
How Simple Robots Benefit from Looking Back!

Jérémie Chalopin1,!!, Shantanu Das1, Yann Disser2,
Matúš Mihalák2, and Peter Widmayer2

1 LIF, CNRS & Aix-Marseille Université,
jeremie.chalopin@lif.univ-mrs.fr, shantanu.das@acm.org

2 Institute of Theoretical Computer Science, ETH Zürich
{ydisser,mmihalak,widmayer}@inf.ethz.ch

Abstract. We study the sensor and movement capabilities that simple
robots need in order to create a map of an unknown polygon of size n,
and to meet. We consider robots that can move from vertex to vertex,
can backtrack movements, and see distant vertices in counter-clockwise
order but have no means of visibly identifying them. We show that such
robots can always solve the weak rendezvous problem and reconstruct
the visibility graph, given an upper bound on n. Our results are tight:
The strong rendezvous problem, in which robots need to gather at a
common location, cannot be solved in general, and without a bound on
n, not even n can be determined. In terms of mobile agents exploring
a graph, our result implies that they can reconstruct any graph that is
the visibility graph of a simple polygon. This is in contrast to the known
result that the reconstruction of arbitrary graphs is impossible in general,
even if n is known.

1 Introduction

We are interested in the study of simple but autonomous robots that are capable
of performing tasks like searching, cleaning, guarding or gathering data in un-
known territories. One of the most fundamental problems involved in these tasks
is to obtain a map of the environment. The complexity of this problem depends
on the environment in which a robot operates, and on the robot’s sensor capa-
bilities. For example, it is a substantial difference whether there are identifiable
landmarks in the environment, or whether a robot has access to powerful sen-
sors like GPS. In some settings, large numbers of simple robots are deployed in
an environment and expected to cooperate and solve given tasks. A fundamen-
tal problem that arises in many settings with multiple robots is the rendezvous
problem in which robots either need to gather at the same location (strong ren-
dezvous) or at least need to position themselves such that they are visible to
each other (weak rendezvous).

The task of mapping an unknown environment has previously been studied
both in graphs and in geometric environments, where robots move in the plane.
! Most of this work was carried out while the first two authors were at ETH Zürich.

!! This author was partially supported by ANR Projects SHAMAN and ECSPER.

T. Calamoneri and J. Diaz (Eds.): CIAC 2010, LNCS 6078, pp. 229–239, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

230 J. Chalopin et al.

In this paper we focus on the latter case, more precisely on the case of robots
operating in polygonal environments. For many tasks a geometrically accurate
map of the environment is not needed, but a qualitative description of its shape
is sufficient. The visibility graph of a polygon is such a qualitative map: Its
nodes are the vertices of the polygon and two nodes are joined by an edge if
they are visible to each other, i.e., if the line segment connecting them in the
plane lies entirely within the polygon. Visibility graphs and their characterization
have been studied extensively [7]. We aim to find minimalistic configurations of
sensors and movement capabilities that enable simple robots to reconstruct the
visibility graph of a polygon, and, in the case of multiple robots, to solve the
rendezvous problem.

There have been several studies concerned with the capabilities of minimal-
istic robots. For instance it has been shown that a single pebble alone already
enables a simple robot to reconstruct the visibility graph [9]. The rendezvous
problem in the plane has been solved for robots that measure distances. Studies
in this setting consider for example robots with limited visibility and memory [1]
or robots subject to measurement errors [5]. Other models for simplistic robots
have been studied (e.g. [3,6,11]). The variant considered in this paper originates
from [9]. Roughly speaking, we allow a robot to order the vertices it sees in
counter-clockwise (ccw) order and to drive to any vertex it sees (for more details
cf. Section 2). Bilò et al. showed that such a robot cannot reconstruct the visibil-
ity graph of a polygon by moving along the boundary only, even if the number of
vertices n is known, unless provided with additional capabilities [2]. We extend
the model by allowing the robot to look-back after moving, i.e. to know which
vertex it came from among those now visible to it. In [2], another sensor was
used in addition to the look-back capability and an algorithm for reconstructing
the visibility graph was given for a robot equipped with both sensors, when the
number n of vertices is known. In this paper we show that the capability to
look-back alone is already sufficient, even if only an upper bound on n is known.
It was previously shown that if robots have no previous knowledge about the
polygon (i.e. not even a bound on n), they cannot reconstruct its size and thus
they cannot reconstruct the visibility graph [3]. Furthermore we show that the
look-back capability is sufficient for solving the weak rendezvous problem in all
polygons, even if only an upper bound on n is known. This is in contrast to the
fact that the strong rendezvous problem cannot be solved in general, even when
the entire geometry of the polygon is known.

The problem of reconstructing the visibility graph of a polygon can be seen
as a special case of the problem of reconstructing a general graph. In a graph
a robot is allowed to move along edges and sense the degree of the vertex it
is currently located at. A usual assumption is that the edges incident to a ver-
tex are distinctly labeled by a port-numbering function. The resulting model is
equivalent to the message-passing network model of distributed computation [4].
A characterization of the graphs for which the rendezvous problem is solvable
has been given [4,10]. From the results of [10] it is easy to infer that there are
graphs which cannot be distinguished by a robot, i.e. it is not always possible

How Simple Robots Benefit from Looking Back 231

to reconstruct a graph. A robot with look-back capability moving in a polygon
can imitate an agent that is moving in the corresponding visibility graph, which
allows us to borrow concepts that led to the above results. We are able to show
that while the graph reconstruction problem and the rendezvous problem are not
solvable in general, the reconstruction problem as well as the weak rendezvous
problem are solvable for visibility graphs, if a bound on n is known and if the
edges on the polygon boundary can be distinguished.

2 Polygons and LB-Robots

Polygons. In this work we consider simple polygons only. Let in the following
P be a simple polygon with n vertices. We denote the set of vertices of P by
V (P), where we drop the argument P whenever the polygon is evident from
the context. The boundary of P together with a (arbitrary) choice of a starting
vertex v0 induces an order among the vertices and we write v0, . . . , vn−1 to denote
the vertices along the boundary in counter-clockwise (ccw) order. We define
chain(vi, vj) := (vi, vi+1, . . . , vj). Note that all indices of vertices are modulo
n. In the following we assume polygons to be in general position, i.e. no three
vertices lie on a common line.

We say two vertices u, w ∈ V see each other or u sees w, if and only if the
line segment uw lies entirely in P – in particular vi sees vi+1 for all i. If vi−1

sees vi+1, we say vi forms an ear.
The visibility graph of a polygon has a node for every vertex of the polygon

and an edge for every pair of vertices that see each other. We define the degree
of a vertex to be the degree of the corresponding node in the visibility graph.

With vis(vi) = (u1, . . . , ud) we denote the sequence of vertices that a vertex
vi ∈ V of degree d sees, enumerated in ccw order along the boundary starting
at u1 = vi+1 and ending at ud = vi−1. We write visj(vi) , 1 ≤ j ≤ d, to denote
uj, vis−j(vi) to denote ud+1−j and vis0(vi) to denote vi itself.

Let C = (u0, . . . , um−1) be a cycle of length m in the visibility graph of P . We
say C is an ordered cycle, if and only if u0, . . . , um−1 appear on the boundary
of P in that order (ccw). As ui sees ui+1 modm for 0 ≤ i ≤ m − 1, C induces a
subpolygon of P . Note that C being an ordered cycle implies that the boundary
of the induced subpolygon does not self-intersect.

Lemma 1. Let P be a simple polygon of size n ≥ 4. For all 0 ≤ i < n we have
that the degree of vi or vi+1 is greater than two.

Proof. As any polygon has a triangulation, two vertices that see each other need
to share a third vertex they both see. In our instance two vertices vi and vi+1 thus
need to share a third vertex w that they both see. For the sake of contradiction
assume there is a vertex vi such that vi and vi+1 have degree two. It follows that
w must be a neighbor of both vertices on the boundary which is a contradiction
to the assumption n ≥ 4. %&

232 J. Chalopin et al.

Look-Back Robot. We now define a basic robot which we use as a foundation for
more sophisticated models later on. A basic robot r in a polygon P is modeled
to be a moving point initially situated at some vertex of P . We allow it to move
to the neighboring vertices along the boundary of P , and we write vr to denote
its current location. We say r sees a vertex u if u ∈ vis(vr). While r remains at
vr, we allow it to sense the degree of vr and to put the vertices it sees into ccw
order starting with vr+1. Note that the robot has no immediate way of globally
identifying the vertices it sees, i.e. knowing their global index with respect to
vr (i.e. their index counting from vr in ccw order along the boundary). As our
intention lies in obtaining a weak model, we do not allow robots to gather sensory
information while moving. We do not impose a limitation on the robots’ memory.

A natural extension of the basic model lies in allowing a robot r to not only
move along the boundary, but to any vertex it sees. In general r does not know
the identity (= global index) of any vertex but its neighbors. This means that
any local information it gathered while driving along the boundary may be lost
once it decides to drive to a distant vertex. In order to get around this problem
we further enhance our model by adding the look-back capability: Consider a
robot at some vertex vi that drives to a distant visible vertex vj . Without look-
back, the robot afterwards has no way of knowing the identity of vi in vis(vj).
Look-back provides the robot with the index k such that vi = visk(vj). We call
such a robot a look-back robot or LB-robot.

3 Results

As soon as there is one vertex v! of the environment that a robot can distinguish
from all other vertices, it can easily determine the visibility graph: It can define
v0 = v! and identify the global index of any vertex it sees easily by driving there
and then along the boundary until it encounters v!, counting the number of steps
along the boundary (cf. [9]).This means that if the robot can perceive any non-
symmetrical structure, it can define a unique vertex v! and thus reconstruct the
visibility graph. In other words, for most polygons reconstructing the visibility
graph (or meeting other identical robots) is an easy task. Only highly symmetrical
polygons present a challenge. In order to solve the problem in general, we make
use of concepts first introduced in the context of distributed networks.

In distributed computing, a network is modelled as a graph whose edges are
labelled by so-called port numbers (local orientation), such that edges incident to
a vertex are assigned distinct labels [10]. As our robot is capable of bringing the
vertices it sees into ccw order, and as this order is the same whenever a vertex is
visited, the robot has access to a port numbering. Look-back allows the robot to
backtrack any number of moves or, in the sense of distributed computing, to send
messages back and forth between vertices. In distributed networks it has proven
beneficial [10] to define a view of a vertex as the collection of information a node
can gather by sending and receiving messages. We will introduce the same concept
in our setting of a robot moving along the visibility graph of a polygon and show
that it is a powerful tool for analysing the capabilities of the robot.

How Simple Robots Benefit from Looking Back 233

In the following we adapt the definition of the view of a vertex, to suit our
robot perspective. Consult Figure 1 (left) along with the definitions.

Definition 1. Let v be a vertex of a simple polygon P and d be its degree. The
level-1-label l(v) ≡ l(1)(v) of v is given by l(v) := (r1, . . . , ri, . . . , rd) where ri is
defined such that visri(visi(v)) = v, i.e. ri is the index of v in visi(v)’s list of
neighbors. We write lj(v) to denote rj and l−j(v) to denote rd+1−j for 0 < j ≤ d.
Similarly li(v) = −k means vis−k(visi(v)) = v.

Definition 2. Let v be a vertex of a simple polygon P and d be its degree. Let
vis(v) = (u1, . . . , ud). For k ∈ N, k > 1, the level-k-label l(k)(v) of v is given by
l(k)(v) :=

(
l(k−1)(v) ,

(
l(k−1)(u1) , . . . , l(k−1)(ud)

))
.

Note that the definition of the level-k-label of a vertex v is equivalent to its view
up to depth k as originally defined in [10]. Intuitively it contains the information
a backtracking agent can gather by exploring the visibility graph up to a distance
of k from v.

In the following we introduce the notion of a level-k-class of a vertex for the
equivalence class containing all vertices with the same level-k-labels.

Definition 3. Let v be a vertex of a simple polygon P. The level-k-class C(k)
v (P)

of v is the set of vertices of P that have the same level-k-label as v, including
v itself. Formally C(k)

v (P) :=
{

u ∈ V
∣∣ l(k)(u) = l(k)(v)

}
. The class Cv(P) of

v is defined to be the set of vertices that have the same level-j-label for all j:
Cv(P) :=

{
u ∈ V

∣∣∀j ≥ 1 : l(j)(u) = l(j)(v)
}

. We drop the argument P whenever
the polygon is clear from the context.

The following lemma summarizes the key properties of classes. In particular it
states that a finite exploration depth is sufficient for fully characterizing the class
of a vertex.

Lemma 2. Let v be a vertex of a simple polygon P of size n. For all k ≥ 1 we
have the following properties:

1: C(k+1)
v ⊆ C(k)

v ; 2: Cv ⊆ C(k)
v ; 3: C(n−1)

v ⊆ C(k)
v ; 4: C(n−1)

v = Cv.

Fig. 1. Left: illustration of the definition of the level-1-label of a vertex v. Right:
illustration of how classes repeat along the boundary of a highly symmetrical polygon.

234 J. Chalopin et al.

Proof. Properties 1 and 2 follow immediately from the definitions of level-k-
labels and classes. Property 3 was proven by Norris [8] for general graphs (not
only visibility graphs) using the observation that if there is a vertex v such that
for some k > 1 we have C(k)

v *= C(k+1)
v , then there is also a vertex u for which

C(k−1)
u *= C(k)

u . Property 4 follows from Property 3 and the definition of Cv. %&

In [10] it was first shown that all classes have the same size q even in general
graphs. The following lemma adds that in the case of polygons, the sequence of
classes to which the vertices along the boundary belong is periodical with period
n
q (cf. Figure 1 (right)).

Lemma 3. Let vi be a vertex of a simple polygon P of size n. For all vertices
u ∈ V we have q := |Cvi | = |Cu| and p := n

q is an integer equal to the number
of different classes of P. For all integers k we have Cvi = Cvi+kp .

Proof. For every vj ∈ V we have
∣∣Cvj

∣∣ =
∣∣Cvj+1

∣∣ as every vertex of Cvj has a
vertex of Cvj+1 as its ccw neighbor on the boundary and conversely every vertex
of Cvj+1 has a vertex of Cvj as its cw neighbor on the boundary. Since this is true
for every vertex vj , all classes must have the same size q = |Cvi | and thus p = n

q

is an integer and there are p classes. As the sequence
(
Cvl , Cvl+1 , . . . , Cvl−1

)
is

the same for all vl ∈ Cvi , the vertices of Cvi need to be equally spaced in it.
Using that an equal spacing is given by n/ |Cvi | = p, we get Cvi = Cvi+kp for all
integers k. %&

We now show that level-1-labels are enough to find the ears of a polygon.

Lemma 4. Let vi be a vertex of a simple polygon P of size n ≥ 3. We have that
vi is an ear, if and only if l2(vi−1) = −2 or equivalently l−2(vi+1) = 2.

Proof. If vi is an ear, we obviously have vis2(vi−1) = vi+1 and vis−2(vi+1) = vi−1

which implies l2(vi−1) = −2 and l−2(vi+1) = 2.
Conversely vis2(vi−1) = vi+1 obviously implies that vi is an ear. As l2(vi−1) =

−2 and l−2(vi+1) = 2 are equivalent, it remains to show that l2(vi−1) = −2
implies vis2(vi−1) = vi+1.

For the sake of contradiction assume w := vis2(vi−1) *= vi+1. Consider the
subpolygon P ′ induced by the ordered cycle chain(vi−1, w). In P ′, vi−1 and w
have degree 2. As w *= vi+1, we have |chain(vi−1, w)| ≥ 4 which contradicts
Lemma 1. Therefore vis2(vi−1) = vi+1 and vi is an ear. %&

Lemma 5. Let vi be a vertex of a simple polygon P. If vi is an ear of P, then
every vertex in C(2)

vi is an ear.

Proof. By Lemma 4 we know that l2(vi−1) = −2 and l−2(vi+1) = 2. Let vj ∈
C(2)

vi . Because l(2)(vi) = l(2)(vj), we have l(vi−1) = l(vj−1) and l(vi+1) = l(vj+1)
from which it follows that l2(vj−1) = −2 and l−2(vj+1) = 2. This however implies
that vj is an ear (again using Lemma 4). %&

How Simple Robots Benefit from Looking Back 235

The following lemma allows a robot to ’cut off’ ears of the polygon, i.e. the op-
eration that removes a vertex vi yielding the subpolygon induced by the ordered
cycle v0, . . . , vi−1, vi+1, . . . , vn−1 in P ’s visibility graph. Cutting off a single ear
is problematic for a robot as it has no obvious way of deciding which edges of
the visibility graph it has to ignore afterwards in order to restrict itself to the
remaining polygon. An edge might lead to a vertex of the same class as the one
the robot cut off, in which case it has no way of distinguishing whether the ver-
tex is still there or not. Cutting off all vertices of one class however is possible as
the robot can then simply ignore edges leading to vertices of the corresponding
class altogether.

Lemma 6. Let v be a vertex of a simple polygon P of size n with |Cv| < n, i.e.
P has more than one class. If v is an ear of P, the subpolygon P ′ of P obtained
by cutting off the vertices Cv(P) is well-defined and for all vertices u of P ′ we
have Cu(P) ⊆ Cu(P ′).

Proof. As v is an ear, Lemma 5 gives us that all vertices in C(2)
v are ears and thus

all vertices in Cv ⊆ C(2)
v are (Lemma 2). The subpolygon P ′ is thus well-defined

as the inducing set of vertices lies on an ordered cycle.
Let u, w be vertices of P ′ such that Cu(P) = Cw(P) and thus for all k ≥ 1

we have l(k)(u) = l(k)(w) in P . The level-k-label of a vertex v′ in P ′ can be
obtained from its level-k-label in P by recursively removing all occurrences of
labels that belong to a vertex in Cv(P) (i.e. we remove the level-(k − 1)-labels
belonging to vertices in Cv(P) from l(k)(v′) and apply the procedure recursively
for k − 1 to the other labels in l(k)(v′)). As Cv′ (P) = C(n−1)

v′ (P), i.e. a finite
depth determines the class of a vertex, the same occurrences are removed for
vertices in the same class. Thus in P ′, l(k)(u) = l(k)(w) holds for all k ≥ 1 and
hence Cu(P ′) = Cw(P ′). %&

The following result is the main insight for reconstructing the visibility graph of
a polygon and for solving the weak rendezvous problem.

Theorem 1. For any simple polygon P there is a vertex v for which C(n−1)
v =

Cv forms a clique in the visibility graph of P.

Proof. Using the fact that any simple polygon has an ear, we can select an ear
u of our polygon and cut off all vertices in Cu. Lemma 6 gives us that we can
do this and we never divide classes in the process. We can repeatedly apply this
procedure until we obtain a polygon P ′ where every vertex is in the same class.
As P ′ needs to have at least one ear, it follows from Lemma 5 that all vertices of
P ′ are ears. This in turn implies that P ′ is convex and thus its visibility graph
is a complete graph. As we never divide classes in our procedure, we know that
there is a vertex v of P such that every vertex of Cv(P) is still present in P ′.
Hence, Cv(P) forms a clique in P ′ and thus forms a clique in P . %&

Lemma 7. Let P be a simple polygon of n vertices. Given n and some k ≥ 1,
an LB-robot located at v can determine l(k)(v).

236 J. Chalopin et al.

Proof. The LB-robot can compute l(1)(v) by moving to every neighbor of v in
turn. It can recursively compute l(k)(v) by moving to every neighbor of v in turn
and computing its level-(k − 1)-label. In both cases, as the robot can look-back,
it is capable of returning to v after visiting a neighbor. %&

Using Lemma 7 and Theorem 1, we show that any number of deterministic
LB-robots can position themselves such that they are mutually visible.

Theorem 2. Let P be a simple polygon of n vertices. Given n, any number of
identical and deterministic LB-robots can weakly meet in P, i.e. they can position
themselves such that every robot sees all other robots.

Proof. By Lemma 7 a robot can calculate l(n)(v) for every vertex v along the
boundary and thus not only find the classes of all vertices but also the classes of
all vertices they see. By Theorem 1 at least one class forms a clique. The robot
can easily check which classes form a clique (by comparing the level-n-labels)
and drive to a vertex of the class Cmin with the lexicographically smallest level-
n-label among all these classes. This strategy will choose the same class Cmin

for every robot independent of its starting location, thus if all robots execute it
they will eventually all be located on vertices of Cmin seeing each other as Cmin

forms a clique. %&

In the following we again use the fact that an LB-robot can find a class of
vertices that forms a clique, and we show that using this clique as a frame, it
can incrementally build up the visibility graph of the polygon.

Theorem 3. Let P be a simple polygon of n vertices. Given n, an LB-robot can
determine the visibility graph of P.

Proof. By Lemma 7 the robot can determine l(n)(v) for all vertices v along the
boundary and thus not only find the classes of all vertices but also the classes
of all vertices they see. As in the proof of Theorem 2, this means the robot can
identify the class Cmin with the lexicographically smallest level-n-label among
the classes forming a clique.

Let u ∈ Cmin be a vertex of this class. We argue that the edges of u in the
visibility graph of P are easily identified. Assume that the i-th edge of u (in ccw
order) leads to a vertex w of class C′ and let xi be the number of edges with
index j < i that lead to vertices of class Cmin. If C′ = Cmin, w is easily identified
as the (xi + 1)-th vertex of class Cmin counting along the boundary starting at u.
If C′ *= Cmin, w is the first vertex of class C′ after the xi-th vertex of class Cmin

in ccw order counting from u (by Lemma 3, there is exactly one vertex of class
C′ between the xi-th and the (xi + 1)-th vertex of class Cmin). In the following
we show that the robot can identify the edges to other vertices (u /∈ Cmin).

Let vi be a vertex of P . With dk(vi) and d−k(vi) we denote the set of vertices in
chainvi(vi, vi+k) and chainvi(vi−k, vi), respectively. Finding the visibility graph
is the same as finding dn

2
(v) and d−n

2
(v) (i.e. the global indices of the vertices

in dn
2
(v), d−n

2
(v)) of every vertex v along the boundary. In the following we

assume that (!) for two vertices u, w, Cu = Cw implies |dk(u)| = |dk(w)| and

How Simple Robots Benefit from Looking Back 237

|d−k(u)| = |d−k(w)| for all k ≥ 1. We will prove (!) later, but for now observe
that it trivially holds for k = 1.

We show inductively how to obtain d±n
2

for all vertices. The robot knows d±1

for every vertex. It remains to be shown how to obtain dk+1(vi) for some vertex
vi assuming dk(vi) is known – this can then be applied to all vertices in order
to obtain d±(k+1). Let x := |dk(vi)| and vis(vi) = (u1, . . . , ud), where d is vi’s
degree. We have

dk+1(vi) =

{
dk(vi) ∪ {vi+k+1} , if ux+1 = vi+k+1

dk(vi) , otherwise.

Let vj := ux+1 be the first vertex (in ccw order) visible to vi and not in dk(vi).
In order to derive dk+1(vi), it is now enough for the robot to decide whether
vj = vi+k+1 or vj *= vi+k+1. As the robot knows Cvi+k+1 and can compute
Cvj , this is trivial for vi+k+1 /∈ Cvj . We therefore restrict ourselves to the case
vi+k+1 ∈ Cvj . We then have y := |d−k(vi+k+1)| = |d−k(vj)|, using (!). Assuming
vj = vi+k+1 immediately leads to lx+1(vi) = − (y + 1). We want to show that
lx+1(vi) = − (y + 1) if and only if vj = vi+k+1. For the sake of contradiction
assume vj *= vi+k+1 and lx+1(vi) = − (y + 1).

Let a ∈ Cmin be the first vertex in chain(vi, vj) lying in Cmin and likewise let
b ∈ Cmin be the last vertex in chain(vi, vj) lying in Cmin. Note that a and b are
well defined as vi+k+1 ∈ chain(vi, vj) and there is a vertex of Cmin between vi+k+1

and vj as Cvi+k+1 = Cvj (Lemma 3). Consider the case a *= b (cf. Figure 2 (left)).
We define s to be the last vertex in chain(vi+1, a) visible to vi and t to be the
first vertex in chain(b, vj−1) visible to vj . Let P ′ be the subpolygon induced by
vi, chain(s, a) , chain(b, t) , vj . This subpolygon is well defined since a sees b as Cmin

forms a clique. Note that vi does not see any vertices in chain(b, vj−1), likewise vj

does not see any vertices in chain(vi+1, a) (recall that vj = ux+1 and lx+1(vi) =
− (y + 1)). In P ′, vi and vj are neighbors on the boundary and both have degree
2 which is a contradiction with Lemma 1. We may thus assume a = b (cf. Figure 2
(right)). As there has to be a vertex of class Cmin in chain(vi+k+1, vj), there can
be none in chain(vi, vi+k+1) (and thus none in chain(vj−k−1, vj) as vj−k−1 ∈ Cvi).
This however means that k < p − 2 with p = n/ |Cv0 | from Lemma 3, and thus
chain(vi, vi+k) and chain(vj−k, vj) do not overlap (|chain(vi+k+1, vj)| ≥ p + 1
as vi+k+1 ∈ Cvj). Let now s be the last vertex in chain(vi+1, vi+k) visible to vi

and t be the first vertex in chain(vj−k, vj−1) visible to vj . We can then define the
subpolygonP ′ induced by vi, chain(s, t) , vj in which again vi and vj are neighbors
of both degree 2, which is a contradiction to Lemma 1.

We have seen that lx+1(vi) = − (y + 1) is necessary and sufficient for vj =
vi+k+1. Both x and y as well as level-1-labels can be derived from l(n)(vi). This
proves that our robot can compute the visibility graph inductively. To complete
the proof we still need to show (!). Obviously we have (!) for k = 1. By inspection
of the inductive method above for k > 1, we see that whenever we conclude
vj = vi+k+1 for some vertex vi, the same conclusion will be made for any other
vertex vl ∈ Cvi . In step k of the induction, we only use (!) for d±k. Hence (!) is
maintained throughout. %&

238 J. Chalopin et al.

Fig. 2. Illustration of the visibility graph for the cases a != b (left) and a = b (right).
The outline of the subpolygon causing a contradiction is highlighted.

The following theorem implies that the results of Theorems 2 and 3 still hold if
only an upper bound N ≥ n on the number of vertices is given.

Theorem 4. Let P be a simple polygon of n vertices. Given a bound N ≥ n,
an LB-robot can determine the number of vertices n.

Proof. By Lemma 7, the robot can determine the sequence of level-N -labels
l(N)(vi) , l(N)(vi+1) , . . . , l(N)(vi+N−1), where vi is its initial location.By Lemma2,
we have C(N−1)

vj = Cvj and thus the robot knows the classes of the vertices
vi, vi+1, . . . , vi+N−1 as well as the classes of the vertices they see. Let q = |Cvi |
and p = n

q as in Lemma 3. The robot can determine p as the number of different
classes it encounters since N ≥ n. Once the robot knows q, it can immediately
infer n = p · q. By Theorem 1 there is a class C! that forms a clique in the visi-
bility graph. Let Mi := vis(vi) ∩ Cvi . As N ≥ n, there is a vertex of C! among
vi, vi+1, . . . , vi+N−1 and hence q = maxi≤j≤i+N−1 |Mi| + 1. As the robot knows
the classes of the vertices vi, vi+1, . . . , vi+N−1 as well as the classes of the vertices
they see, it can infer Mi, Mi+1, . . . , Mi+N−1 and thus q. %&

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Transactions on
Robotics and Automation 15(5), 818–828 (1999)

2. Bilò, D., Disser, Y., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Reconstruct-
ing visibility graphs with simple robots. In: Proceedings of the 16th International
Colloquium on Structural Information and Communication Complexity, pp. 87–99
(2009)

3. Brunner, J., Mihalák, M., Suri, S., Vicari, E., Widmayer, P.: Simple robots in
polygonal environments: A hierarchy. In: Fekete, S.P. (ed.) ALGOSENSORS 2008.
LNCS, vol. 5389, pp. 111–124. Springer, Heidelberg (2008)

How Simple Robots Benefit from Looking Back 239

4. Chalopin, J., Godard, E., Métivier, Y., Ossamy, R.: Mobile agent algorithms ver-
sus message passing algorithms. In: Shvartsman, M.M.A.A. (ed.) OPODIS 2006.
LNCS, vol. 4305, pp. 187–201. Springer, Heidelberg (2006)

5. Cohen, R., Peleg, D.: Convergence of autonomous mobile robots with inaccurate
sensors and movements. SIAM Journal of Computing 38(1), 276–302 (2008)

6. Ganguli, A., Cortés, J., Bullo, F.: Distributed deployment of asynchronous guards
in art galleries. In: Proceedings of the 2006 American Control Conference, pp.
1416–1421 (2006)

7. Ghosh, S.K.: Visibility Algorithms in the Plane. Cambridge University Press, Cam-
bridge (2007)

8. Norris, N.: Universal covers of graphs: isomorphism to depth n− 1 implies isomor-
phism to all depths. Discrete Applied Mathematics 56(1), 61–74 (1995)

9. Suri, S., Vicari, E., Widmayer, P.: Simple robots with minimal sensing: From local
visibility to global geometry. International Journal of Robotics Research 27(9),
1055–1067 (2008)

10. Yamashita, M., Kameda, T.: Computing on anonymous networks: Part I – char-
acterizing the solvable cases. IEEE Transactions on Parallel and Distributed Sys-
tems 7(1), 69–89 (1996)

11. Yershova, A., Tovar, B., Ghrist, R., LaValle, S.M.: Bitbots: Simple robots solv-
ing complex tasks. In: Proceedings of the 20th National Conference on Artificial
intelligence, vol. 3, pp. 1336–1341 (2005)

	How Simple Robots Benefit from Looking Back
	Introduction
	Polygons and LB-Robots
	Results

