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Abstract This paper attempts to find an answer to an open
question of Angluin in her seminal paper (1980) about the
election problem for families of graphs (Section 4, page 87).
More precisely, we characterize families of (labelled) graphs
which admit an election algorithm in the message passing
model by using the notion of quasi-coverings which cap-
tures “the existence of large enough area of one graph that
looks locally like another graph”.

1 Introduction

The election problem is one of the paradigms of the the-
ory of distributed computing. A distributed algorithm solves
the election problem if it always terminates and in the final
configuration exactly one process is marked as elected and
all the other processes are labelled non-elected. Moreover,
it is supposed that once a process becomes elected or non-
elected then it remains in such a state until the end of the
algorithm. Election algorithms constitute a building block of
many other distributed algorithms: The elected vertex acts
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as coordinator, initiator, and more generally performs some
special role (cf. [25] p. 262).

The election problem was first studied by LeLann [15]
who gives a solution in rings where each process has a unique
name. Solutions to this problem are studied under two clas-
sical assumptions (see ([22], Chapter 3) for details):

– each process is identified by a unique name (or identi-
fier): its identity;

– processes have initially the same state (anonymous net-
works).

Several conditions were found to allow election algorithms,
according the model, for each of these conditions specific
algorithms are given. For example:

1. the network is a ring and each node has a unique name
[15];

2. the network is known to be a tree or a complete graph
[1];

3. the size of the network is known and the network is
minimal for the covering relation [18].

If processes have initially unique identifiers, it is always
possible to solve this problem by electing the process with the
smallest identifier. Nevertheless, if we consider anonymous
networks where processes do not have identifiers and execute
the same algorithm, it is not always possible to solve the elec-
tion problem. Angluin [1] has introduced the classical proof
techniques used for showing the non-existence of an election
algorithm based on coverings, which is a notion known from
algebraic topology [16]. Finally, several characterizations of
graphs for which there exists an election algorithm have been
obtained [2,18,26].
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1.1 The problem and some motivations

The next question concerns the existence of an election algo-
rithm which works for all the graphs of a given family of
graphs. For example Angluin proves in [1] (by considering
her model):

– there exists an election algorithm for the family of com-
plete graphs (Theorem 4.1),

– there exists an election algorithm for the family of trees
(Theorem 4.4),

– there is no election algorithm for the family of graphs
containing all trees and the triangle (Theorem 4.6).

No characterization of families of graphs which admit an
election algorithm exists and the aim of this paper is to pres-
ent such a characterization. To obtain this characterization we
use the notion of quasi-coverings. This notion captures the
phenomenon which appears in the family formed by “trees
and a triangle” and quoted by Angluin: “the existence of a
large enough area of one graph that looks locally like another
graph” ([1] p. 87, l. 13–17).

Furthermore, election algorithms for families of graphs, as
explained by Yamashita and Kameda ([27] p. 878), work on
dynamic or decentralized systems and tolerant to some tran-
sient faults; as examples we obtain by this way election algo-
rithms under intermediate assumptions or knowledge such
as:

– vertices have names which are not necessarily distinct:
partially anonymous graphs,

– each vertex knows an upper bound of the size of the
graph,

– each vertex knows an upper bound of the diameter of the
graph,

– a combination of these hypothesises.

Distributed algorithms for families of graphs have impli-
cations for the design of more portable software (as explained
by Santoro, [22, p.185]). Therefore it enables to build more
maintainable systems because when the network is evolv-
ing, there is no need to update the software. Furthermore, for
reasons of privacy or of security, some informations (size,
names) may be hidden and an algorithm which works on
families would be an answer in this case.

1.2 The model

Our model is the usual asynchronous message passing model
[24,26]. A network is represented by a simple connected
graph G = (V (G), E(G)) where vertices correspond to pro-
cesses and edges to direct communication links. The state of
each process is represented by a label λ(v) associated to the

corresponding vertex v ∈ V (G); we denote by G = (G, λ)

such a labelled graph.
We assume that each process can distinguish the differ-

ent edges that are incident to it, i.e., for each u ∈ V (G)

there exists a bijection δu between the neighbours of u in G
and [1, degG(u)]. We will denote by δ the set of functions
{δu | u ∈ V (G)}. The numbers associated by each vertex
to its neighbours are called port-numbers and δ is called a
port-numbering of G. We will denote by (G, δ) the labelled
graph G with the port-numbering δ.

Each process v in the network represents an entity that
is capable of performing computation steps, sending mes-
sages via some port and receiving any message via some port
that was sent by the corresponding neighbour. We consider
asynchronous systems, i.e., each computation may take an
unpredictable (but finite) amount of time. Note that we con-
sider only reliable systems: no fault can occur on processes
or communication links. We also assume that the channels
are FIFO, i.e., for each channel, the messages are delivered
in the order they have been sent. In this model, a distributed
algorithm is given by a local algorithm that all processes
should execute (note that all the processes have the same
algorithm). A local algorithm consists of a sequence of com-
putation steps interspersed with instructions to send and to
receive messages.

1.3 The main result and its construction

Let (G, λ) be a labelled graph with the port-numbering δ. We
will denote by (Dir(G), δ) the symmetric labelled digraph
(Dir(G), (λ, δ)) constructed in the following way. The ver-
tices of Dir(G) are the vertices of G and they have the
same labels in G and in Dir(G). Each edge {u, v} of G is
replaced in (Dir(G), δ) by two arcs a(u,v), a(v,u) ∈ A(Dir(G))

such that s(a(u,v)) = t (a(v,u)) = u, t (a(u,v)) = s(a(v,u)) =
v, δ(a(u,v)) = (δu(v), δv(u)) and δ(a(v,u)) = (δv(u), δu(v)).
Note that this digraph does not contain multiple arcs or
loop. The object we use for our study is (Dir(G), (λ, δ)) and
results are stated with symmetric labelled digraphs (directed
graphs).

1.3.1 First step: an election algorithm for a labelled graph
(already known)

Distributed tasks like election require the network to reach a
non-symmetric state. A network state is symmetric if it con-
tains different nodes that are in exactly the same situation;
not only their local states, but also the states of their neigh-
bors, of their neighbors’ neighbors, etc. That is, there exists a
“local similarity” between different nodes of infinite radius.

The replay argument shows that different nodes that are lo-
cally similar with infinite radius will exhibit the same behav-
ior in some infinite computation. Thus, there is no algorithm
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that guarantees that the symmetry ceases in all finite compu-
tations. Symmetry can be broken only by randomized proto-
cols.

It is not difficult to see that local similarity of infinite
radius may exist in finite graphs. It is precisely captured by
the notion of covering used by Angluin and this is the math-
ematical tool to prove the existence of symmetries of infinite
radius.

Networks in which symmetries exist are non minimal for
the covering relation and impossibility of symmetry break-
ing can be shown for these graphs. In particular the election
problem has no solution (Theorem 3.2). For a given graph, the
characterization of Yamashita and Kameda [26] corresponds
to minimal (di)graphs for the symmetric covering relation.
Thus in the sequel we consider families of (symmetric) la-
belled (di)graphs minimal for the covering relation; for such
labelled graphs there exists an election algorithm: [2,7,26]).
In this work we use the election algorithm M (Sect. 3.3)
given in [7].

1.3.2 Second step: an election algorithm for a family
of labelled graphs

When we consider families of graphs, the existence of an
election algorithm for this family is closely related to the
problem of the termination detection of a distributed algo-
rithm.

Termination detection requires that a node certifies, in a
finite computation, that all nodes of the network have com-
pleted their computation. However, in a finite computation
only information about a bounded region in the network can
be gathered. The algorithm by Szymanski, Shy, and Prywes
[23] does this for a region of pre-specified diameter; the
assumption is necessary that a bound of the diameter of the
entire network is known. This implies, that termination detec-
tion, unlike symmetry breaking, is possible in every graph,
but provided some knowledge.

The termination detection algorithm by Szymanski et al.
can be generalized in this way to work in a graph family
I. Nodes observe their neighborhood and determine in what
graph H of I they are. Then they try to get a bound k on the
radius to which a different graph of I can be locally simi-
lar to H , and then certify that all nodes within distance k are
completed. The election algorithm for a family of graphs thus
combines an universal election algorithm for a graph and a
known termination detection algorithm.

Of course the approach fails if a graph H ∈ I is locally
similar, with unbounded radius, to other graphs in I. Local
similarities of this type are made precise in the notion of
quasi-coverings introduced in [21] and refined in [10]. Fortu-
nately, the impossibility proof for the existence of an election
can be extended to cover exactly those families of graphs that
contain such unbounded-radius quasi-coverings.

Consequently, the election algorithm we give is the most
general election algorithm possible, it is summarized by:

Theorem 1.1 Let I be a recursive family of connected sym-
metric labelled digraphs. There exists an election algorithm
for I if and only if every labelled digraphs of I is symmet-
ric covering minimal, and there exists a computable function
τ : I → N such that for every labelled symmetric digraph D
of I, there is no quasi-covering of D of radius greater than
τ (D) in I, except D itself.

Remark 1.2 This result is not specific to the asynchronous
message passing model. As it is indicated in Sect. 5, it may
be extended to the models of Angluin [1] and Mazurkiewicz
[18], to the synchronous message passing model defined by
Hoare [13] and more generally to the model of local compu-
tations on labelled edges [8].

We illustrate applications of this theorem through several
examples (as Angluin’s results cited above).

1.4 Related works: comparison and comments

Among studies related to our result one may cite [27]: authors
consider the same model as in this paper (the asynchronous
message passing model with port-numberings) and give a
charaterization of networks which admit an election algo-
rithm under the assumption that process identity numbers
are not distinct, furthermore they assume that each process
knows the size of the network.

In [2], the authors describe how to elect in anonymous
networks within different communication models, assuming
that each process knows the size of the network. In the case
where the size of the network is not known, a “weak election”
algorithm is presented.

In [4], Boldi and Vigna give an effective characterization
of computability in anonymous networks. In this work, net-
works are directed graphs coloured on their arcs and each
processor changes its state depending on its previous state
and on the states of its in-neighbours. Processes start from
the same state, use the same algorithm and know an upper
bound of the size of the network.

We can note that the fundamental tool in [2,4,27] is the
notion of view. The view from a vertex v of a labelled graph
(G, λ) is an infinite labelled tree rooted in v obtained by
considering all labelled walks in (G, λ) starting from v.

The characterization of graphs where election is possible
obtained in [27] is formulated by using views whereas Boldi
et al. [2] use fibrations. In both cases election algorithms
are based on views and the election algorithms presented
in [2,27] use messages with an exponential size. All exe-
cutions are pseudo-synchronous and communication links
behave like FIFO channels.
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Techniques developed in this paper are inspired by the
work of Mazurkiewicz [18]. He considers the asynchronous
computation model where in one computation step labels of
vertices are modified on a subgraph consisting of a node and
its neighbours, according to rules depending on this subgraph
only. Mazurkiewicz’s characterization of the graphs where
enumeration/election are possible is based on the notion of
unambiguous graphs and may be formulated equivalently
using coverings of simple graphs (see [11], p. 256). A graph
G is a covering of another graph G ′ if there is a surjective
homomorphism ϕ from G to G ′ which is locally bijective.
He gives a nice and simple enumeration algorithm for the
graphs that are minimal for the covering relation, i.e., which
can cover only themselves. The fundamental tool is a total
order attached to local views defined by a vertex and its neigh-
bourhood. As consequence, our algorithms are totally asyn-
chronous, messages are not necessarily FIFO and their sizes
are polynomial.

In [10], the authors give a complete characterization of
families of networks that admit an election algorithm in the
model of Mazurkiewicz. Nevertheless, techniques used for
quasi-coverings and the SSP algorithm in Sects. 4 and 5 are
new.

More recently, [9,20] consider also intermediate cases in
a ring. In the first paper authors treat the problem of elec-
tion in the case of non unique labels and bounds on the size.
More generally, the second paper consider computability of
relations under the same assumptions.

Universal election algorithms are presented in [22]
(Section 3.8); they assume that vertices have identities.

1.5 Summary

Section 2 reviews basic notions of digraphs, labelled
digraphs and the model. Section 3 presents symmetric cov-
erings and their links with the election problem. It presents
also an election algorithm for a given labelled graph. Sec-
tion 4 is devoted to the problem of an election algorithm
for a family of labelled digraphs; it introduces quasi-cov-
erings and gives a necessary condition for the existence of
an election algorithm for a family of labelled digraphs. Sec-
tion 5 presents an election algorithm for a family of labelled
graphs and finally gives a characterization for the existence
of a such algorithm. Section 6 gives some applications of the
characterization.

2 Preliminaries

This part gives some notions on labelled digraphs we used
in this paper and some precisions on the model.

2.1 Labelled digraphs

In the following, we will consider directed graphs
(digraphs) with multiple arcs and self-loops. A digraph
D = (V (D), A(D), sD, tD) is defined by a set V (D) of
vertices, a set A(D) of arcs and by two maps sD and tD that
assign to each arc two elements of V (D): a source and a tar-
get (in general, the subscripts will be omitted). If a is an arc,
the arc a is said to be going out of s(a) and coming into t (a);
we also say that s(a) and t (a) are incident to a. Let a be an
arc, if s(a) = u and t (a) = v then v is an out-neighbour of
u and u is an in-neighbour of v.

A symmetric digraph D is a digraph endowed with a sym-
metry, that is, an involution Sym : A(D) → A(D) such
that for every a ∈ A(D), s(a) = t (Sym(a)). In a symmetric
digraph D, the degree of a vertex v is degD(v) = |{a | s(a) =
v}| = |{a | t (a) = v}| and we denote by ND(v) the set of
neighbours of v which is equal to the set of out-neighbours
of v and to the set of in-neighbours of v.

Given two vertices u, v ∈ V (D), a path π of length p
from u to v in D is a sequence of arcs a1, a2, . . . ap such that
s(a1) = u,∀i ∈ [1, p − 1], t (ai ) = s(ai+1) and t (ap) = v.
If for each i ∈ [1, p − 1], ai+1 &= Sym(ai ),π is non-stut-
tering. A digraph D is strongly connected if for all vertices
u, v ∈ V (D), there exists a path from u to v in D. In a sym-
metric digraph D, the distance between two vertices u and
v, denoted distD(u, v) is the length of the shortest path from
u to v in D.

A homomorphism γ between the digraph D and the
digraph D′ is a mapping γ : V (D)∪A(D) → V (D′)∪A(D′)
such that for each arc a ∈ A(D), γ (s(a)) = s(γ (a)) and
γ (t (a)) = t (γ (a)). A homomorphism γ : D → D′ is an
isomorphism if γ is bijective, in this case, we note D ( D′.

Throughout the paper we will consider digraphs where the
vertices and the arcs are labelled with labels from a recursive
label set L . A digraph D labelled over L will be denoted by
(D, λ), where λ : V (D) ∪ A(D) → L is the labelling func-
tion. A mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) is
a homomorphism from (D, λ) to (D′, λ′) if γ is a digraph
homomorphism from D to D′ which preserves the label-
ling, i.e., such that λ′(γ (x)) = λ(x) for every x ∈ V (D) ∪
A(D). Labelled digraphs will be designated by bold letters
like D, D′, . . .

In a symmetric digraph D, we denote by BD(v0, r), the
labelled ball of center v0 ∈ V (D) and of radius r that con-
tains all vertices at distance at most r of v0 and all arcs whose
source or target is at distance at most r − 1 of v0.

Given a set of labels L , we denote by DL the set of all sym-
metric digraphs D = (D, λ) where for each a ∈ A(D), there
exist p, q ∈ N such that λ(a) = (p, q) and λ(Sym(a)) =
(q, p) and for each v ∈ V (D), λ(v) ∈ L and {p | ∃a, λ(a) =
(p, q) and s(a) = v} = [1, degD(v)]. In other words, DL
is the set of digraphs that locally look like some digraphs
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obtained from a simple labelled graph G with a port-num-
bering whose labels belong to L .

2.2 More precisions on the model

We sometimes refer to the synchronous execution of an
algorithm. Such an execution is a particular execution of the
algorithm that can be divided in rounds. In each round, each
process receives all the messages that have been sent to it by
its neighbours in the previous round; then according to the
information it gets, it can modify its state and send messages
to its neighbours before entering the next round. Note that
the synchronous execution of an algorithm is just a special
execution of the algorithm and thus it belongs to the set of
asynchronous executions of this algorithm.

Remark 2.1 Given a simple connected labelled graph G =
(G, λ) with a port-numbering δ, let D = (Dir(G), δ) be the
corresponding labelled digraph (Dir(G), (λ, δ)). Let A be a
distributed algorithm. we speak indifferently of an execution
of A on (G, δ) or on D.

3 Symmetric coverings and the election problem
for a labelled graph

This section presents a first tool: symmetric coverings, then
it recalls the characterization of labelled graphs which admit
an election and it presents the election algorithm and its main
properties we use later.

3.1 Symmetric coverings

The notion of symmetric coverings is fundamental in this
work; definitions and main properties are presented in [5].
This notion enables to express “similarity” between two
digraphs.

A labelled digraph D is a covering of a labelled digraph
D′ via ϕ if ϕ is a homomorphism from D to D′ such that each
arc a′ ∈ A(D′) and for each vertex v ∈ ϕ−1(t (a′)) (resp.
v ∈ ϕ−1(s(a′)), there exists a unique arc a ∈ A(D) such
that t (a) = v (resp. s(a) = v) and ϕ(a) = a′.

A symmetric labelled digraph D is a symmetric covering
of a symmetric labelled digraph D′ via ϕ if D is a covering
of D′ via ϕ and if for each arc a ∈ A(D),ϕ(Sym(a)) =
Sym(ϕ(a)). The homomorphism ϕ is a symmetric covering
projection from D to D′.

The following lemma shows the importance of symmetric
coverings when we deal with anonymous networks. This is
the counterpart of the lifting lemma that Angluin gives for
coverings of simple graphs [1] and the proof can be found in
[2,7].

Lemma 3.1 (Lifting Lemma [2]) Let D and D′ be two
labelled symmetric digraphs of DL . If D is a symmetric cov-
ering of D′ via ϕ, then any execution of an algorithm A on
D′ can be lifted up to an execution on D, such that at the end
of the execution, for any v ∈ V (D), v is in the same state as
ϕ(v).

A symmetric labelled digraph D is symmetric cover-
ing minimal if there does not exist any symmetric labelled
digraph D′ not isomorphic to D such that D is a symmetric
covering of D′.

3.2 Election in a labelled graph and symmetric coverings

First, we give a characterization of networks where election
can be solved in the asynchronous message passing system.

Theorem 3.2 ([2,7]) Given a simple labelled graph G =
(G, λ) with a port-numbering δ, there exists an election (or
a naming) algorithm for (G, δ) if and only if (Dir(G), (λ, δ))

is symmetric covering minimal.

The necessary part of this theorem is a direct consequence
of Lemma 3.1. The sufficient part needs the following algo-
rithm (it will be used later).

3.3 An election algorithm for a symmetric covering
minimal labelled digraph

The aim of a naming algorithm is to arrive at a final configura-
tion where all processes have unique identities. Again this is
an essential prerequisite to many other distributed algorithms
which work correctly only under the assumption that all pro-
cesses can be unambiguously identified. The enumeration
problem is a variant of the naming problem. The aim of a dis-
tributed enumeration algorithm is to attribute to each network
vertex a unique integer in such a way that this yields a bijec-
tion between the set V (G) of vertices and {1, 2, . . . , |V (G)|}.

In this section we describe an enumeration algorithm; by
this way we obtain an election algorithm by considering that
the vertex having the number |V (G)| is elected (we assume
that vertices know |V (G)|). This algorithm is presented in
[7], it is inspired by the enumeration algorithm given by
Mazurkiewicz in [18].

3.3.1 Informal description

We first give a general description of our algorithm, that will
be denoted M, when executed on a connected labelled sim-
ple graph G with a port-numbering δ.

During the execution of the algorithm, each vertex v at-
tempts to get its own unique identity which is a number be-
tween 1 and |V (G)|. Once a vertex v has chosen a number
n(v), it sends it to each neighbour u with the port-num-
ber δv(u). When a vertex u receives a message from one
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neighbour v, it stores the number n(v) with the port-num-
bers δu(v) and δv(u). From all information it has gathered
from its neighbours, each vertex can construct its local view
(which is the set of numbers of its neighbours associated with
the corresponding port-numbers). Then, a vertex broadcasts
its number, its label and its mailbox (which contains a set of
local views). If a vertex u discovers the existence of another
vertex v with the same number then it should decide if it
changes its identity. To this end it compares its local view
with the local view of v. If the label of u or the local view of
u is “weaker”, then u picks another number — its new tempo-
rary identity — and broadcasts it again with its local view. At
the end of the computation, if the digraph (Dir(G), (λ, δ))

is symmetric covering minimal, then every vertex will have
a unique number: the algorithm is a naming algorithm.

3.3.2 Labels

We consider a network (G, δ) where G = (G, λ) is a simple
labelled graph and where δ is a port-numbering of G.

The function λ : V (G) → L is the initial labelling. We
assume there exists a total order <L on L . We extend the
order <L to L ∪ {⊥} (assuming that ⊥ /∈ L) as follows: for
all ' ∈ L ,⊥ < '.

During the execution, the label of each v is a tuple
(λ(v), n(v), N (v), M(v)) where:

– λ(v) ∈ L is the initial label of v.

– n(v) ∈ N is the current number of v computed by the
algorithm; initially n(v) = 0.

– N (v) ∈ Pfin(N × L × N2)1 is the local view of v. At
the end of the execution, if (m, ', p, q) ∈ N (v), then
v has a neighbour u whose number is m, whose label
is ' and the arc from u to v is labelled (p, q). Initially
N (v) = {(0,⊥, 0, q) | q ∈ [1, degG(v)]}.

– M(v) is a set, it is the mailbox of v; initially M(v) = ∅.
An element of M(v) has the following form: (m, ', N )

where m ∈ N, ' ∈ L and N is a local view. It contains
all information received by v during the execution of the
algorithm. If (m, ', N ) ∈ M(v), it means that at some
previous step of the execution, there was a vertex u such
that n(u) = m, λ(u) = ' and N (u) = N .

3.3.3 Messages

Processes exchange messages of the form < (n, ', M), p >.
If a vertex u sends a message < (n, ', M), p > to one of its
neighbour v, then the message contains following informa-
tion: n is the current number n(u) of u, ' is the label λ(u) of
u, M is the mailbox of u, and p = δu(v).

1 For any set S, Pfin(S) denotes the set of finite subsets of S.

3.3.4 An order on local views

The interesting properties of the algorithm rely on a total
order on local views.

Given two distinct sets N1, N2 ∈ Pfin(N × L × N2), we
define N1 ≺ N2 if the maximum of the symmetric difference
N1 . N2 = (N1 \ N2)∪(N2 \ N1) for the lexicographic order
belongs to N2.

One also says that (', N ) ≺ ('′, N ′) if either ' <L '′, or
' = '′ and N ≺ N ′. We denote by / the reflexive closure
of ≺.

3.4 The election algorithm M

The algorithm for the vertexv0 (see Algorithm 1) is expressed
in an event-driven description (see Tel [24] p. 553). A vertex
which executes one of the following actions is said active.

The action I can be executed by a process on wake-up only
if it has not received any message. In this case, it chooses the
number 1, updates its mailbox and informs its neighbours.

The action R describes the instructions the vertex v0 has
to follow when it receives a message < (n1, '1, M1), p1 >

from a neighbour via port q1. First, it memorizes and it
updates its mailbox by adding M1 to it. Then it modifies its
number if it is equal to 0 or if there exists (n(v0), '

′, N ′) ∈
M(v0) such that (λ(v0), N (v0)) ≺ ('′, N ′). Then, it updates
its local view by removing elements which corresponds to
the port q1 (if they exist) and by adding (n1, '1, p1, q1) to
N (v0). Then, it adds its new state to its mailbox. Finally, if
its mailbox has been modified by the execution of all these
instructions, it sends its number and its mailbox to all its
neighbours.

If the mailbox of v0 is not modified by the execution of the
action R, it means that the information v0 has about its neigh-
bour (i.e., its number) was correct, that all the elements of M1
already belong to M(v0), and that for each (n(v0), ', N ) ∈
M(v0), (', N ) / (λ(v0), N (v0)).

3.5 Some properties of algorithm M

We consider an execution ρ of M on (G, δ) and for each
vertex v ∈ V (G), we denote by (λ(v), ni (v), Ni (v), Mi (v))

the state of v after the i th computation step of ρ on v. If the
vertex v executes an action to go from the step i to the step
i + 1, it is said active at step i + 1.

The following proposition summarizes some properties
that are satisfied during the execution ρ on (G, δ).

Proposition 3.3 ([6,7]) Consider a vertex v and a step i .
Then, ni (v) ≤ ni+1(v), Ni (v) / Ni+1(v), Mi (v) ⊆

Mi+1(v).
For each (m, ', N ) ∈ Mi (v) and each m′ ∈ [1, m],

∃(m′, '′, N ′) ∈ Mi (v), ∃v′ ∈ V (G) such that ni (v
′) = m′.
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Algorithm 1: Algorithm M.
I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0),∅)} ;
for i := 1 to deg(v0) do

send < (n(v0), λ(v0), M(v0)), i > through i ;

end

R : {A message < (n1, '1, M1), p1 > has arrived at v0 through
port q1}
begin

Mold := M(v0) ;
M(v0) := M(v0) ∪ M1 ;
if n(v0) = 0 or ∃(n(v0), '

′, N ′) ∈
M(v0) such that (λ(v0), N (v0)) ≺ ('′, N ′) then

n(v0) := 1 + max{n′ | ∃(n′, '′, N ′) ∈ M(v0)} ;
N (v0) := N (v0) \ {(n′, '′, p′, q1) | ∃(n′, '′, p′, q1) ∈
N (v0)} ∪{ (n1, '1, p1, q1)} ;
M(v0) := M(v0) ∪ {(n(v0), λ(v0), N (v0))} ;
if M(v0) &= Mold then

for i := 1 to deg(v0) do
send < (n(v0), λ(v0), M(v0)), i > through port i ;

end

Proof We suppose that some internal event is executed at
step i + 1 by some vertex v ∈ V (G). The property is obvi-
ously true for any vertex w ∈ V (G)\ {v} and it is easy to see
that Mi (v) ⊆ Mi+1(v).

If ni (v) &= ni+1(v), then ni+1(v) = 1 + max{n1 |
(n′, '′,N ′) ∈ Mi (v)} and either ni (v) = 0 < ni+1(v)

or (ni (v), λ(v), Ni (v)) ∈ Mi (v) and therefore ni (v) <

ni+1(v).
If Ni (v) &= Ni+1(v), then v has received a message <

(n′, n′
old , M ′), p > through port q and Ni+1(v) = Ni (v) \

{(n′
old , p, q)}∪{(n′, p, q)}. Let v′ be the neighbour of v such

that νv(v
′) = q ; we know that νv′(v) = p.

If (n′
old , p, q) /∈ Ni (v), then max Ni+1(v) . Ni (v) =

(n′, p, q) ∈ Ni+1(v) and then Ni (v) ≺ N+1(v).
If (n′

old , p, q) ∈ Ni (v), then n′
old &= n′. Let j < i + 1

be the computation step where v′ has sent the message <

(n′, n′
old , M ′), p >. We know that n′

old ≤ n′ = n j (v
′) and

consequently, max Ni+1(v). Ni (v) = (n′, p, q) ∈ Ni+1(v)

and Ni (v) ≺ N+1(v).
For the second part of the proposition: We first note that

(m, ',N ) is added to
⋃

v∈V (G)
Mi (v) at some step i only if

there exists a vertex v ∈ V (G) such that ni (v) = m, λ(v) =
' and Ni (v) = N .

Given a vertex v ∈ V (G), a step i and an element
(m, ',N ) ∈ Mi (v), let U = {(u, j) ∈ V (G) × N | j ≤
i, n j (u) = m} and U ′ = {(u, j) ∈ U | ∀(u′, j ′) ∈
U, (λ(u′), N j ′(u′)) ≺ (λ(u), N j (u)) or (λ(u′), N j ′(u′)) =
(λ(u), N j (u)) and j ′ ≤ j}. Since (m, ',N ) ∈ Mi (v), U
and U ′ are both non-empty and it is easy to see that there
exists i0 such that for each (u, j) ∈ U ′, j = i0.

If i0 < i , let (u, i0) ∈ U ′; we know that ni0+1(u) &=
ni0(u), but this is impossible, since by maximality of
(λ(u), Ni0(u)), u cannot have modified its number. Con-
sequently, i0 = i and there exists v′ ∈ V (G) such that
ni (v

′) = m. This ends the proof. 23

Consider the mailbox M = M(v) of a vertex v during the
execution of Algorithm M on a graph (G, δ). We say that
an element (n, ', N ) ∈ M is maximal in M if there does not
exist (n, '′, N ′) ∈ M such that (', N ) ≺ ('′, N ′). We denote
by S(M) the set of maximal elements of M . From Proposi-
tion 3.3, after each step of Algorithm M, (n(v), λ(v), N (v))

is maximal in M(v).
The set S(M) is said coherent if it is non-empty and if

for all (n1, '1, N1) ∈ S(M), for all (n2, '2, p, q) ∈ N1, p &=
0, n2 &= 0 and '2 &= ⊥ and for all (n′

2, '
′
2, N ′

2) ∈ S(M),
there exists (n′

2, '
′′
2, p′, q ′) ∈ N1 if and only if '′

2 = '′′
2 and

(n1, '1, q ′, p′) ∈ N ′
2.

From [7], we know that once n(v), N (v) and M(v) have
reached their final values for all v, then S(M(v)) is coherent
for any v. Thus, if S(M(v)) is not coherent, we know that
M(v) will be modified.

If the set S(M) is coherent, one can construct a labelled
symmetric digraph DM = (DM , λM ) as follows. The set of
vertices V (DM ) is the set {n | ∃(n, ', N ) ∈ S(M)}. For
any (n, ', N ) ∈ S(M) and any (n′, '′, p, q) ∈ N , there
exists an arc an,n′,p,q ∈ A(DM ) such that t (a) = n, s(a) =
n′, λM (a) = (p, q). Since S(M) is coherent, we can define
Sym by Sym(an,n′,p,q) = an′,n,q,p.

One can show that Algorithm M terminates and the final
labelling verifies the following properties: (Dir(G), (λ, δ))

is a symmetric covering of DM (see Proposition 4.1 in [7]).
Thus if (Dir(G), (λ, δ)) is symmetric covering minimal then
DM is isomorphic to (Dir(G), (λ, δ)) and therefore the set
of numbers of the vertices is exactly [1, |V (G)|]: each vertex
has a unique number. Moreover, the termination detection of
the algorithm is possible on G. Indeed, once a vertex gets
the identity number |V (G)| (which is known by each ver-
tex), from Proposition 3.3, it knows that all the vertices have
different identity numbers that will not change any more and
it can conclude that the computation of numbers of vertices
is over. In this case, one can also solve the election problem,
since this vertex can take the label elected and broadcasts the
information that a vertex has been elected. Finally, we obtain
Theorem 3.2 presented above.

Remark 3.4 A natural question is: what happen if nodes
know only a bound of the size of the graph? Does it exist a
mechanism to detect the termination of M. An extension of
M and the associated properties in this direction do not seem
obvious. The sequel of this paper gives a positive answer to
this question.
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Fig. 1 Quasi-coverings diagram of Definition 4.1. The ball BD1 (v1, r)
captures “the existence of large enough area of one graph” (D1) “that
looks locally like another graph” (D2)

4 Quasi-coverings and the election problem
for a family of labelled graphs

This section presents the second tool we use: quasi-cover-
ings. This tool provides a necessary condition for the elec-
tion in a family of labelled graphs presented at the end of the
section.

4.1 Quasi-coverings

Quasi-coverings have been introduced to study the termina-
tion detection problem [21]. The idea behind quasi-cover-
ings is to enable the simulation of local computations on a
given graph in a restricted area of a larger graph, such that a
replay technique can be used to prove impossibility results by
contradiction. The restricted area where we can perform the
simulation will shrink while the number of simulated steps
increases. In [10], the definition of quasi-coverings have been
slightly modified to express more easily this property as a
Quasi-Lifting Lemma.

The next definition is an adaptation of this tool to labelled
digraphs and is illustrated in Fig. 1.

Definition 4.1 Given two symmetric labelled digraphs
D0, D1, an integer r , a vertex v1 ∈ V (D1) and a homomor-
phism γ from BD1(v1, r) to D0, the digraph D1 is a quasi-
covering of D0 of center v1 and of radius r via γ if there exists
a symmetric labelled digraph D2 that is a symmetric covering
of D0 via a homomorphism ϕ and if there exist v2 ∈ V (D2)

and an isomorphism ψ from BD1(v1, r) to BD2(v2, r) such
that for any x ∈ V (BD1(v1, r)) ∪ A(BD1(v1, r)), γ (x) =
ϕ(ψ(x)).

We define the number of sheets q of the quasi-covering to
be the minimal cardinality of the sets of preimages of ver-
tices of D0 which are in the ball: q = minv∈V (D0) |{w ∈
ψ−1(v)|BD1(w, 1) ⊂ BD1(v1, r)}|.

Using the notation of the definition of a quasi-covering,
we say that a quasi-covering is strict if BD1(v1, r − 1) is
not equal to D1. Note that any non-strict quasi-covering is a
covering. We have [12]:

Lemma 4.2 Let D1 be a strict quasi-covering of D0 of radius
r via γ . Then, for any q ∈ N, if r ≥ q|V (D0)| then γ has at
least q sheets.

Remark 4.3 If a labelled digraph D1 is a symmetric covering
of D0, then for any v ∈ V (D1) and for any r ∈ N, D1 is a
quasi-covering of D0, of center v and of radius r . Indeed, one
just has to choose D2 = D1. In this case, we say that D1 is
a quasi-covering of D0 of infinite radius. Reversely, if D1 is
a quasi-covering of D0 of radius r strictly greater than the
diameter of D1, then D1 is a covering of D0.

The following lemma makes precise the shrinking of the
radius when k rounds of a synchronous execution are per-
formed :

Lemma 4.4 (Quasi-Lifting Lemma) Let D1 be a symmetric
labelled digraph that is a quasi-covering of D0 of center v1
and of radius r via γ . Let k < r be a non negative integer.
For any algorithm A, let D′

0 be the digraph obtained after
k rounds of the synchronous execution of A on D0. Then
D′

1 obtained after a synchronous execution of A on D1 is a
quasi-covering of D′

0 of center v1 and of radius r − k.

Proof Consider an algorithm A and a symmetric labelled
digraph D1 = (D1, λ1) that is a quasi-covering of D0 =
(D0, λ0) of center v1 and of radius r via γ . There exists
a symmetric labelled digraph D2 = (D2, λ2) that is a
symmetric covering of D0 via a homomorphism ϕ and a
vertex v2 ∈ V (D2) such that (BD1(v, r), λ1) is isomor-
phic to (BD2(v, r), λ2) via an isomorphism ψ and for any
v ∈ B(v1, r), γ (v) = ϕ(ψ(v)).

Let D′
0 = (D0, λ

′
0) (resp. D′

1 = (D1, λ
′
1), D′

2 = (D2, λ
′
2))

be the labelled digraph where for each v, λ′
0(v) (resp.

λ′
1(v), λ′

2(v)) is the state of v in D0 (resp. D1, D2) after a
computation round of A on D0 (resp. on D1, D2). To prove
the lemma, it is sufficient to show that D′

1 is a quasi-covering
of D′

0 of center v1 and of radius r − 1 via γ .
From Lemma 3.1, we know that D′

2 is a covering of
D′

0. Moreover, for each v ∈ V (BD1(v1, r − 1)), λ′
1(v) =

λ′
2(ϕ(v)) since (BD1(v, 1), λ1) is isomorphic to (BD2

(ϕ(v), 1), λ2).
Consequently, (BD1(v, r − 1), λ′

1) is isomorphic to (BD2

(v, r − 1), λ′
2) via ψ and thus D′

1 is a quasi-covering of D′
0

of center v1 and of radius r − 1 via γ . 23
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The following corollary is the counterpart of the lifting
lemma for quasi-coverings.

Corollary 4.5 (Quasi-Lifting corollary) Consider a sym-
metric labelled digraph D1 that is a quasi-covering of D0
of center v1 and of radius r via γ . For any algorithm A,
after r rounds of the synchronous execution of an algorithm
A on D1, v1 is in the same state as γ (v1) after r rounds of
the synchronous execution of A on D0.

4.2 Election in a family of labelled graphs
and quasi-coverings

Proposition 4.6 (Necessary condition) Let I be a recursive
family of connected symmetric covering minimal labelled
digraphs such that there is an election algorithm for this
family. Then there exists a computable function τ : I → N
such that for all labelled digraph D of I, there is no quasi-
covering of D, distinct of D, of radius greater than τ (D)

in I.

Proof Let A denote an election algorithm on I. For a labelled
digraph D ∈ I, define τ (D) = 2|V (D)| + n where n is the
number of rounds of an entire synchronous execution of A
on D. Then τ has the desired property.

We prove this by contradiction. Let D ∈ I. Let Ci be
the labelled graph obtained after the i th round used for the
definition of τ (D). Let C = (C0 = D, C1, . . . , Cn) such that
no step of A can be applied on any vertex of Cn, (at the end
of the round n no message is sent by any vertex) and Ci+1
is obtained from Ci by the execution of a round of A. By
hypothesis the label elected appears exactly once in Cn .

Let D′ ∈ I be a quasi-covering of D of radius τ (D), dis-
tinct of D. By iteration of Lemma 4.4, we get D′′ such that D′′

is a quasi-covering of Cn of radius τ (D)−n = 2|V (D)|. The
labelled digraph D being symmetric covering minimal and
distinct of D′, the quasi-covering D′′ of Cn is strict. Hence,
by Lemma 4.2, the label elected appears at least twice in D′′.
A contradiction. 23

5 An election algorithm for a family of labelled graphs

In this section, we present an algorithm we will use to obtain
our sufficient conditions and finally a characterization of fam-
ilies of graphs which admit an election algorithm and Theo-
rem 1.1 given in Introduction.

This algorithm is a combination of the election algorithm
M for symmetric minimal labelled digraphs presented in
Sect. 3.3 and a generalization of an algorithm of Szymanski,
Shy and Prywes (the SSP algorithm for short) [23]. The SSP
algorithm was originally used to detect the global termination
of an algorithm with local termination provided the processes
initially know a bound on the diameter of the graph.

The enumeration algorithm always terminates on any net-
work (Dir(G), δ) and during the execution, each process v

can reconstruct at some computation step i a symmetric la-
belled digraph Di (v) such that (Dir(G), δ) is a quasi-cov-
ering of Di (v). However, this algorithm does not enable v

to compute the radius of this quasi-covering. We use a gen-
eralization of the SSP algorithm to enable each process to
compute a lower bound on the radius of these quasi-cover-
ings.

5.1 Termination detection mechanism

A vertex will detect if its state is final by using the necessary
condition given by Proposition 4.6 thus we add to the label
of each vertex two items:

– c(v) ∈ Z is a counter and initially c(v) = −1. In some
sense, c(v) represents the distance up to which all verti-
ces have the same mailbox as v.

– A(v) ∈ Pfin(N × N) encodes the informationv has about
the values of c(u) for each neighbour u. Initially, A(v) =
{(q,−1) | q ∈ [1, degG(v)]}.

Thus now during the execution, the label of each v is a tuple
(λ(v), n(v), N (v), M(v), c(v), A(v)).

A message sent by a vertex u via the port p to the ver-
tex v has the following form < (n, ', M, a), p > where n
is the current number n(u) of u, ' is the label λ(u) of u, M
is the mailbox of u, a is the value of the counter c(u) and
p = δu(v).

In the description of the algorithm we use the following
predicate, denoted for a vertex v QC(v), and defined by:

QC(v) = (S(M(v)) is coherent) and (c(v) &= cold(v)) and

(DM(v) ∈ I) and (c(v) ≤ τ (DM(v))).

5.2 Algorithm MFamily

Our algorithm MFamily is described in Algorithm 2. We
recall that the first rule I can be applied by a process v on
wake-up only if it has not received any message: it takes the
number 1, updates its mailbox and informs its neighbours.
The second rule R describes the instructions a process v has
to follow when it receives a message m from a neighbour. It
updates its mailbox M(v) and its local view N (v) according
to m. Then, if it discovers the existence of another vertex
with the same number and a stronger local view, it takes a
new number. If its mailbox has not changed, it updates A(v)

and increases c(v) if possible. Finally, if M(v) or c(v) has
been modified, it informs its neighbours.

Using the information stored in its mailbox, each process
v will be able to reconstruct a labelled digraph D such that
(Dir(G), δ) locally looks like D up to distance c(v).

123



J. Chalopin et al.

Algorithm 2: Algorithm MFamily .

I : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0),∅)} ;
c(v0) := −1 ;
for i := 1 to deg(v0) do

send < (n(v0), λ(v0), M(v0), c(v0)), i > through port i ;

end

R : {A message < (n1, '1, M1, a1), p1 > has arrived at v0
through port q1}
begin

Mold := M(v0) ;
cold := c(v0) ;
M(v0) := M(v0) ∪ M1 ;
if n(v0) = 0 or ∃(n(v0), '

′, N ′) ∈
M(v0) such that (λ(v0), N (v0)) ≺ ('′, N ′) then

n(v0) := 1 + max{n′ | ∃(n′, '′, N ′) ∈ M(v0)} ;
N (v0) := N (v0) \ {(n′, '′, p′, q1) | ∃(n′, '′, p′, q1) ∈
N (v0)} ∪{ (n1, '1, p1, q1)} ;
M(v0) := M(v0) ∪ {(n(v0), λ(v0), N (v0))} ;
if M(v0) &= Mold then

c(v0) := −1 ;
A(v0) := {(q ′,−1) | 1 ≤ q ′ ≤ deg(v0)};

if M(v0) = M1 then
A(v0) := A(v0)\{(q1, a′) | ∃(q1, a′) ∈ A(v0)}∪{(q1, a1)}
;

if (∀(q ′, a′) ∈ A(v0), c(v0) ≤ a′ and QC(v0)) then
c(v0) := c(v0) + 1 ;
if M(v0) &= Mold or c(v0) &= cold then

for i := 1 to deg(v0) do
send < (n(v0), λ(v0), M(v0), c(v0)), i > through
port i ;

end

5.2.1 Properties of algorithm MFamily .

We consider a graph G with a port numbering δ and an exe-
cution ρ of Algorithm MFamily on (G, δ).

For each vertex v ∈ V (G), we note (λi (v), ni (v), Ni (v),

Mi (v), ci (v), Ai (v)) the state of v after the i th computation
step of ρ.

An interesting corollary of Proposition 3.3 is: there exists
a step i0 such that after this step for any v, the values of
λ(v), n(v), N (v) and M(v) are not modified any more.

Proposition 5.1 Consider a vertex v and a step i .
If Mi (v) = Mi+1(v) and if v is active at step i + 1,

then ci (v) ≤ ci+1(v) ≤ ci (v) + 1 and ci+1(v) ≥ min{a |
∃(q, a) ∈ Ai+1(v)} if ∃(q, a) ∈ Ai+1(v).

If ci+1(v) ≥ 1, for each w ∈ NG(v), there exists a step
j ≤ i such that c j (w) ≥ ci+1(v)−1 and M j (w) = Mi+1(v).

Proof We prove the proposition by induction on i. Consider
a vertex v that modifies its state at step i + 1.

If v has applied rule I then it is easy to see that the claims
hold.

Suppose now that v has applied rule R after receiving the
message m1 =< (n1, l1, M1, a1), p1 > via port q1. Due to
the algorithm, we have: Mi (v) ⊆ Mi+1(v).

If Mi (v) = Mi+1(v) and ci (v) &= ci+1(v) then ci+1(v) =
ci (v) + 1.

Let min A = min{a|∃(q, a) ∈ Ai+1(v)}.
If min A &= a1, then by induction ci+1 ≥ min A. If

Mi+1(v) &= Mi (v) then ci+1(v) ≥ −1 ≥ min A. Sup-
pose that Mi+1(v) = Mi (v). If (q1, a1) ∈ Ai (v) then
Ai+1(v) = Ai (v) and by induction ci+1(v) ≥ min A. If
M1 &= Mi+1(v) then Ai+1(v) = Ai (v) and ci+1(v) ≥ min A.

Suppose now that M1 = Mi+1(v). If a1 = 0 then v can
increase c(v) if it is equal to −1. Thus ci+1(v) ≥ 0 and
consequently ci+1(v) ≥ min A.

Otherwise, we may assume that min A = a1 > 0, Mi+1
(v) = Mi (v) = M1 and (q1, a1) /∈ Ai (v). Let m2 =<

(n2, '2, M2, a2), p1 > be the previous message received via
port q1. Since communication channels are FIFO, m2 has
been sent before m1. Since a1 > 0, M2 = M1 and thus, by
induction, a2 = a1−1. Let j ≤ i be the step where v gets m2.

Since M2 ⊆ M j (v) ⊆ Mi (v) = M1 = M2, M j (v) = M2.

Consequently, (q, a2) ∈ Ai (v). Since a1 = min A, a2 =
a1 − 1 = min{a|∃(q, a) ∈ Ai (v)}. If ci (v) ≥ a1 then
ci+1(v) ≥ ci (v) ≥ min A. Otherwise, by induction, ci (v) =
a2 = a1 − 1, and, since ci (v) < a1 and ci (v) ≤ min A, v

increases ci (v). Thus ci+1(v) = 1 + ci (v) = a1 ≥ min A.

Suppose that ci+1(v) ≥ 1 and consider a vertex w ∈
NG(v). There exists (δv(w), a) ∈ Ai+1(v) with a ≥
ci+1(v) − 1 ≥ 0 and v gets a message m =< (n, ', M, a),

δw(v) > from w at a step i ′ ≤ i + 1. Let j < i + 1 be
the step where w sent this message. Since a ≥ 0, Mi ′(v) =
Mi+1(v) = M j (v) and c j (w) = a ≥ ci+1(v) − 1. 23

The following proposition shows that DM(v) has some simi-
larity with (Dir(G), δ).

Proposition 5.2 If S(M(v)) is coherent, (Dir(G), δ) is a
quasi-covering of DM(v) of radius c(v) and center v.

We first prove a proposition that enables to present another
definition of quasi-coverings that we will use in the proof of
Proposition 5.2.

The proof of this proposition needs the definition of view
we give now.

Definition 5.3 Consider a symmetric digraph D = (D, λ) ∈
DL and a vertex v ∈ V (D). The view of v in D is an infinite
rooted tree denoted by TD(v) = (TD(v), λ′) and defined as
follows:

– V (TD(v)) is the set of non-stuttering paths π =
a1, . . . , ap in D with s(a1) = v. For each path π =
a1, . . . , ap, λ

′(π) = λ(t (ap)).
– for eachπ,π ′ ∈ V (TD(v)), there are two arcs cπ,π ′ , cπ ′,π

∈ A(TD(v)) such that Sym(cπ,π ′) = cπ ′,π if and only if
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π ′ = π, a. In this case, λ′(cπ,π ′) = λ(a) and λ′(cπ ′,π ) =
λ(Sym(a)).

– the root of TD(v) is the vertex corresponding to the empty
path and its label is λ(v).

Remark 5.4 For all vertices, u and v : TD(u) is isomorphic
to TD(v). We denote by TD this graph defined up to an iso-
morphism. It is the universal covering of D. It is useful to
provide examples of quasi-coverings.

Consider the view TD(v) of a vertex v in a digraph D ∈ DL
and an arc a such that s(a) = v. We define TD−a(v) be the
infinite tree obtained from TD(v) by removing the subtree
rooted in the vertex corresponding to the path a.

Proposition 5.5 Given two symmetric labelled digraphs
D0, D1, an integer r , a vertex v1 ∈ V (D1) and a homo-
morphism γ from BD1(v1, r) to D0, D1 is a quasi-covering
of D0 of center v1 and of radius r via γ if and only if the
following holds:

(i) for each arc a∈A(BD1(v1, r)), γ (Sym(a))=Sym(γ (a)),
(ii) for any v ∈ BD1(v1, r), γ induces an injection between

the incoming (resp.outgoing) arcs of v and the incoming
(resp. outgoing) arcs of γ (v),

(iii) for any v ∈ BD1(v1, r − 1), γ induces a surjection be-
tween the incoming (resp.outgoing) arcs of v and the
incoming (resp. outgoing) arcs of γ (v).

Proof If D1 is a quasi-covering of D0 of center v1 and of
radius r via γ , then it is easy to see that γ satisfies these
properties.

Reversely, we construct an infinite covering D2 =
(D2, λ2) of D0 = (D0, λ0) as follows. First we take a copy B1
of BD1(v1, r) and we note δ the isomorphism from BD1(v1, r)

to B1. Then, consider a vertex v such that distB1(v1, v) = r
and an arc a0 ∈ A(D0) such that v ∈ γ −1(t (a0)). If there
is no arc a ∈ A(B1) such that t (a) = v and γ (a) = a0,
then we add a copy of TD0−a0(s(a0)) to D2 and we note
v2(a0) the root of this tree. We add two arcs a2, a′

2 such that
t (a2) = s(a′

2) = v, s(a2) = t (a′
2) = v2(a0), λ2(a1) =

λ0(a0), λ2(a2) = λ0(Sym(a0)) and Sym(a2) = a′
2.

The digraph D2 is the digraph obtained once these con-
structions have been done for all v ∈ V (B1) such that
distB1(v, v1) = r . It is easy to see that D2 is a symmetric
covering of D0 via some homomorphism ϕ and that for any
v ∈ V (BD1(v, r)), γ (v) = ϕ(δ(v)). 23

We now use Proposition 5.5 to prove Proposition 5.2.

Proof (of Proposition 5.2) Consider a step i and a process
v such that S(Mi (v)) is coherent. If ci (v) = 0, then we are
done. Suppose now that ci (v) ≥ 1. From Proposition 5.1, for
each w ∈ V (Dir(G)) such that distDir(G)(v, w) ≤ ci (v),

there exists a step jw ≤ i such that c jw(w) ≥ ci (v) −
distDir(G)(v, w) and M jw(w) = Mi (v).

Thus, for each w ∈ V (BDir(G)(v, ci (v))), jw is defined
and c jw(w) ≥ 0 and for each w ∈ V (BDir(G)(v, ci (v) −
1)), c jw(w) ≥ 1. For each w ∈ V (BDir(G)(v, ci (v))),

(n jw(w), λ(v), N jw(w)) ∈ S(M jw(w)) = S(Mi (v)) and
thus degG ′(w) = degDMi (v)

(n jw(w)). Thus, we can define
γ (w) = n jw(w) ∈ V (DMi (v)) and we have λMi (v)(γ (w)) =
λ(w).

For each arc a ∈ A(BDir(G)(v, ci (v))), let w =
t (a), w′ = s(a) (resp. w = s(a), w′ = t (a)) and sup-
pose without loss of generality that distG(v,w) ≤ ci (v)−1.
Let m =< (n, ', M, a), p > be the last message received
by w through port δw(w′) before step jw. Since c jw(w) ≥
1, M = M jw(w) = M jw′ (w

′), n = n jw′ (w
′), p = δw′(w)

and a ≥ 0. Thus, we can define γ (a) = cn,n′,p,q (resp.
γ (a) = cn′,n,q,p) where n = n jw(w), n′ = n jw′ (w

′), p =
δw′(w) and q = δw(w′). It is easy to see that λMi (v)(γ (a)) =
λ(a) = (p, q) (resp. λMi (v)(γ (a)) = λ(a) = (q, p)) and
that Sym(γ (a)) = γ (Sym(a)).

Consequently, γ is a homomorphism from BDir(G)

(v, ci (v)) to DMi (v).
For each w ∈ V (BDir(G)(v, ci (v))), for all arcs a, a′

such that s(a) = s(a′) = w (resp. t (a) = t (a′) = w),
λ(a) &= λ(a′) and thus, γ (a) &= γ (a′). For each w ∈
V (BDir(G)(v, ci (v) − 1)), since degG ′(w) = |N jw(w)| =
degDMi (v)

(n jw(w)), γ induces a bijection between the incom-
ing (resp. outgoing) arcs of w in Dir(G) and the incoming
(resp. outgoing) arcs of n jw(w) in DMi (v).

From Proposition 5.5, Dir(G) is a quasi-covering of
DMi (v) of center v and of radius ci (v) via γ . 23

Remark 5.6 As can be seen in the proof, the value γ (w)

does not depend on the actual jw. The quasi-covering γ

is obtained from n, in the sense that the value of γ (w) at
w ∈ BDir(G)(v, c(v)) is equal to n(w) at the time-step where
M(w) = M(v).

The algorithm MFamily is a combination of the algorithm
M presented in Sect. 3.3 and a generalization of the algo-
rithm of Szymanski, Shy and Prywes. The enumeration algo-
rithm always terminates on any network (Dir(G), δ). During
the execution, each process v can reconstruct at some com-
putation step i a symmetric labelled digraph Di (v) such that
(Dir(G), δ) is a quasi-covering of Di (v).

When the enumeration algorithm has terminated then for
each vertex v, after the step tv for the vertex v, there exists a
step t ′v such that c(v) ≥ τ (DM(v)). This knowledge and the
knowledge of the reconstructed graph DM(v) (which belongs
to I) implies that each node knows that the enumeration algo-
rithm has terminated and if its number is the maximal or not
among numbers of the graph. Finally, each node can decide
if it is elected or not.
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The result of this subsection and of the previous are sum-
marized by Theorem 1.1 states in Introduction.

5.3 Complexity analysis of MFamily

We are interested in characterizing the complexity of
MFamily , thus we recall the time complexity of M, the mes-
sage complexity and the size of the messages and the size of
the memory needed by each vertex [6,7].

As Tel [24] (p. 71), we define the time complexity by sup-
posing that internal events need zero time units and that the
transmission time (i.e., the time between sending and receiv-
ing a message) is at most one time unit. This corresponds to
the number of rounds needed by a synchronous execution of
the algorithm. Note that the correctness of M is independent
of these assumptions.

Given a network (G, δ), we denote by l the maximum size
(in bits) of an initial label appearing on G, and we denote by
|(G, δ)| the size of |V (G)| + l.

We can remark that the mailbox of each vertex con-
tains a lot of useless information. Indeed, if some (p, ', N )

belongs to the mailbox M(v) of a vertex v, one can remove
from M(v) all the elements (p, '′, N ′) ∈ M(v) such
that ('′, N ′) ≺ (', N ). We can thus replace the mail-
box M(v) of v by {(p, ', N ) ∈ M(v) | ∀(p, '′, N ′) ∈
M(v), ('′, N ′) / (', N )}. In this way, the mailbox of
each vertex contains at most |V (G)| elements of the form
(p, ', N ).

The communication channels have the FIFO property, one
can reduce the size of the messages. Indeed, each time a ver-
tex modifies its mailbox, it just has to send the elements
it adds to its mailbox instead of sending the whole mail-
box. In the complexity analysis we do, we suppose that the
sizes of messages and mailboxes are reduced as we just
explained. Moreover, we suppose that each process sends
the elements {(p, pold , N ′)} of its mailbox one by one and
it sends k messages if it has k elements to send to its neigh-
bours.

The following proposition summarizes the complexity
analysis of M:

Proposition 5.7 ([6,7]) Given a network (G, δ) with n verti-
ces, m edges, whose maximum degree is + and whose diame-
ter is Diam, any execution of M on (G, δ) needs O(nDiam)

time units and O(m2n) messages of O(+(l + log n)) bits.
Moreover, the memory needed by each process is O(+n(l +
log n)) bits.

Proof Consider a network (G, δ) with n vertices, m edges,
whose maximum degree is + and whose diameter is Diam.
Consider an execution of M on (G, δ). From Proposition 3.3,
we know that each vertex modifies its number at most n
times.

For each vertex v, since the numbers of v and of its
neighbours can only increase, the couple (n(v), N (v)) can
take at most (degG(v) + 1)n different values. Each time
a vertex modifies its number or its local view, it can gen-
erate at most O(m) messages, since a vertex whose mail-
box already contains (n(v), λ(v), N (v)) will not broad-
cast this information to its neighbours. Consequently, any
execution of M on G needs at most O(m2n) messages.
Moreover, since we suppose that all messages have the form
< (p, pold , {(n′, '′, N ′)}), p > and since N (v) contains at
most + elements, each message has a size of O(+(l+log n))

bits.
We now consider the synchronous execution of our algo-

rithm on (G, δ). Each time a vertex v modify its number or its
local view, all vertices of (G, δ) know (n(v), λ(v), N (v)) in
Diam +1 time units. Thus if v takes the number n(v) during
a round i , for any vertex w that modifies its number during
a round j > i + Diam + 1, n j (w) > n(v). Consequently,
after O(nDiam) time units each vertex has computed its
final number n(v). And thus, after Diam + 1 more rounds,
the value of (n(v), N (v), M(v)) is not modified any more for
any v.

For each vertex v, n(v) can be encoded with log n
bits and N (v) can be encoded with O(+(l + log n))

bits. Since each vertex keeps only the information that
is useful in its mailbox, there are at most n elements in
M(v) and each of these elements can be encoded with
O(+(l + log n)) bits. Consequently, each vertex of G
needs a memory of O(+n(l + log n)) bits to store its
state.

23

We say that an algorithm A is said to be polynomial on
a family I if there exists a polynomial p such that for each
(G, δ) ∈ I, for each execution of A on (G, δ), the number
of rounds, the number and the size of the messages are are
bounded by p(|(G, δ)|).

From the previous proposition we deduce:

Corollary 5.8 There exists a polynomial algorithm solving
leader election on I if and only if conditions of Theorem 1.1
hold and there exists a polynomial p such that for each D of
Iτ (D) ≤ p(|D|).

Proof If there there exists a polynomial p such that for
each D of Iτ (D) ≤ p(|D|), from the previous proposi-
tion, we know that for each D ∈ I, each execution of
M f amily on D needs O(nDiam + p(|D|)) time units and
O(m2n + mp(|D|)) of polynomial size are sent during this
execution.

Conversely, suppose there exists a polynomial election
algorithm A for I and let p be a polynomial such that
for each D in I, the synchronous execution of A on D
elects a leader in less than p(|D|) rounds. Consider the
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function τ defined as in the proof of Proposition 4.6:
it is clear that for each D ∈ I, τ (D) ≤ p(|D|) +
O(|D|).

23

5.4 About other models

The result obtained in this paper is not specific to the asyn-
chronous message passing model; it may be extended to any
model for which exist:

– covering-like and quasi-covering-like notions,
– an algorithm to distinguish a vertex, and
– a SSP-like algorithm.

By this way, Theorem 1.1 may be extended to the following
models:

– the model defined by Angluin in [1] (inspired by Milne
and Milner’s model for distributed systems [19]) and,
more generally, the model of local computations on
labelled edges [8];

– the model defined by Mazurkiewicz [18];
– asynchronous systems where processes communicate

with synchronous message passing (i.e., there is a syn-
chronization between the process sending the message
and the one receiving it, it has been defined by Hoare in
[13]).

6 Some applications

This section illustrates Theorem 1.1 through some conse-
quences. As we said in the introduction an immediate corol-
lary of Theorem 1.1 can be formulated in the following way:
to elect in a symmetric labelled digraph which is minimal
for the covering relation we only need an upper bound of its
size or of its diameter. This result is a non trivial extension
of Yamashita and Kameda [26] or Mazurkiewicz [18] results
in the anonymous case. Results obtained in [4,9,27] are now
particular cases of Theorem 1.1 in the non-anonymous case:
we need upper bounds on the multiplicity of a label or of the
size of graphs.

6.1 The family of trees or the family
of complete graphs

If we consider the model of Mazurkiewicz or an asynchro-
nous system with synchronous message passing or Angluin’s
model no tree admit another tree as a quasi-covering of arbi-
trary large size. The same property is true for the family of
complete graphs. Thus in these models there is an election

algorithm for the family of trees or the family of complete
graphs.

6.2 There is no election algorithm for the family of graphs
containing all trees and the triangle

We consider the model of Angluin [1]. A characterization
of graphs which admit an election algorithm by giving def-
inition of coverings (for this model) and the corresponding
election algorithm may be found in [8].

Let F be the family of graphs containing all trees and the
triangle. Now we examine Angluin’s question: Does it exist
an election algorithm which works for this family of graphs?

The path graph Pn is the n-vertex graph with n − 1 edges
all on a single open path. The family F contains the path
graphs Pn(n ≥ 1). Clearly the triangle admits quasi-cover-
ings of arbitrary large radius in F . Thus by Theorem 1.1 there
is no election algorithm for this family (Theorem 4.6 in [1]).

More generally, there is no election for any family of
graphs which contains all trees and a graph which is not
a tree.

6.3 The family of prime rings

Election algorithms for rings are very studied under many
assumptions concerning the model, the size of the ring or
the intial states of vertices. Examples of election algorithms
in rings with a prime size and impossibility if the size is
composite may be found in [3,14,17]. A natural question is:
does it exist an election algorithm which works for the family
of rings with a prime size (for the given models). A prime
ring admits prime rings as quasi-coverings of arbitrary large
radius; thus from from Theorem 1.1 we deduce there is no
election algorithm for this family.

Now we consider the point-to-point message passing
model. If G is a ring then Dir(G) is a symmetric covering
of the digraph with one vertex and two loops; thus there is no
election algorithm for an anonymous ring even if its size is
prime in the message passing model. If we consider a labelled
ring having a prime size and initially at least 2 vertices with
different labels then the corresponding symmetric labelled
digraph is minimal for the covering relation and there is an
election algorithm [7]. One can wonder whether it is true
for the family of such labelled rings. Proposition 4.6 implies
directly a negative answer. The answer is positive if each ver-
tex knows an upper bound of the size (or equivalently of the
diameter).

The same considerations are true for tori.

6.4 The family of rings with one distinguished vertex

We consider the family of rings where each node is labelled
by λ(v), with the only constraint being that there exists a
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unique node whose label is unique in the whole ring:

FD = {(G, λ) | G is a ring, ∃!v0 ∈ V (G),∀v ∈ V (G),

λ(v) = λ(v0) ⇒ v = v0}.

We can see the members of this family as rings with non-
unique identities, except for one node. This node is “distin-
guished”. We denote by u(G) the label λ(v0) of G that is
unique. Note that for two different rings G, G′ in FD, u(G)

may be different from u(G′).
For every network G in FD, Dir(G) is obviously sym-

metric covering minimal and there exists an election algo-
rithm for each of them, for example the algorithm that elects
the node labelled u(G). However, Theorem 1.1 explains why
there is no algorithm solving election in all graphs of FD .
Indeed, for any network in FD , there exists quasi-coverings
of arbitrary radius. We detailed how to construct them. Given
a graph G, select a label λ0 that does not appear on G. Then
construct the following labelling for a (big) ring K:

– choose an orientation for G and K,
– choose a vertex v in G and another v′ in K,
– assign as label for v′ the label λ(v),
– take the neighbours (in the chosen orientations) of v and

v′, and repeat until there is only one vertex unlabelled
in K,

– assign label λ0 to this last vertex.

By construction, K ∈ FD and is a quasi-covering of G of
radius Card(K)

2 − 1.

6.5 General graphs

We also get some new possibility results, in particular for
symmetric covering minimal graphs with at least 1 and at
most k distinguished vertices or for symmetric covering mini-
mal graphs where a bound on the size is known. On the impos-
sibility side, it is a corollary of Theorem 1.1 that there is no
election algorithm for the family of all symmetric covering
minimal graphs.

7 Conclusion

We presented a simple and comprehensive characterization
of families of networks which admit an election algorithm.
This characterization contains strictly and “unifies” known
results on this question. It enables to find non trivial new ones
(Sects. 6.4 and 6.5).

Our algorithm is based on an universal enumeration algo-
rithm (inspired by Mazurkiewicz), a termination detection
algorithm by Szymanski, Shy and Prywes, the notion of cov-
ering and the notion of quasi-covering which captures “the

existence of large enough area of one graph that looks locally
like another graph”.

This work may be also considered as a theoretical con-
tribution motivated by the design of portable software with
more security or privacy.

Thanks to the techniques we use, the time complexity and
the message complexity (size) are polynomial.

The natural extension of this work is the study of the char-
acterization of the computability in networks through tech-
niques and tools we have introduced.

Another important extension/application of techniques
developed in this paper concerns snapshot computation and,
more generally, detection of stable properties in networks
in a totally distributed system with partially knowledge (in
preparation).
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