T™ )y = T sra1 . By definition, 7% contains every element of
value M which has no element of value M-+1 as a 11e1ghb01 i T (or equivalently,
in G(T™)), and by the Corollar y to Lemma 4, G(T™) still contains these elements.
On the other hand, if & x = M and has a neighbor in G(7™) with value M1,
then by definition of G, the (&, k) element in G(G(T™)) has value at least M.
But G(G(T™)) = G(T*) (Comlhly to Lemma 2), and by the proof of Lemma 4,
the (%, k) element in G(T™) can have value at most that of the (h, k) element in
G(T) T' (Corollary to Lemma 3); hence every such element has value M in |
G(T™), proving that G(T*) s = Ty . This induction argument proves G(7™ )k =
Ty for all k(= N, N — , 1, 0), so that G(T™) = T. Conversely, let 7" be
any partial picture of 7' such Lhat G(T") = T, and let thx be an element of T of
value A/ > 0 which has no neighbor in 7' of value /-1 and which fails to be in 7".
Then the values of its neighbms in G(7") = T are less than or equal to M (Lemma
1), while its value in 7" is 0 < M, so that by Lemma 5 its value in G(T") is still
less than M, contradicting G(7’) = 7. Thus 7" must contain every element of
T* of value greater than 0; this completes the proof.

Skeletons for the pictures of Figure 4 are shown as Figure 5. In this ﬁgule the
nonzero skeleton point values are printed out modulo 10. As the two rectangles in
Figure 5 show, the skeleton is not invariant under rotation. Note also that the Eu-
clidean skeleton for a circle would evidently be just the point at its center, unlike
the skeleton shown for the circle in Figure 5. :

vy
5. Applications: Connectivity and Proximity

The connectivity transformation described in Section 3 has several immediate
applications. Once a label has been assigned to each connected component of a
picture, it Is trivial to count the number of such components by simply counting
the number of labels which were used. (A special-purpose version of the connected
component program can be written which only counts the components but does not
label each element of each component; see Nuttall [14] and Sabbagh [15, pp. 43-48].




486

AZRIEL

ROSENFELD

AND JOHN

Zeaxzaxx x
BxasrtaExax x
paan anx ax
rsn I3Y xa
312 xxr LET}

3xe XkR0 22z

X%
arz
13
xz12
Xty
xx%
xxx
xxx
xxex
Xarg
xxx
[31
1 x
1 xx
2x3
xx
axr
rx3x
xxxx
Xxxx
xxxx
Txxx
Xxax
xx
X

x
Ix
zax
xEax
xxarx
XXX
XXX2X
XXXERA
XX XA
XXEX2
xxxx
XXER
axx
xx
xx

z

«

x

xx

xxx

Xxx

15z

axx 3x

xax  axx
Xxf Xrazx
2x2xx 23X
Xxanz ¥R

axe xxx
xxx xx
1xx1 xxz
1xx Xz
1xx Axx
xxx xxx
xxax xxx
xxx xx
xxx xxx
x¥xx axx
xxxy xxx x
x2x X3 ax
xx} xxx xxx
FE Y xxx xxx
x xxx xxxx
Xz xx
x1x Xanx
XEXx  xanx
ATXXARXXXER
XXXA XXKXXR
Xax xaxx
X1 xXxxu
xxx xxx
Exrx xn
axxxx xxx
Xxanz xxx
axxx 2xx
1x12 xxx
2 AxXX
x xxx
XXX x
xxx x
X2XX X
Xxaxx 1xx
xxxx zxK
xax xxx
xxx Xxxx
FEEL xxx
XXRX xxx
xxax xxax
XEx% xxx
XxAX 1x
XXX 3
XXXXX
AXxXIX
axAXXK
xxxx
axxax
xxax
xxxx
xaxx
rxxx
EET T
xxzRX
AXxX
x1g
xxx
xxxx
axx

AXRAX
XXXNXXX
XXXRXAX
x

x
XXX
XKxx
XxExAx
Xxexxx
xxz xax
xxx xxax
13 xxx
xxx xxx
a1 rxxxax
EXAXKLAR Xxxax
XNpELARX xx2x
XEraax

xxx
Xxa
XXX

Xxxxe
XXXXX
LEITY
Xgx2XX
AxxxE
XXAXKR
Xxaxn

xxzx

xxx

axx

xxax

L. PFALTZ

x xxx

x 132 Taxxax
s 1xx TAXREXXRARCL
xxx ATXXRTLTLRRTNL
1xxx AXXAXXXXAXAXXXXATA
LEEE] xx xixx xx1
xx31 xxxxx xxx§ Lexx
axx xxxxxxR xxxx 3 xxax
xax xax  xxx xxx s xxex
xxxz X xxx xxx ) 5 xxx
XXX x3x  atx xxx2 st 212
X3 Xz xx xxex 1 XXX
xxxxx XX x1x xxx an xxx x
AxxIR x1x xx xsz A z1t Xz
xxxxz xx xxx xxx u axx 2%
xxxxa xxx Xt x2x 14 xxx xxx
xxxxx 12 xxx xxxx 1 242 xxxx
x1a xxx 2xx xxxx o xxx 1K
1x 2x 1xx xxxx 5 xxx xxex
x XX XX xxt 5 xXxxx x2x
XEXXAX xxxx s xxx Xxx&
x2x% 2%z % xax xxx
H xxx 44 xxX 1xx%
XXX 4 gwax x22
xaxx 4 xxz xxx
XXt 4 xax xzx
I 4 XXK z2x
x4 xR X
xxx 3 xxx xxa
xaxxzx XEx0 3 xxs xxxx
IXXXXTAXLL xXxx ) xxX 2x%
XXLEXXTAAXAXX xXx 2 xxa axxx
XxXFX XNXXX XKL 2 AxAR xxxx
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Fic. 5b. Skeletons for Figure 4b

It 1s also possible to perform this blob-counting operation by a process of succes-
sively deleting from each component border elements which do not disconnect the
component until only one element per component remains®; for this approach,
which is easily imf)leniented using parallel local operations, see Kirsch [2], Minot
[16] and Izzo [17, 18]. A closely related approach, using accretion rather than dele-
tion, has been implemented by von Foerster and his colleagues [19-21].) One can
also measure the area of any given component by counting the number of times its

label occurs.

5.1 Adjacency and order of connectivity

Two somewhat less trivial problems which can be solved with the aid of the basic

¢ Provided that the components are simply connected; if they have “‘holes’’ in them, a more
complicated procedure is necessary.
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connectivity transformation are: (a) constructing the graph corresponding to a
given dissection of a picture into connected components, and (b) determining the
order of connectivity of a given connected component.

In the graph of any dissection of the picture, each connected component is repre-
sented by a single node or vertex; for simplicity, these may be taken to be the
vertices of a regular polygon. Two nodes-are joined by an arc (a side or diagonal of
the polygon) if and only if the corresponding components are adjacent. For many
purposes 1t is convenient to represent the exterior of the picture by a single addi-
tional node, which is considered to be adjacent to every component having elements
on the boundary of the picture. A graph with k nodes is completely specified by its
wncidence matriz; this is a k—1 by k—1 triangular matrix (a;;), 7 < J, in which
a;; = 11if the <th and jth nodes are joined by an arc; a;; = 0 otherwise.

In Figure 3, the connected components labeled A, ---, M, together with the.
connected components of the set of blank points, constitute a dissection of the
picture. Since the border of Figure 2 was black, the additional exterior component
is connected to all of these blank points except those in the belts immediately sur-
rounding regions I', G and J. The set of blank points thus has four components,
namely the one of which the picture border is a part and the ones surrounding F, G,
J. The nonzero entries in the incidence matrix of the graph of Figure 3 are shown in
Table I.

A computer program for constructing the graph of a given dissection is easily
written, once the connected components of the dissection have been labeled. It
suffices, for example, to examine every 2 by 2 subpicture and to enter 1’s in the

TABLE 1

Bar-  Bor- Bor-
Region der  der der ABC DEFGHTI JKLM
of T of G of]

Picture border 0 0 0 1111100110111
Border of 0 0 0001010000000
Border of G 0 0001001000000
Border of J 0001000001000

Fic. 6. Graph for Figure 3 Fic. 7. Proximity graph for Figure 3
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TABLE II
. Ord
Region Co7:rteecrtiz{ly

1 Boundary of picture 10

2 Boundary of region F 2

3 Boundary of region G 2

4 Boundary of region J 2
D 4

appropriate positions in an incidence matrix whenever such a subpicture contains
points which have two or more different labels. The graph of I'igure 3, constructed
in this way by a ForTRAN program and output by a tape-controlled plotter, is
shown in Figure 6. '

Once the graph has been constructed, it is easy to solve the second problem posed
earlier. It is easily seen that the order of connectivity of a connected component is
equal to the number of nonadjacent “pieces’” into which the picture is divided if the
given component is deleted. Evidently, this is just the number of connected com-
ponents into which the graph is divided if the corresponding node and the arcs
emanating from it are deleted. This number can be determined by examining the
incidence matrix of the graph after deleting the corresponding row and column.® A
ForRTRAN program which performs this analysis has been written; its output for
Iigure 3 is shown in Table I1. ’

5.2 Proximity

Closely related to the two problems just discussed is the question of defining a
“graph” for a picture such as Figure 3 ignoring the unlabeled “borders,” and con-
sidering two of the labeled regions as being “adjacent” if they are separated only
by a border. Intuitively, region I on Figure 3 is adjacent in this sense to regions B,
C and D, but region B is not adjacent to region D. The graph for the labeled regions
and “exterior region” of Figure 3 corresponding to this notion of adjacency is shown
as Ifigure 7.

The concept of adjacency in the intuitive definition just given requires careful
consideration. If the borders between regions in a picture all have approximately
the same thickness, the adjacency of two regions in this sense essentially reflects
their degree of prozimity; regions are adjacent provided they approach one another
within a distance just greater than the border thickness.l® As in the case of true
adjacency, this can be determined by examining all possible subpictures of the ap-
propriate size and entering 1’s in the incidence matrix whenever points with two or
more labels are contained within such a subpicture. The graph in Figure 7 was
drawn by a FortraN program which analyzed 4 by 4 subpictures of Figure 3 in this

nmanier.
e

$ This number could be determined directly from the picture as follows: Temporarily label
the points of the given component 1, the points of its complement 0, whether these points were
1 or 0 in the original picture. Apply the connected component labeling program to this new
set of 0’s and simply count the number of its components. However, it is much simpler and
faster to determine the orders of connectivity from the graph, once this has been constructed.

% One should certainly not define two regions as being adjacent if it is merely possible to go
from one to the other by moving through border elements only; by this eriterion, regions A
and B, B and D of Figure 3 would be adjacent, and K would be adjacent to the picture exterior.
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A more difficult problem is presented if the borders between regions are of varying
thickness. Itven in this case, however, one might proceed by determining the degree
and direction of the elongation of any segment of border (see Section 6.2). Adjacent
could then be defined as “separated by a segment of border which is tangentially
elongated.” This definition would be counsistent with the intuitive concept of ad-
jacency for the labeled regions of Figure-3.

It should be pointed out that the intuitive definitions of adjacency suggested in
the last three paragraphs are of more limited usefulness than the mathematical
definition. For example, one cannot in general determine the order of connectivity
of a region from a graph based on such a definition. Examination of the graph in
Figure 7 does indeed show, in agreement with intuition, that all the regions except
D are simply connected, while D has order of connectivity 4. However, suppose
that in Figure 3 the six D’s to the right of the top row of I'’s are replaced by blanks;
making a “cut’” mregion D. This does not change the graph of the figure (region D
is still connected, and region I still not adjacent, in the intuitive sense, to the pic-
ture exterior); but region D now has order of connectivity only 3.1

6. Applicalions: Shape (Llongation)

The distance transform can be used to obtain a variety of information about the
shapes of regions on a picture. In this section, two applications of this transform to
the definition of elongation are discussed. The elongation considered here is an in-
trinsic shape property; a snake is considered to be elongated even when it is coiled.
It is difficult to define this property in conventional geometrical terms, in spite of
its evident intuitive significance.

Since the connected component transformation provides the ability to single out
any component of a picture for analysis of its shape, it will be assumed in what
follows that the given picture contains only a single connected region (“figure’)
consisting of 1’s, and that the remainder of the picture consists of 0’s.

6.1 Elongation as the proportion of a figure which lies close to its boundary

In his original papers [10-11] on the propagation concept, Blum suggested that
the successive wavefronts—that 1s, the sets of points which are at a given distance
from the original figure boundary—could provide useful information about the
shape of the figure. For example, if the figure is a square, the wavefronts are con-
centric squares, and the numbers of points in them decrease linearly to zero. (See
the solid curve in Figure 8(a)). On the other hand, if the figure is a very elongated
rectangle (Figure S(b)), the number of points in a wavefront decreases linearly until
the center line of the rectangle is reached, when it drops abruptly to zero. Analogous
plots of number of points vs. number of steps for three irregular figures of approxi-
mately equal area (regions IY, J and K of Tigure 3) are shown in Figures 8(c)—(e).

As the solid curves in Figure 8, especially parts (a) and (b), indicate, the manner
in which wavefront perimeter decreases provides a measure of the elongation of a
given figure. This measure represents the degree to which the interior of the figure
lies close to its boundary, which is intuitively related to the intrinsic elongation of
the figure.

1t Note that making this cut dees change the graph in Figure 6, since it combines the “‘border

of F7’ region with the “picture border” region. The modified graph does in fact reflect the
orders of connectivity which result from making the cut.
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Fia. 8. Wavefront perimeter and boundary—touching square plots for (a) a square; (b) an
elongated rectangle; (¢) component K of Figure 3 (elongated); (d) component F of
Figure 3 (partly elongated); (e) component J of Figure 3 (roughly circular)

A shape descriptor closely allied to wavefront, perimeter is the number of different
squares of a given size which are contained within a given figure and touch its
boundary. For simplicity, only squares whose sides are parallel to the sides of the
picture will be considered. These numbers can be computed by systematically erect-
ing all possible squares on the cross-sections of the figure by the rows of the picture.
An IBM 7090/94 program for doing this has been written in Fap. In Figure 8, the
numbers of boundary-touching squares are plotted as dashed curves for comparison
with the wavefront perimeters.12

The measure of elongation provided by these shape descriptors is relatively crude,
since they are conmiPuted over the entire figure. A much more sensitive measure of

elongation is defined in Section 6.2, using the distance skeleton concept introduced
in Section 4.3.

2 The wavefront and enclosed squares descriptors are conceptually related, but not equiva-
lent, to the “Buffon needle” shape descriptor proposed by Tenery [22-23], which involves the

probability that a line segment of given length randomly dropped on a figure with one end
inside the figure also has the other end inside.

|
z
|

sl
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Fig. 9a. Lake, river TFic. 9b. Skeleton of Fig. 9¢. “Elongated”
and streams Figure 9a parts of Figure 9a

6.2  Llongated parts of a figure

The skeleton subset introduced in Section 4.3 can be used to define a variety of
useful shape properties. In this section it is applied, in combination with proximity
analysis (see Section 5.2), to the problem of determining elongated parts of a given
figure. The approach described in what follows is based on the intuitively appealing
idea that any elongated figure part should give rise to a skeleton subset similar to
that of an elongated rectangle. Such a skeleton should contain a large number of
adjacent or proximate points located a relatively short distance away from the
figare border. If the “reverse” distance transformation (Section 4.3) is applied to
this set of points, the elongated part of the original figure should be regenerated.

Consider as an example the fictitious “hydrography’’ of Figure 9(a), in which the
X’s are water and the blanks land. Intuitively, the river, tributaries and creeks are
elongated, but the lake and bay are not. Figure 9(b) shows the corresponding skele-
ton locus modulo 10, where the land points have been treated as 0’s, the water
points as 1’s. In this figure the components of the points with values 5 or less, de-
fined by a proximity eriterion using a 3 by 3 subpicture, have been circled.®® The
large components (25 elements or more) evidently correspond to elongated portions
of the hydrography, the one at the lower right to the elongated loop of lake around
the island. In Figure 9(c) these elongated picces have been regenerated by applying
the reverse distance transform starting with these large components only. The re-
generated parts are represented by E’s, the remaining original water points by dots.

3 The number 5 is an arbitrary threshold, not necessarily optimum. Skeleton points con-
tained in the same 3 by 3 subpicture were considered to belong to the same component only if
their values differed by two or less.
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This example suggests the following general procedure for determining clongated
parts of a figure:

p—t

Apply the distance transform to the figure and determine the skeleton locus.

9. Foreach k = 2,3, ---, up to half the picture diameter if necessary, consider the set S of
skeleton points which have values less than or equal to k.

3. Determine ‘‘proximity components’ of each Si, and count the number of points in each
component. ' .

4. Select, those components, if any, which have more than ¢ points. A reasonable value for {1 is
in the range 5k-10k,1¢ corresponding to a set of proximate skeleton points whose ‘length”
is at least 25 times the “‘width’’ of the picce of figure which gave rise to it.

5. Apply the reverse distance transform to these components to reconstruct the elongated

parts of the original figure.

Appendiz. Proof of the Equivalence of Parallel and Sequential Local
Operations

It must be shown that any local operation applied in parallel is equivalent to a
series of local operations applied sequentially, and vice versa.

Note first that if the local operation f is applied to each element of the picture A,
and the results are stored in another picture B, rather than modifying 4, then 1t
makes no difference whether f is applied to 4 in parallel or sequentially, since the
arguments of f are always the original elements of A. Hence if f applied in parallel
takes A into A*, then f applied in any sequence, using B for storage of the results,
yields B = A¥ By the Lemma of Section 2.1, it is known that if necessary, this
procedure can be re-expressed in terms of A alone (for example, one could trans-
form A in such a way as to “keep’’ the original element values as exponents of 2,
while storing the transformed values as exponents of 3). It has thus been shown
that the result of any parallel local operation can be obtained by applying a local
operation sequentially. (Strictly speaking, an additional operation of ‘“‘erasing” A
and ‘“replacing” it by B = A™ should also be performed; this operation does not
even involve neighbors, and can be performed either sequentially or in parallel. In
the example using exponents given just above, this operation is simply ¢; (see Sec-
tion 2.1).)

Conversely, let f be a local operation which takes A into A* when applied se-
quentially. Let 4 = (a:s), A = (af), 1£1<m, 1=j=mn, anddefine
Qo = Omi1,; = Gip = Qinp1 =0, 1 S1=m, 1=7=mn where v is different
from every a;;and ar;, 1 <7 =m, 1 =j = n Now define:

(1> fl(ai,j> = fl@ia,-1, ", ai+1,j+1), if a1, = G0 = U
=q,,; otherwise; 1£2=5m, 127 =n
(Since ai1,; = a: i1 = vis equivalent to (¢,7) = (1, 1), applying this f1in parallel

to all of A is equivalent to applying f to ai1 only.) At the same time, let fi1 generate
an auxiliary picture (b;;) such that

bi,j = W 1f Aia,; = Aq,j—1 = v
(e, if (¢,7) = (L, 1))y, 1 =i=m, 1=j=mn
= a;,; oOtherwise
14 This uncertainty can be reduced if the skeleton locus is “thinned’’ before this step is per-
formed.
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. . E3
where w 1s different from every a;,; and a;,; as well as from .

(2) folae;) = flairjor, =+ Gigri41)
faa;=0v and b1 = w
= a;,; otherwise , 1
fa(bis) = wifaia,; = vand by ;o = w
= b;,; otherwise

IIA
I
—_
A
o
IA
S

(If f1 has been applied to 4, the unique (7, j) satisfying a;1,; = v and b; j; = w is
(1, 2). Thus applying f» in parallel to f1(4) is equivalent to applying f to ar». Ap-
plication of f; also puts a w in the (1, 2) position; hence if it is applied again, the
unique (7, 7) satisfying the conditions is now (1, 3). Hence repetition of f, n—1
tumes 1s equivalent to applying f sequentially to a; 9, -+, @10 .)

(3) f3lai;) = flairjma, *+, Gig1,j41)
. fa1;=w and a1 =v
= @, ; otherwise , 1 27=m, 157
f3(bi;) = w ifbig;=wand a1 = v
= b;,; otherwise

IIA
3

(If f1 has been applied, these conditious are satisfied by (7,7) = (2, 1) only. Hence
applying f5 after f and n—1 fy’s have been applied has the same effect as applying f
to @s1 after having applied it to a1, -+, @10 .)

(4) filai;) = flaic1ia, =+, Giga.g1) |
1f bi_l‘j == bi'j_l = w I
= a;; otherwise , 1 =1 =m, 1 £5=n.
f,;(bi,j) = w if b,;_l,j = bi'j_.l = w
= b;; otherwise -

(Readily, after f1, n—1 fy’s and f; have been applied, this f, singles out the (2, 2)
element; and repeating it a total of n—1 times singles out the (2, 3), ---, (2, n)
elements, successively. Moreover, after this has been done, application of f; again
will single out the (3, 1) element; successive applications of f, after this will pick
the (3, 2), -+, (3, n) elements; and so on.)

In summary: Applying f to A sequentially is equivalent to applying the following
series of parallel local operations to 4 :

Jisfes ooy ey (n=1times);  [fs;fi, -, fs, (n—1 times)],

with the bracketed series of operations repeated a total of m—1 times, giving a
total of mn parallel operations.
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