
Every planar graph is the intersetion graphof segments in the plane (extended abstrat)Jérémie Chalopin1 and Daniel Gonçalves2
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2 LIRMM, CNRS et Université Montpellier 2, 161 rue Ada 34392 Montpellier Cedex 05, Frane.Abstrat. Given a set S of segments in the plane, the intersetion graph of S is the graph with vertexset S in whih two verties are adjaent if and only if the orresponding two segments interset. Weprove a onjeture of Sheinerman (PhD Thesis, Prineton University, 1984) that every planar graphis the intersetion graph of some segments in the plane.1 IntrodutionIn this paper, we onsider intersetion models for planar graphs. A segment model of a graph G maps everyvertex v ∈ V (G) to a segment v of the plane so that two segments u and v interset if and only if uv ∈ E(G).Although this graph family is simply de�ned, it is not easy to manipulate. Atually, even if this lass of graphsis small (there are less than 2O(n log n) suh graphs with n verties [15℄) a segment model may be long toenode (in the models of some of these graphs the endpoints of the segments need at least 2
√

n bits to beoded [13℄). There are also interesting open problems onerning this lass of graphs. For example, we knowthat deiding whether a graph G admits a segment model is NP-hard [11℄ but it is still open whether thisproblem belongs to NP or not. Here we fous on a onjeture proposed by Sheinerman [16℄, stating thatevery planar graph has a segment model.Many work has been done toward this onjeture. Several proofs [3,5,9℄ have been given for bipartiteplanar graphs. The ase of triangle-free planar graphs was proved by de Castro et al. [1℄ and reently deFraysseix and Ossona de Mendez [4℄ proved it for every planar graph that has a 4-oloring in whih everyindued yle of length 4 uses at most 3 olors.Another approah to this problem has been proposed [12,14℄. Sine it is known [6℄ that planar graphsare intersetion graphs of Jordan ars in the plane and sine two non-parallel segments interset at mostone, it was asked whether planar graphs are intersetion graphs of Jordan ars in the plane if every pair ofJordan ars s1 and s2 interset at most one and in a non-tangent way (i.e. around their intersetion point wesuessively meet s1, s2, s1 and s2). It was already known when tangent intersetion are allowed; indeed everyplanar graph is the ontat graph of touhing irles [10℄. The authors and Ohem [2℄ answered positively tothis question. This approah of Sheinerman's onjeture was deisive sine by improving the proof of thisresult it yields a proof of Sheinerman's onjeture that we present here. However, the onstrution we givehere does not exatly orrespond to a strething of the strings of the onstrution given in [2℄.The paper is organized as follows. In Setion 2 we give some de�nitions. In partiular we de�ne premodelsand we outline how to obtain a segment model from a premodel. In Setion 3 we desribe premodels thatexist for 3-bounded W-triangulations, a family of plane graphs inluding 4-onneted triangulations. Thenin Setion 4 we �nally onstrut segment models for general triangulations, whih implies the existene ofsegment models for general planar graphs.Due to spae limitations, some proofs are omitted and an be found in the full version of the paperattahed in appendix.2 PreliminariesA plane graph is an embedded planar graph. Given a plane graph G, let V (G), E(G) and F (G) be respetivelythe sets of verties, edges and inner faes of G. A near-triangulation is a plane graph in whih every inner faeis a triangle. A triangulation is a near-triangulation with a triangular outer fae. It is easy to see that everyplanar graph is the indued subgraph of some triangulation. This implies that it is su�ient to onsidertriangulations. Indeed if a planar graph G is isomorphi to the graph indued by a set V (G) ⊆ V (T ) of



verties in a triangulation T , then by removing the segments orresponding to V (T ) \ V (G) from a segmentmodel of T , we learly obtain a segment model of G.In all the paper, the bold notations orrespond to geometrial objets like points, segments or lines. Forexample we will usually denote by v the segment orresponding to a vertex v and by (v) the line prolongingthis segment. Furthermore sine we onsider �nite planar graphs, the segment sets we onsider are all �nite.Given a segment set S, its set of representative points RepS is the set that ontains the intersetion pointsand the ends of the segments in S. A segment set S is unambiguous if every segment s ∈ S has distintendpoints, and if parallel segments of S do not interset. From now on we use the following de�nition ofmodel.De�nition 2.1. Given a segment set S, its intersetion graph GS is the graph with vertex set S and wheretwo verties are adjaent if and only if the orresponding segments interset. Furthermore if (1) S is un-ambiguous, if (2) the intersetion of any three segments of S is empty, and if (3) every endpoint belongs toexatly one segment, then S is a model for any graph G isomorphi to GS.For the proof in Setion 4 we need some geometrial strutures to represent the triangular inner faes. Toeah triangular inner fae abc we will assoiate a fae segment, abc, acb or bca.De�nition 2.2. Given an unambiguous segment set S and three pairwise interseting segments a, b and c,a fae segment f = abc is a segment [p,q] suh that:� p is the intersetion point of a and b, and going around p we onseutively meet a, f and b,� q is an internal point of c that does not belong to any other segment of S, and� none of its internal points belongs to any segment of S.The points p and q are respetively alled the ross-end and the �at-end of abc.Note that the seond item implies that fae segments are non-trivial, i.e. p 6= q. Note also that in thisde�nition a and b play the same role, so a fae segment abc is also a fae segment bac but it is not a faesegment acb.De�nition 2.3. Given an unambiguous segment set S, two fae segments f1 and f2 on S are non-interferingif one of the following holds:- The segments f1 and f2 do not interset.- The segments f1 and f2 have the same ross-end p and this point is the intersetion point of exatlytwo segments of S, a and b. Furthermore, one of the lines (a) and (b) separates f1 and f2 in distinthalf-planes.De�nition 2.4. A full model of a near triangulation T is a ouple M = (S, F ) of segments sets suh that:� S is a model of T .� F is a set of non-interfering fae segments on S suh that for eah inner fae abc of T , F ontains oneof the following fae segments: abc,acb,bca.� S ∪ F is unambiguous.The next theorem is the main result of the paper.Theorem 2.5. Every triangulation T has a full model M = (S, F ).2.1 PremodelsIn our proofs, we use a di�erent kind of model. The main di�erene with full models is that more than twosegments of S an interset in a same point.In the following, we onsider a segment set S and a set F of non-interfering fae segments on S, where
S ∪ F is unambiguous. Let us denote the segments of S (resp. F ) by s1, s2, . . . (resp. f1, f2, . . . ). Given arepresentative point p, its inidene sequene I(p) is the undireted irular sequene of segments (from
S ∪ F ) we meet by going around p. This sequene is undireted beause it will make no di�erene goinglokwise or anti-lokwise. By extension, the partial topologial inidene sequene of p, I∗(p) is the sequeneobtained in the following way. Prolong every segment that ends at p and onsider its new inidene sequene.2



Then replae every ourrene of si and fi that was not in I(p) before by (si) and (fi). It is lear that I(p)is a subsequene of I∗(p) (i.e. I(p) ⊆ I(p)). We say that I(p) is of the form ([r1], r2, . . . , rk) for ri ∈ S ∪F ,if either I(p) = (r1, r2, . . . , rk), I(p) = (r2, . . . , rk), or I(p) ⊆ ((r1), r2, . . . , rk) ⊆ I∗(p).Let us de�ne types for the representative points, depending on their inidene sequene. These typesare not always entirely determined by the inidene sequene and we will have to assign a type (among thepossible ones) to eah representative point. Furthermore, these types are in orrespondene with some graphswe also desribe here.� A point is a segment end if its inidene sequene is (s1). The orresponding graph is the single vertex
s1.� A point is a �at fae segment end if its inidene sequene is (s1, f1, s1). The orresponding graph is thesingle vertex s1.� A point may be a rossing if it has an inidene sequene of the form (s1, [f1], s2, [f2], s1, [s2]) or (s1, [f1], s2,

s1, [f2], s2). The orresponding graph is the edge s1s2.� A point may be a path�(s1, s2, . . . , sk)�point with k ≥ 2, if it has an inidene sequene of the form
(s1, s2, . . . , sk, (s1), (s2)) (See Figure 1). Suh a typed point is in orrespondene with path�(s1, s2, . . . , sk),the graph with vertex set {s1, . . . , sk} and edge set {sisi+1 | 1 ≤ i < k}.

s2 sks1

s1 s2 sk s1 s2 skFig. 1. A path�(s1, s2, . . . , sk)�point, its partial realization, and its orresponding graph� A point may be a fan�s1⊳� (s2, . . . , sk)�point with k ≥ 2, if it has an inidene sequene of the form
(s1, [f1], s2, . . . , sk, (s1), [f1], (s2)) (See Figure 2), with f1 = s1s2x. Note that sine f1 is a fae segmentit ours at most one in the inidene sequene. Suh a typed point is in orrespondene with fan�s1⊳�
(s2, . . . , sk), the graph with a vertex s1 dominating a path (s2, . . . , sk).
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Fig. 2. A fan�s1⊳� (s2, . . . , sk)�point, its partial realization , and its orresponding graphIn fat, there are three more kinds of speial points that are not detailed here but an be found in thefull version of the paper. 3



Atually, the graphs we onsidered here are plane graphs, and their inner faes are the grey faes in the�gures. As in [4℄, we need a bipartite digraph to desribe the onstraints between segments and representativepoints.De�nition 2.6. Given a segment set R, the onstraints digraph ConstR is the bipartite digraph with vertexsets R and RepR, and where r ∈ R and p ∈ RepR are linked if and only if p ∈ r. More preisely, there is anar from p to r if p is an endpoint of r, otherwise (when p is an internal point of r) the ar goes from r to
p.Informally this graph desribes the fat that the position of a segment is determined by its endpoints, anddetermines the position of its internal representative points.De�nition 2.7. Given a segment set S, a set F of non-interfering fae segments on S and a funtion τ thatassigns a type to eah representative point, the triple M = (S, F, τ) is a premodel of a near-triangulation Tif the following holds:- The set S ∪ F is unambiguous and the digraph ConstS∪F is ayli.- A vertex a ∈ V (T ) if and only if a ∈ S.- An edge ab ∈ E(T ) if and only if a and b interset in a point p suh that the graph orresponding to

τ(p) ontains the edge ab.- A fae abc ∈ F (T ) if and only if one of the following holds:- either there exists a fae segment abc, acb or bca in F ,- or, a,b and c interset in a point p suh that abc is an inner fae of the graph orresponding to τ(p).Note that a premodel M = (S, F, τ) of a near-triangulation T has a bounded number of representativepoints. There are at most 2|V (T )| segment ends, at most F (T ) �at fae segment ends, and at most E(T )points of another type (sine eah of them orresponds to at least one edge of T ).Remark 2.8. If a premodel M = (S, F, τ) of a near-triangulation T has 2|V (T )|+ |F (T )|+ |E(T )| represen-tative points, then (S, F ) is a full model of T .2.2 Loal PerturbationsIn this subsetion we desribe how to transform a premodel M = (S, F, τ) of a near triangulation T into afull model M′ = (S′, F ′) of T . In the following the segments denoted by ri are segments of S ∪ F . Let usde�ne three basi moves: prolonging, gliding and traversing.Lemma 2.9 (prolonging). Consider a premodel M = (S, F, τ) of a near triangulation T with an intersetionpoint p whih is the end of a segment s1 ∈ S. If for every segment s2 ∈ S that has an end in p, there isno direted path from s2 to s1 in ConstS∪F , it is possible to prolong s1 aross p without reating a ylein ConstS′∪F (where S′ is the new segment set). Furthermore, if the type τ(p) is still appliable to p then
(S′, F, τ) remains a premodel of T .Remark 2.10. Consider a premodel M = (S, F, τ) with a point p that is the intersetion of exatly twosegments from S, s1 and s2. By prolonging all the segments that end at p we obtain a segment set S′ suhthat ConstS′∪F remains ayli.A segment set R is �exible if every representative point p is internal for at most two segments of R. Notethat aording to the de�ned types for every premodel M = (S, F, τ), the set S ∪ F is �exible.De�nition 2.11. A move of a segment set R = {ri = [ai,bi] | 1 ≤ i ≤ |R|} is a segment set R′ suh that
R′ = {r′i = [a′

i,b
′
i] | 1 ≤ i ≤ |R|}. An interpolation of this move is a ontinuous funtion de�ned for t ∈ [0, 1]that gives a move Rt of R suh that R0 = R and R1 = R′.Lemma 2.12 (gliding). Consider a �exible and unambiguous segment set R suh that ConstR is ayli,and a representative point p of R. If the segments r1, r2, . . . , ri are onseutive around p, if all the segments

r2, . . . , ri have an end at p and are in the same half-plane delimited by (s1) (See Figure 3), and if in ConstRthe vertex r1 annot be reahed from any rj with 2 ≤ j ≤ i, then there exists a move R′ with an interpolation
Rt suh that for every t ∈]0, 1]: 4



- The set Rt is unambiguous and ConstRt is ayli.- The point p splits into two representative points pt
1 and pt

2, whih inidene sequene are respetively
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i.- For every representative point q 6= p of R there is a representative point qt in Rt with exatly the sametopologial inidene sequene.- There is no other representative point (i.e. |RepRt | = |RepR| + 1).- Every segment rt ∈ Rt (resp. representative point qt ∈ RepRt) that is not reahable from any pt

1 in
ConsttR is stati, that is rt = r (resp. qt = q).
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Fig. 3. gliding of r2, . . . , ri on r1.Lemma 2.13 (traversing). Consider a �exible and unambiguous segment set R suh that ConstR is ayli,and a representative point p of R whih inidene sequene is (r1, . . . , ri, . . . , rj , r1, rj+1, . . . , rk, ri) with
2 < i ≤ j ≤ k (See Figure 4). There exists a move R′ with an interpolation Rt suh that for every t ∈]0, 1]:- The set Rt is unambiguous and ConstRt is ayli.- The point p splits into i representative points pt
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i) for l = i.- For every representative point q 6= p of R there is a representative point qt in Rt with exatly the sametopologial inidene sequene.- There is no other representative point (i.e. |RepRt | = |RepR| + i − 1).- Every segment r ∈ R (resp. representative point q ∈ RepR) that is not reahable from pt
i in ConstRt isstati, that is rt = r (resp. qt = q).
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Fig. 4. traversingGiven an intersetion point p in a premodel M = (S, F, τ) of T , a partial realization of p is an operationthat ombines a basi move at p and the addition of new fae segments (eventually none), and that yieldsanother premodel M′ = (S′, F ′, τ ′) of T . A simple example of a partial realization at p is prolonging asegment s aross p, hoosing s in suh a way that τ(p) still applies and that the onstraints digraph remains5



ayli. Suh a partial realization is alled a maximization of p, and if p is already internal in two segmentswe say that this point is maximal. In a premodel, we say that a point p is simple if it is either a segmentend, a �at fae segment end, or a maximal point without any segment of S ending here (at p). Otherwise,we say that this point is speial.Proposition 2.14. Consider a premodel M = (S, F, τ) of a near-triangulation T . Every speial point p of
M that is maximal admits a partial realization.Proof. Note that sine p is speial and maximal there are at least three segments from S interseting at p.We distinguish di�erent ases aording to the type of p.If this point is a path�(s1, s2, . . . , sk)�point we do a gliding of {s3, . . . , sk} on s2 to a new representativepoint q (by Lemma 2.12 sine p is not an end of s2). Let p and q be respetively typed as the rossingpoint of s1 and s2, and as a path�(s2, . . . , sk)�point (See Figure 1). Under these onditions the gliding keepsthe onstraints digraph ayli and preserves the topologial inidene sequene of the other representativepoints (so that their type an remain unhanged). Thus, sine the graph that orresponded to p (the path
(s1, . . . , sk)) is the union of the graphs orresponding to p and to q, we are done.If this point is a fan�s1⊳� (s2, . . . , sk)�point we do a traversing of {s3, . . . , sk} along s2 and through s1 toa new representative point q. We add the fae segments s1sisi−1, with 3 ≤ i ≤ k, and we let q be typed as apath�(s2, . . . , sk)�point (See Figure 2). Under these onditions the traversing keeps the onstraints digraphayli and preserves the topologial inidene sequene of the other representative points. Thus sine thegraph that orresponded to p (the fan�s1⊳� (s2, . . . , sk)) is the union of the graphs orresponding to the newrossing points, to the new fae segments, to p and to q, we are done.For the other kinds of types, we refer to the full version of the paper. This onludes the proof of theproposition. ⊓⊔Now let us note that any partial realization inreases the number of representative points. Sine a pre-model with the maximum number of representative points is a full model (Cf. Remark 2.8), we have thefollowing orollary.Corollary 2.15. Any premodel M = (S, F, τ) of a near-triangulation T admits a sequene of partial real-izations that yield a full model M′ = (S′, F ′) of T .3 The ase of 4-onneted triangulations.Let T be a near-triangulation. A hord of T is an edge not inident to the outer fae but whih ends are onthe outer fae. A separating 3-yle C is a yle of length 3 suh that some verties of T lie inside C whereasother verties are outside. It is well known that a triangulation is 4-onneted if and only if it ontains noseparating 3-yle.De�nition 3.1. A W-triangulation T is a 2-onneted near-triangulation ontaining no separating 3-yle.Suh a W-triangulation is 3-bounded if its outer boundary is the union of three paths, (a1, . . . , ap), (b1, . . . , bq),and (c1, . . . , cr), that satisfy the following onditions (see Figure 5):� a1 = cr, b1 = ap, and c1 = bq.� the paths are non-trivial ( i.e. p ≥ 2, q ≥ 2, and r ≥ 2).� there exists no hord aiaj , bibj, or cicj .This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).In the following, we will use the order on the three paths and their diretions, i.e. (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-(cr, . . . , c1)-(bq, . . . , b1).Property 1 Consider any W-triangulation T 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).(1) If p = 2 (see Figure 6, left), for any triangle BCD, there exists a premodel M = (S, F, τ) of T ontainedin the triangle BCD suh that� every speial point p of M is a point of bq = c1 = [BC], a2 = b1 = [BD] or cr = a1 = [CD],� B is a path�(b1, b2, . . . , bq)�point, 6



a1 = cr b1 = ap

c1 = bq
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Fig. 5. A 3-bounded W-triangulation T .� C is a path�(c1, c2, . . . , cr)�point,� D is a fan�a2⊳� (d1, . . . , ds, a1)�point (where d1, d2, . . . , ds are inner verties of T ) suh that there isa fae segment inident only if s = 0 (i.e., D is a fan�a2⊳� (a1)).(2) If p > 2 (see Figure 6, right), for any triangle ABC there exists a point D inside this triangle and apremodel M = (S, F, τ) of T ontained in the polygon ABCD suh that� every speial point p of M is a point of ap = b1 = [AB], bq = c1 = [BC], [CD] (that is ontainedin a1 = cr) or [AD] (that is ontained in a2),� A is a path�(a2, . . . , ap)�point.� B is a path�(b1, b2, . . . , bq)�point,� C is a path�(c1, c2, . . . , cr)�point,� D is the rossing point of a1 and a2 (with possibly one fae segment inident to it orresponding tothe inner fae of T inident to a1a2),
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AFig. 6. Property 1 for one W-triangulation T with p = 2 and one with p > 2.Note that in both ases, at most one fae segment is inident to D, sine a1a2 is inident to exatly oneinner fae of T . Furthermore sine path�points annot have inident fae segments, there is no fae segmentinident to A,B,C (resp. B,C) when p > 2 (resp. p = 2).This property is the ore of our onstrution and its proof an be found in the full version of the paper.Our proof is based on a deomposition of 4-onneted triangulations already used in [2,7,18℄.4 Proof of Theorem 2.5We prove that every triangulation T has a full model (S, F ) by indution on the number k of separating3-yles in T . If k = 0 the triangulation T is a W-triangulation 3-bounded by (a, b)-(b, c)-(c, a), where a, b7



and c are the verties on its outer-boundary. Then Property 1 provides us a premodel M = (S, F, τ) of Tand by Corollary 2.15 we obtain a full model (S′, F ′) of T .If k ≥ 1, let C = (a, b, c) be a 3-yle suh that the triangulation T ′ indued by the verties on and inside
C does not ontain any separating 3-yle. Let T1 be the triangulation obtained by removing all the vertiesthat lie stritly inside the yle C. Let T2 be the subgraph of T indued by all the verties of T that lie stritlyinside the yle C. By de�nition of C, T2 is either (A) a single vertex v or (B) a W-triangulation (see Figure7). In T1, the yle C delimits a fae and is no more a separating 3-yle. Sine T1 has one separating 3-yle
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b

c

a
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c

Fig. 7. The ases (A) and (B).less than T , the indution hypothesis implies that T1 admits a full model M = (S, F ). Sine abc is an innerfae of T1 there is a orresponding fae segment, say acb, in F and let respetively B and C be its �at endand its ross end. Note that there might be an other fae segment inident to C. If it exists we denote it acdsine it would orrespond to a fae acd adjaent to the edge ac in T1. Sine F is non-interfering we know that
(a) or (c) separate acb and acd in distint half-planes. Here we assume, without loss of generality that theline (a) separates them. Now let ǫ > 0 be a real suh that for every representative point p ∈ RepS∪F \{B,C}we have dist(p,acb) > ǫ, and let the region Rǫ be the set of points at distane at most ǫ from acb. Thede�nition of ǫ implies that (1) the only segments interseting Rǫ are a, b, c, acb and eventually acd if itexists; and that (2) the endpoints of a, b and c (resp. the �at end of acd) are not in Rǫ. Sine there is noinner fae abc in T we remove acb from F and we add some segments and fae segments in Rǫ to obtain afull model of the whole T .
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Fig. 8. Case (A): Modi�ations inside Rǫ.Case (A): T2 is a single vertex v. Sine acb and acd (if it exists) are non-interfering, it is easy to draw inthe region Rǫ a segment v that only interset a, b, and c; and three fae segments vba, vcb, and acv suhthat the set {vba,vcb,acv,acd} is non-interfering (see Figure 8). Now it is lear that from the model Mof T1 we have added a segment for v, three rossings for va, vb and vc, removed the fae segment of acb, andadded the fae segments of vba, acv and vcb; thus we have a full model of T .8
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Fig. 9. Case (B): Modi�ations inside Rǫ.Case (B): T2 is a W-triangulation. Let a1, a2, . . . , ap be the neighbors of a inside the yle (a, b, c) goingfrom c to b exluded. Similarly let b1, b2, . . . , bq (resp. c1, c2, . . . , cr) be the neighbors of b (resp. c) inside theyle (a, b, c) going from a to c (resp. from b to a) exluded. It is lear that a1 = cr, b1 = ap, and c1 = bq.Furthermore, sine there is no separating 3-yle inside C, we have that:� p, q, and r ≥ 2.� (a1, a2, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a yle, thus T2 is a W-triangulation.� T2 has no hord axay, bxby, or cxcy with y > x + 1.Thus T2 is a W-triangulation 3-bounded by (a1, a2, . . . , ap)-(b1, b2, . . . , bq)-(c1, c2, . . . , cr). Here we hoosethis partiular 3-boundary beause of the assumption that (a) separates acb and acd (if it exists). We nowapply Property 1 with respet to this 3-boundary and this implies that if p = 2 (resp. p > 2) then T2 hasa premodel M′ = (S′, F ′, τ ′) inside the triangle BCD (resp. the polygon ABCD), where A is a point of
a ∩ Rǫ (See Figure 9) and D is an internal point of [A,B] (resp. a point stritly inside ABC). If p = 2we prolong b1 = [BD] aross D until reahing A and note that sine all the speial points lie on BCD,Lemma 2.9 implies that the onstraints digraph of M′ remains ayli. Note also that aording to thede�nition of Rǫ, the full model M and the premodel M′ only interset at A, B and C. Now we are goingto merge M and M′ in order to onstrut a premodel M∗ = (S∗, F ∗, τ∗) of the whole T . To do this, let
S∗ = S ∪S′ and F ∗ = (F \acb)∪F ′ ∪{a1a2a,ab1b,bc1c}; where a1a2a goes from D to a point of [A,C],
ab1b goes from A to a point of b ∩Rǫ, and bc1c goes from B to a point of c∩Rǫ (See Figure 9). Observethat F ∗ is non-interfering, in partiular we see that a1a2a does not interfere with another fae segment fat D, sine f would be inside ABCD. We now de�ne τ∗ as follows. Let A be a fan�a⊳� (ap, . . . , a2)�point,let B be a fan�b⊳� (bq, . . . , b1)�point, and let C be a fan�c⊳� (a, cr, . . . , c1)�point. If p > 2 the point D remainsthe rossing point of a1 and a2, even with its new inident fae segment. If p = 2 the point D was eithera fan�a2⊳� (d1, . . . , ds, a1)�point (for some verties d1, . . . , ds) or a fan�a2⊳� (a1)�point. In the �rst ase let Dbe a fan�a2⊳� (a1, ds, . . . , d1)�point (possible sine it has no inident fae segment in M′). In the seond aselet D be the rossing point of a1 and a2 with one or two inident fae segments. Note that in both asethe graph orresponding to D remains unhanged. For the other representative points of M∗ let their typeremain as in M or M′.We now verify that M∗ is a premodel of T .- It is lear that S∗∪F ∗ is unambiguous and we show here that ConstS∗∪F∗ is ayli. Indeed this digrapharises from the union of ConstS∪F and ConstS′∪F ′ (where S′ has a segment a2 prolonged until A when

p = 2) by adding the verties orresponding to the new fae segments and their �at end point, and addingthe ars inident to these verties. But sine the fae segments have out-degree zero in the onstraintsdigraphs, there is no yle in ConstS∗∪F∗ passing through a fae segment. Thus a yle would be in theunion of ConstS∪F and ConstS′∪F ′ . These two digraph being ayli, this yle should suessively passthrough a segment of ConstS′∪F ′ , through one of the points A, B and C, and through a segment of
ConstS∪F . But this is impossible sine in ConstS′∪F ′ the only points that interset M, A, B and C,have in-degree zero. 9



- Sine V (T ) is the disjoint union of V (T1) and V (T2) we have that a vertex v ∈ V (T ) if and only if
v ∈ S∗.- Note that E(T ) = E(T1)∪E(T2)∪ {aa1 = acr} ∪ {aa2, . . . , aap}∪ {bb1, . . . , bbq}∪ {cc1, . . . , ccr}, that Awas not a representative point in M (resp. was either an end point or a path�(a2, . . . , ap)�point in M′)and that now it is a fan�a⊳� (ap, . . . , a2)�point, that B was a �at fae segment end in M (resp. was a path�
(b1, . . . , bq)�point in M′) and that now it is a fan�b⊳� (bq, . . . , b1)�point that C was the rossing point of aand c in M (resp. was a path�(c1, . . . , cr)�point in M′) and that now it is a fan�c⊳� (a, cr, . . . , c1)�point.Sine the other representative points remain with the same orresponding graphs, one an easily hek(see Figure 10) that E(T ) is exatly the set of edges indues by M∗.- Note that F (T ) = (F (T1) \ acb) ∪ F (T2) ∪ {a1a2a, ab1b, bc1c} ∪ {aaiai+1 | 2 ≤ i < p} ∪ {bbibi+1 | 1 ≤
i < p} ∪ {ccici+1 | 2 ≤ i < p} ∪ {accr}. Aording to the fae segments added in F ∗ (the ones in
F ∗ \ (F ∪F ′)), the faes indued by A, B and C, and sine the other representative points remain withthe same orresponding graphs, one an easily hek (see Figure 10) that F (T ) is exatly the set of faesindued by M∗.
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Fig. 10. The graphs orresponding to A, B and C in M (left), M′ (enter) and M
∗ (right).Finally sine T has a premodel M∗, Corollary 2.15 implies that it has a full model, proving Theorem 2.5.

⊓⊔5 ConlusionWest onjetures that every planar graph is the intersetion graph of segments using only four diretions[17℄. Furthermore if the segment set is unambiguous, parallel segments indue a stable set, and the fourdiretions would orrespond to a four oloring of the planar graph. This onjeture is true for some familiesof planar graphs. Indeed, every bipartite planar graph has a representation with two diretions [9,3,5℄ andevery triangle free planar graph (that is 3-olorable by Grötzsh's theorem) has a representation with threediretions [1℄.De Fraysseix and Ossona de Mendez proposed [4℄ the following generalization of Sheinerman's Conjeture: "Every planar linear hypergraph is the intersetion hypergraph of segments in the plane.", where a linearhypergraphs is an hypergraph suh that two hyperedges interset in at most one vertex. This generalizationdoes not holds sine the seond author found a ounterexample [8℄.In our proof we need the onstraints digraph to be ayli in order to perform loal perturbations on thesegment set, like gliding or traversing. We wonder whether this ondition is neessary: is it always possibleto do loal perturbations in any �exible segment set R (with possibly yles in ConstR)? The �exibility of
R is required sine Pappus's onstrution gives us a segment set with only one point that is internal in 3segments, and suh that some glidings are impossible.10
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