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Abstract. Population protocols have been introduced by Angluin et al.
as a model of networks consisting of very limited mobile agents that
interact in pairs but with no control over their own movement. A collec-
tion of anonymous agents, modeled by finite automata, interact pairwise
according to some rules that update their states. Predicates on the ini-
tial configurations that can be computed by such protocols have been
characterized as semi-linear predicates.

In an orthogonal way, several distributed systems have been termed in
literature as being realizations of games in the sense of game theory.
We investigate under which conditions population protocols, or more
generally pairwise interaction rules, correspond to games.

We show that restricting to asymetric games is not really a restriction:
all predicates computable by protocols can actually be computed by pro-
tocols corresponding to games, i.e. any semi-linear predicate can be com-
puted by a Pavlovian population multi-protocol.

1 Introduction

The computational power of networks of anonymous resource-limited mobile
agents has been investigated recently. Angluin et al. proposed in [3] the model
of population protocols where finitely many finite-state agents interact in pairs
chosen by an adversary. Each interaction has the effect of updating the state
of the two agents according to a joint transition function. A protocol is said to
(stably) compute a predicate on the initial states of the agents if, in any fair
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execution, after finitely many interactions, all agents reach a common output
that corresponds to the value of the predicate.

The model has been originally proposed to model computations realized by
sensor networks in which passive agents are carried along by other entities. Vari-
ants of the original model considered so far include restriction to one-way com-
munications [1], restriction to particular interaction graphs [2], random interac-
tions [3], with “speed” [7]. Various kinds of fault tolerance have been considered
for population protocols [10], including the search for self-stabilizing solutions [5].
Solutions to classical problems of distributed algorithms have also been consid-
ered in this model (see [18]).

Most of the works so far on population protocols have concentrated on char-
acterizing which predicates on the initial states can be computed in different
variants of the model and under various assumptions [18]. In particular, the
predicates computable by the unrestricted population protocols from [3] have
been characterized as being precisely the semi-linear predicates, that is those
predicates on counts of input agents definable in first-order Presburger arith-
metic [3,4].

In an orthogonal way, pairwise interactions between finite-state agents are
sometimes motivated by the study of the dynamics of particular two-player
games from game theory. For example, the work in [11] considers the dynamics
of the so-called PAVLOV behavior in the iterated Prisoners’ Dilemma. Several
results about the time of convergence of this particular dynamics towards the
stable state can be found in [11], and [12], for rings, and complete graphs [16]
with having various classes of adversarial schedulers [15].

Our purpose is to better understand whether and when pairwise interactions,
and hence population protocols, can be considered as the result of a game. We
prove that restricting to games is not really a restriction: all predicates com-
putable by protocols can actually be computed by protocols corresponding to
games, i.e. any semi-linear predicate can be computed by a Pavlovian population
multi-protocol.

In Section 2, we recall population protocols. In Section 3, we give some basics
from game theory. In Section 4, we discuss how a game can be turned into a
dynamics, and introduce the notion of Pavlovian population. In Section 5 we
state our main result: any semi-linear predicate can be computed by a Pavlovian
population multi-protocol. Remaining sections correspond to its proof: we prove
that threshold and modulo predicates can be computed respectively in Sections
6 and 7.

Related Works. As we already said, population protocols have been introduced
in [3], and proved to compute all semi-linear predicates. They have been proved
not to be able to compute more in [4]. Various restrictions on the initial model
have been considered up to now. A survey can be found in [18].

More generally, population protocols arise as soon as populations of anony-
mous agents interact in pairs. Our original motivation was to consider rules corre-
sponding to two-player games, and population protocols arose quite incidentally.
The main advantage of the [3] settings is that it provides a clear understanding



of what is called a computation by the model. Many distributed systems have
been described as the result of games, but as far as we know there has not been
any attempt to characterize what can be computed by games in the spirit of this
computational model.

In this paper, we turn two-player games into dynamics over agents, by con-
sidering PAVLOV behavior. This is inspired by [11,12,17] that consider the
dynamics of a particular set of rules termed the PAVLOV behavior in the it-
erated Prisoners’ Dilemma. The PAVLOV behavior is sometimes also termed
WIN-STAY, LOSE-SHIFT [19, 6]. Notice, that we extended it from two-strategy
two-player games to n-strategies two-player games, whereas above references only
talk about two-strategies two-player games, and mostly of the iterated Prisoners’
Dilemma. This is clearly not the only way to associate a dynamic to a game.
Alternatives to PAVLOV behavior could include MYOPIC dynamics (at each
step each player chooses the best response to previously played strategy by its
adversary), or the well-known and studied FICTIOUS-PLAYER dynamics (at
each step each player chooses the best response to the statistics of the past his-
tory of strategies played by its adversary). We refer to [13, 8] for a presentation
of results known about the properties of the obtained dynamics according to the
properties of the underlying game. This is clearly non-exhaustive, and we refer
to [6] for a zoology of possible behaviors for the particular iterated Prisoners’
Dilemma game, with discussions of their compared merits.

Recently Jaggard et al. [16] studied a distributed model similar to protocol
populations where the interactions between pairs of agents correspond to a game.
Unlike in our model, each agent has there its own pay-off matrix and has some
knowledge of the history. This work gives several non-convergence results.

In this paper we consider possibly asymmetric games. In a recent paper [9] we
discussed population protocols corresponding to Pavlovian strategies obtained
from symmetric games and we gave some protocols to compute some basic pred-
icates. Unlike what we obtain here, where we prove that any computable predi-
cate is computable by an asymmetric Pavlovian population protocol, restricting
to symmetric games seems a (too) strong restriction and most predicates (e.g.
counting up to 5, to check where z = 0 mod 2) seems not even computable.

2 Population Protocols

A protocol [3] is given by (Q, X, t,w,d) with the following components. @ is a
finite set of states. X' is a finite set of input symbols. ¢ : X — @ is the initial
state mapping, and w : Q@ — {0, 1} is the individual output function. § C Q* is a
joint transition relation that describes how pairs of agents can interact. Relation
0 is sometimes described by listing all possible interactions using the notation
(q1,92) — (¢1,q3), or even the notation q1q2 — q1¢5, for (q1,q2,q71,95) € § (with
the convention that (¢1,492) — (q1,¢2) when no rule is specified with (g1, ¢2) in
the left-hand side). The protocol is termed deterministic if for all pairs (¢q1,g2)
there is only one pair (¢i,q¢4) with (g1,¢2) — (¢},d%). In that case, we write
01(q1, g2) for the unique ¢; and d2(q1, g2) for the unique g¢j.



Computations of a protocol proceed in the following way. The computation
takes place among n agents, where n > 2. A configuration of the system can
be described by a vector of all the agents’ states. The state of each agent is
an element of (). Because agents with the same states are indistinguishable,
each configuration can be summarized as an unordered multiset of states, and
hence of elements of @. Each agent is given initially some input value from X"
Each agent’s initial state is determined by applying ¢ to its input value. This
determines the initial configuration of the population.

An execution of a protocol proceeds from the initial configuration by inter-
actions between pairs of agents. Suppose that two agents in state g; and g2 meet
and have an interaction. They can change into state ¢} and ¢ if (q1, ¢2, ¢}, ¢5) is
in the transition relation §. If C' and C’ are two configurations, we write C' — C”
if C' can be obtained from C by a single interaction of two agents: this means
that C' contains two states ¢; and go and C’ is obtained by replacing ¢; and g2
by ¢ and ¢} in C, where (q1, 42,49}, ¢5) € 0. An execution of the protocol is an
infinite sequence of configurations Cy, C1,Cy, - - -, where Cj is an initial configu-
ration and C; — C;41 for all i« > 0. An execution is fair if for every configuration
C that appears infinitely often in the execution, if C' — C’ for some configura-
tion C’, then C” appears infinitely often in the execution. As proved in [4], the
fairness condition implies that any global configuration that is infinitely often
reachable is eventually reached.

At any point during an execution, each agent’s state determines its output
at that time. If the agent is in state ¢, its output value is w(q). The configuration
output is 0 (resp. 1) if all the individual outputs are 0 (resp. 1). If the individual
outputs are mixed Os and 1s then the output of the configuration is undefined.

Let p be a predicate over multisets of elements of . Predicate p can be con-
sidered as a function whose range is {0,1} and whose domain is the collection
of these multisets. The predicate is said to be computed by the protocol if, for
every multiset I, and every fair execution that starts from the initial configura-
tion corresponding to I, the output value of every agent eventually stabilizes to
p(I). Predicates can also be considered as functions whose range is {0,1} and
whose domain is N/*I. The following is then known.

Theorem 1 ([3,4]). A predicate is computable in the population protocol model
if and only if it is semilinear.

Recall that semilinear sets are exactly the sets that are definable in first-order
Presburger arithmetic [20].

3 Game Theory

We now recall the simplest concepts from Game Theory. We focus on non-
cooperative games, with complete information, in normal form.

The simplest game is made up of two players, called I (or initiator) and R
(or responder), with a finite set of actions, called pure strategies, Strat(I) and
Strat(R). Denote by A; ; (resp. B;, ;) the score for player I (resp. R) when I uses
strategy i € Strat(I) and R uses strategy j € Strat(R). The scores are given



by n x m matrices A and B, where n and m are the cardinality of Strat(I) and
Strat(R).

A strategy x in Strat(I) is said to be a best response to strategy y in
Strat(R), denoted by € BRa(y) if A, < A, , for all strategies z € Strat(I).
Conversely, a strategy y € Strat(R) satisfies y € BRg(z) if B, , < B, for all
strategies z € Strat(R). A pair (z,y) is a (pure) Nash equilibrium if x € BR 4(y)
and y € BRp(x). In other words, two strategies (x,y) form a Nash equilibrium
if in that state neither of the players has a unilateral interest to deviate from it.

There are two main approaches to discuss dynamics of games. The first con-
sists in repeating games [8]. The second in using models from evolutionary game
theory. Refer to [14,21] for a presentation of this latter approach.

Repeating k times a game, is equivalent to extending the space of actions into
Strat(I)* and Strat(R)*: player I (respectively R) chooses his or her action
x(t) € Strat(I), (resp. y(t) € Strat(R)) at time t for ¢t = 1,2,--- , k. This is
equivalent to a two-player game with respectively n* and m* choices for players.

In practice, player I (respectively R) has to solve the following problem at
each time t: given the history of the game up to now, that is to say X;_; =
x(1),---,x(t—1)and Y;—; = y(1), -+ ,y(t — 1) what should I (resp. R) play at
time t? In other words, how to choose x(t) € Strat(I)? (resp. y(t) € Strat(R)?)

Is is natural to suppose that this is given by some behavior rules: x(t) =
f(X¢-1,Y:1) and y(t) = g(X¢—1,Y;—1) for some particular functions f and g.

The question of the best behavior rule to use in games, in particular for the
Prisoners’ Dilemma gave birth to an important literature. In particular, after
the book [6], that describes the results of tournaments of behavior rules for the
iterated Prisoners’ Dilemma, and that argues that there exists a best behavior
rule called TIT — FOR — T AT. This consists in cooperating at the first step,
and then do the same thing as the adversary at subsequent times. A lot of other
behaviors, most of them with very picturesque names have been proposed and
studied: see for example [6].

Among possible behaviors there is PAVLOV behavior: in the iterated Prison-
ers’ Dilemma, a player cooperates if and only if both players opted for the same
alternative in the previous move. This name [6,17,19] stems from the fact that
this strategy embodies an almost reflex-like response to the payoff: it repeats its
former move if it was rewarded above a threshold value, but switches behavior
if it was punished by receiving under this value. Refer to [19] for some study
of this strategy in the spirit of Axelrod’s tournaments. The PAVLOV behavior
can also be termed WIN-STAY, LOSE-SHIFT since if the play on the previ-
ous round results in a success, then the agent plays the same strategy on the
next round. Alternatively, if the play resulted in a failure the agent switches to
another action [6, 19].

4 From Games To Population Protocols

In the spirit of the previous discussion, to any game, we can associate a popula-
tion protocol as follows, corresponding to a PAVLOV (ian) behaviour:



Definition 1 (Associating a Protocol to a Game). Assume a (possibly
asymmetric) two-player game is given. Let A and B be the corresponding matri-
ces. Let A be some threshold.

The protocol associated to the game is a population protocol whose set of
states is Q, where Q = Strat(I) = Strat(R) is the set of strategies of the game,
and whose transition rules § are given as follows: (q1,q2,4q1,q5) € § where
— ¢ = q1 when Ay, 4, > A, — g5 = g2 when By, 4, > A,

— ¢1 € BRa(q2) when Ay, 4, < A, — ¢5 € BRp(q1) when By, 4, < A.

Definition 2 (Pavlovian Population Protocol). A population protocol is
Pavlovian if it can be obtained from a game as above.

A population protocol obtained from a game as above will be termed de-
terministic if best responses are assumed to be unique; in this case, the rules
are deterministic: for all gy, g2, there is a unique ¢; and a unique ¢} such that
(01,92, 41, 45) € 6.

In order to avoid to talk about matrices, we start by stating some structural
properties of Pavlovian population protocols.

Proposition 1. Consider a set of rules. For all rules ab — a't’, we denote
SL(b) = ' and §f(a) = a’. Let Stable! (a) = {z € Q|6L(z) = x}, and Stable®(a) =
[r € QIR (x) = ).

Then the set of rules is deterministic Pavlovian iff Ya € Q 3 max!(a) €
Stablel (a) and 3 maxf(a) € Stablef(a) such that for all states a,

1. Vb & Stable! (a) implies 1(b) = maz!(a).
2. Vb ¢ Stablef(a) implies 6% (b) = maz®(a).

Proof. First, we consider a Pavlovian population protocol P obtained from cor-
responding matrices A and B. Let A be the associated threshold. Let a be an
arbitrary state in @, and let ¢ be the best response to strategy a for matrix B.

Focus on the rule aq — a’q’ where (a,q’) € Q?, i.e., focus on the case where
player I plays a while player R plays q. As ¢ = BRg(a), we have, by Definition 1,
¢’ equals to q. Thus, ¢ € Stable!(a).

Now, let consider b such that b ¢ Stable! (a). We focus on the rule ab — o’
where (a”,b') € Q2. So by definition of set Stable!, we have b # b'. Using
Definition 1, we have By, , < A and b/ = BRg(a). So b/ = BRg(a) = ¢. Thus, if
we let max!(a) = q, maz!(a) satisfies the conditions of the proposition.

Using similar arguments, we can also prove that 3 max®(a) € Stablef(a)
such that Vb € Stablef*(a) implies 61(b) = maz®(a). In fact, we can sum up the
relationship between the game matrix and rules by the following: for any a € @,
we have Stable!(a) = {x € Q|B;,, > A} U{ BRg(a)} and maxz!(a) = BRg(a)
and Stablef*(a) = {x € Q|Az o > A} U{BRa(a)} and maz’(a) = BR4(a).

Conversely, consider a population protocol P satisfying the properties of the
proposition. All rules ab — a’b’ are such that §1(b) = b’ and §{*(a) = a’. We focus
on the construction on a two-player game having the corresponding matrices A,
and B. We fix an arbitrary value A as the threshold of the corresponding game.



— If Stable! (a) # Q, then Brgzi(a)e = A+ 1 Ifx € Stable! (a) and if x #
max!(a) then B, , = A. If x ¢ Stable! (a), then B, , = A — 1.

— If Stable! (a) = Q, then Vz € Q, By, = A.

If Stable®(a) # Q, then Apazia)e = A+ 1L If z € Stable®(a) and if

z # max®(a) then A, , = A. If x ¢ Stable®(a), then A, , = A — 1.

If Stable®(a) = Q, then Vx € Q, A, . = A.

It is easy to see that this game describes all rules of P. So, P is a Pavlovian
population Protocol.

5 Main Result

Inverting value of the individual output function, the class of predicates com-
putable by a Pavlovian population protocol is clearly closed under negation.
However, this is not clear that predicates computable by Pavlovian population
protocols are closed under conjunction or disjunction.

This is true if one considers multi-protocol. The idea is to consider k (possibly
asymmetric) two-player games. At each step, each player chooses a strategy for
each of the k£ games. Now each of the k games is played independently when two
agents meet. Formally:

Definition 3 (Multiprotocol). Consider k (possibly asymmetric) two-player
games. For game i, let Q* be the corresponding states, A* and B® the correspond-
mg matrices.

The associated population protocol is the population protocol whose set of
states is Q@ = Q' x Q% x ... x QF, and whose transition rules are given as
follows: ((q},...,d}), (@3,....d5),(al ... d"). (&', ....d")) € & where, for all
1 <11 <k, (q}‘,qé,q%qél) s a transition of the Pavlovian population protocol
associated to the iy, game.

Notice that, when considering population protocols, a multi-protocol is a par-
ticular population protocol. This is the key property used in [3] to prove that
stably computable predicates are closed under boolean operations. When con-
sidering Pavlovian games, one can build multi-protocols that are not Pavlovian
protocols, and it is not clear whether one can always transform any pavlovian
multi-protocol into an equivalent pavlovian protocol.

As explained before, multisets of elements of X' = (o1,...,0;) are in bijec-
tion with elements of N/, and can be represented by a vector (x1,...,2;) of
non-negative integers where x; is the number of occurrences of o; in the mul-
tiset. Thus, we consider predicates ¥ over vectors of non-negative integers. We
write [¢] for their characteristic functions. Recall that a predicate is semi-linear
iff it is Presburger definable [20]. Semi-linear predicate correspond to boolean
combinations of threshold predicates and modulo predicates defined as follows
(variables x; represent the number of agents initially in state o;): A threshold
predicate is of the form [Ya;x; > k], where Vi, a; € Z, k € Z and the z;s are vari-
ables. A modulo predicate is of the form [Ya;z; = b mod k], where Vi, a; € Z,
ke N\ {0,1}, b € [1,k — 1] and the z;s are variables.



We can then state our main result:

Theorem 2. For any predicate v, the following conditions are equivalent:

— 1 is computable by a population protocol
— 1 is computable by a Pavlovian population multi-protocol
— Y is semi-linear.

The proof of the following proposition can be found in Appendix A.1.

Proposition 2. The class of predicates computable by multi-games are closed
under boolean operations.

As from Proposition 2, predicates computable by Pavlovian population multi-
protocols are closed under boolean operations, and as a Pavlovian population
protocol is a particular Pavlovian population multi-protocol, and as predicates
computable by (general) population protocols are known to be exactly semi-
linear predicates, to prove Theorem 2 we only need to prove that we can compute
threshold predicates and modulo predicates by Pavlovian population protocols.
This is the purpose of the following sections.

6 Threshold Predicates

In this section, we prove that we can compute threshold predicates using Pavlo-
vian protocols.

Proposition 3. For any integer k, and any integers ay,as, - ,an, there exists
a Pavlovian population protocol that computes [> | a;z; > k.

First note, that we can assume without loss of generality that k > 1. Indeed,
[Yaix; > —k] = [X(—a;)x; < k] = [X(—ai)z; < k+ 1] which is the negation of
[Y(—a;)z; > k + 1]. Thus from a population protocol computing [X(—a;)z; >
k + 1] with & > 0, we just have to inverse the output function to obtain a
population protocol that computes [Ya;z; > —k].

The purpose of the rest of this section is to prove Proposition 3. We first
discuss some basic ideas: Our techniques are inspired by the work of Angluin
et al. [1]. The set of states we use is the set of integers from [—M, M| where
M = max(|a;|,2k — 1). Each agent with input o; is given an initial weight of
a;. During the execution, the sum of the weights over the whole population is
preserved. In [4], the general idea is the following: two interacting agents with
positive weights p and ¢ such that p+¢ < M are transformed into an agent with
weight 0 and an agent with weight p + ¢, while two agents with weight p and q
such that p 4+ ¢ > M are transformed into two agents with weight |(p + ¢)/2]
and [(p+ ¢)/2] that are both greater or equal to k.

In our setting, we cannot use the same rules since all agents that change their
states when they meet an agent in state p while being initiator (resp. responder)
must take the same state that only depends of p. To avoid this problem, a trick
is to use rules of the following form: pg — (p+1)(¢—1). However, we also have to
make sure that the protocol enables all agents to agree in the final configuration.



Whereas this kind of consideration is easy in the classical population protocol
model, this turns out to be tricky in our settings.

We describe a protocol that computes [>.., a;z; > k]. Our protocol is de-
fined as follows: we consider ¥ = {o1,...,01}, Q = {T} U [-M, M]; for all 4,
t(0;) = a;; and we take w(T) = 1 and for any p € [-M, M|, w(p) = 1 if and only
if p>1.

We distinguish two cases: either k£ = 1, or k > 2. We present two proto-
cols here, because we need to have a mechanism in our protocols to enable to
“broadcast” the result; this is not so difficult in the first case whereas it is more
technical in the second one. Due to lack of space, we only give the rules for k = 1
(the proof can be found in Appendix A.2), but provide a full proof for the case
k> 2.

Case k = 1. Our protocol computing [Ya;x; > 1] is defined as follows (see
Appendix A.2). The rules are the following.

TT—=TT Tz— Tz Vz € [-M, M]
1T—1T In— (n+1)T Vne[-M,0]
1p— 1p Vp € [1, M]
Vn € [-M,0],Vp € 2, M — 1]
nT—n0 pT— pT
nx —nx Ve € [-M, M], pn—(n+1)(p—1)
pp'— pp’ vp' € [1, M]

Case k > 2. Our protocol is deterministic and from Proposition 1 uniquely de-
termined by the sets Stable! (q), Stable(q), and by the values max’(q), maz’t(q)
defined as follows.

qg€Q Stable! (q) maz’(q) Stable™(q) mazT(q)
T {TIU[-M,0|U[k,M]] -1 {T}YU[-M, M]
n € [-M, 1] [—M, M] 0 {T}Yu[-M,0] (n+1)
0 [—M, M] 0 {TYU[-M,k —1] 1
1 {T,0,M} T [—M, 0] 2
pE2k—1] {T.0,M} (r-1) [—M, 0] (p+1)
belk,M—1] {T}U [k, M] b-1) {T}U[-M,0]U [k, M]| (b+1)
M {TU [k, M] M-1) {T}u[-M,M]
The transition rules we obtain from these sets and values are the following.
TT— 7T Te—oTx Vo € [-M,0] U [k, M]
Tp— (p+1)(=1) Vpe[lk—1]
1T — 1T 10 —10
lx— (z+1)T Vz¢{T,0,M} 1M—1M
Vp € [2,k—1]
pT — pT pr—=(z+1)(p—1) Ve ¢ {T,0,M}
p0 — p0 pM—pM
Vn € [-M, 0]
nT— n0 nT —nT Vo € [-M, M]
Vb € [k, M]
bT—  bT bb’ —>bb' Vo' € [k, M]

bx —(x+1)(b—1) Vo € [-M, k —1]



We say that an agent in state € [—M, M] has weight « and that an agent in
state T has weight 0. Note that in the initial configuration the sum of the weights
of all agents is exactly Ya;x;. Note that any of the rule of our protocol does not
modify the total weight of the population, i.e., at any step of the execution, the
sum of the weights of all agents is exactly Ya,;x;.

Note that the stable configurations, (i.e., the configurations where no rule
can be applied to modify the state of any agent), are the following:

— every agent a is in some state n(a) € [-M, 0],
— a unique agent is in state p € [1, k — 1] and every other agent is in state 0.
— every agent a is either in some state b(a) € [k, M] or in state T.

Note that no agent starts in state T, and that no rule enables the two inter-
acting agents to enter the state T except for the rule TT — T T. Thus, we know
that it is impossible that all agents are in state T. Consequently, in the last case
described, we know that there is at least one agent in a state b € [k, M].

Note that in any stable configuration, all agents have the same output; if
Ya;x; > k then all agents output 1, while in all the other cases, the agents out-
put 0. Thus, if the population reaches a stable configuration, we know that the
computed output is correct and that it will not be modified any more. Now, we
should prove that the fairness condition ensures that we always reach a stable
configuration. In fact, it is sufficient to prove that from any reachable configu-
ration, there exists an execution that reaches a stable configuration.

Consider any configuration reached during the execution. As long as there
is an agent in state p € [1, M] and an agent in state n € [—M, —1], we apply
pn — (n+1)(p — 1). Thus we can always reach a configuration where the states
of all agents are in [—M,0] U {T} if Ya,z; <0, or in [0, M] U {T} otherwise.

If Ya;x; <0, then there is at least one agent in state n € [—M, 0], since all
agents cannot be in state T. In this case, applying iteratively the rule n T — n0,
we reach a stable configuration where all agents have a state in [—M, 0].

Suppose now that Ya;z; € [1,k — 1]. Since Ya;x; € [1,k — 1], each agent
with a positive weight is in a state in [1,k — 1]. Applying iteratively the rule
pp’ — (p—1)(p’ +1) where p,p’ € [1, k—1], we reach a configuration where there
is exactly one agent in state p € [1,k — 1] while all the other agents are in state
0 or T. Applying iteratively the rules Tp — (p+ 1)(—1) and (p+ 1)(—1) — Op,
we reach a configuration where one agent is in state p € [1,k — 1] while all the
other agents are in state 0.

Finally, assume that Ya;x; > k. If there is an agent in state p € [1,k — 1],
we know that there is at least another agent in state ¢ € [1, M]. If p+ ¢ < M,
applying iteratively the rule pg — (p — 1)(¢ + 1) between these two agents, we
reach a configuration where one of these two agents is in state 0 while the other
is in state p + ¢. In this case, we have strictly reduced the number of agents in a
state in [1,k—1]. If p+q > M > 2k, then ¢ € [k, M], and applying iteratively the
rule gp — (¢ — 1)(p + 1), we reach a configuration where one agent is in state k
while the other agent is in state p+q— k € [k, 2M]. Here again, we have strictly
reduced the number of agents in a state in [1, k — 1]. Applying these rules as long
as there exists an agent in state p € [1, k — 1], we reach a configuration where all



agents are either in a state in [k, M], or in state 0 or T. Since Ya,z; € [k, M],
we know there exists an agent in state b € [k, M]. Applying iteratively the rules
b0 — 1(b—1) and 1(b—1) — bT, we reach a stable configuration where all agents
are either in state T or in a state in [k, M].

7 Modulo Counting

Proposition 4. For any integers k, b, and any integers ay,as, - ,any, there
exists a Pavlovian population protocol that computes [>_ ., a;x; = b mod k].

Due to lack of space, we only give the rules of the protocol for the case
when b € [1,k — 1] (see Appendix A.3 for the complete proof). In that case, our
protocol is defined as follows: X' = {o1,...,01}, @ = {T} U [0,k — 1]; for all 4,
let t(0;) = a; mod k; let w(T) =1 and for any p € [0,k — 1], let w(p) = 1 if and
only if p = b.

The rules are the following:

TT — TT T0— 00

bT — BT 0b— T(k—1) ifb=k—1

0T — 0T 0b—(b+1)(k—1) ifb#k—1
Vp e [l,k—1]

Tp — Tp pp'— pp’ vp' € [0,p—1]

pk—1)—=Tp-1) pp'=@ +1)(p—-1) Y € [pk—2]
Vp € [0,k — 1]\ {b}
op — Op pT— 1(p—1)

8 Conclusion

In this work, we present some (original an non-trivial) Pavlovian population
protocols that compute the general threshold and modulo predicates. From this,
we deduced that a predicate is computable in the Pavlovian population multi-
protocol model if and only if it is semilinear.

In other words, we proved that restricting to rules that correspond to asym-
metric games in pairwise interactions is not a restriction.

We however needed to consider multi-protocols, that is to say multi-games.
We conjecture that the Pavlovian population protocols (i.e. non-multi-protocol)
can not compute all semilinear predicates. A point is that in such protocols the
set of rules are very limited (see Proposition 1). In particular, it seems rather
impossible to perform an “or” operation between two modulo predicates in the
general case.

Notice that the hypothesis of asymmetric games seems also necessary. We
studied symmetric Pavlovian population protocols in [9] where we demonstrated
that some non-trivial predicates can be computed. However, even very basic
predicates, like the threshold predicate counting up to 5, seems problematic to
be computed by symmetric games. With asymmetric games, general threshold
and modulo predicates can be computed.
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