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Abstract. The paper presents a complete characterisation of the families of networks in which distributed
computations can be performed in a process terminating manner, that is, with explicit termination in the asyn-
chronous message passing model. The characterisation encompasses all criteria that have been formulated in
the past that were known to influence explicit termination: topological restriction (tree or complete networks),
topological knowledge (size or diameter), and local knowledge to distinguish nodes (identities or a leader).
These results are now presented as corollaries of a single generalising theorem. In addition our characterisation
covers combinations of these, as well as new criteria.

1 Introduction

Starting with the works by Angluin [Ang80] and Itai and Rodeh [IR81], many papers have discussed the question
what functions can be computed by distributed algorithms in networks where knowledge about the network topology
is limited.

Two important factors limiting the computational power of distributed systems are symmetry and explicit
termination, and both have been found to be connected with the graph-theoretic concept of coverings. Impossibility
proofs for distributed computations quite often use the replay technique. Starting from a (supposedly correct)
execution of an algorithm, an execution is constructed in which the same steps are taken by nodes in a different
network. The mechanics of distributed execution dictate that this can happen, if the nodes are locally in the same
situation, and this is precisely what is expressed by the existence of coverings.

Some functions can be computed by an algorithm that terminates implicitly but not by an explicitly terminating
algorithm. In an implicitly terminating algorithm, each execution is finite and in the last state of the execution
each node has the correct result. However, the nodes are not aware that their state is the last one in the execution.
The impossibility result implies that such awareness can never be obtained in a finite computation.

During the nineteen eighties there were many proposals for termination detection algorithms: such algorithms
transform implicitly into explicitly terminating algorithms. As it is explained in [Mat87], they superimposed on a
given so-called basic computation a control computation which enables one or more of the processes to detect when
the termination condition holds for the basic computation.

It is not easy to detect whether a distributed algorithm has reached a state where no process is active and no
message is in transit. Several conditions were found to allow such algorithms and for each of these conditions a
specific algorithm was given (see [Tel00] Chap. 8 and [Mat87]). These conditions include: a unique leader exists in
the network [Ang80], the network is known to be a tree [Ang80], a bound of the diameter of the network is known
[SSP85], the nodes have different identification numbers.



1.1 The Main Result

In this paper we show that these four conditions are just special cases of one common criteria, namely that the
local knowledge of nodes prohibits the existance of quasi-coverings of unbounded depth. Moreover, we generalise
the algorithm by Szymanski et al. [SSP85] to a common algorithm that works in all graph families without quasi-
coverings of unbounded depth. It is explained in Lemma 14. We also prove, by generalising the existing impossibility
proofs to the limit, that in families with quasi-coverings of unbounded depth, termination detection is impossible.
Thus, the generalised algorithm can be considered as an universal termination detection algorithm that can be
applied in all cases where detection is possible at all. It is precisely what is stated in Theorem 22.

From this theorem and [CM05] we deduce a characterisation of families of labelled graphs which admit an
election algorithm: Theorem 23.

1.2 Related Works

For the asynchronous message passing model characterisations of graphs permitting a leader election algorithm,
a spanning tree construction algorithm and a topology recognition algorithm have been obtained by [YK96]. For
this, they introduced the concept of view. The view from a vertex v of a graph G is an infinite labelled rooted
tree obtained by considering all labelled walks in G starting from v. The characterizations use also the notion of
symmetricity. The symmetricity of a graph depends on the number of vertices that have the same view. Algorithms
developped in our work are totally asynchronous; in [YK96] algorithms need a pseudo-synchronisation. Consider a
graph G with n vertices and m edges, in Yamashita and Kameda algorithms the size of each message can be 2n

whereas in our algorithm the size is bounded by O(m log n).
In [BV99,BV01], Boldi and Vigna study a model where a network is represented by a directed graph. In one

computation step, a process can modify its state according to the states of its in-neighbours. In [BV01], they use
fibrations to characterize the tasks that can be computed in an anonymous network, provided a bound on the
network is known. In [BV99], they give a characterization of what can be computed with arbitrary knowledge;
their results are based on the notion of view that is adapted from the work of Yamashita and Kameda [YK96].
From our results, if a task can be computed on a network, provided a bound on the size is known, then we can also
detect the termination of the algorithm: in some sense, we generalize the results presented in [BV01]. On the other
hand, when a bound on the size is not available, there exist some tasks that are computable in the sense of [BV99]
but there does not exists any algorithm that enables to detect that the computation is globally over. In [MT00]
a characterisation of networks which autorise explicit termination has been given in the local computation model
where in a step a vertex can read and write its state and the states of adjacent vertices.

1.3 The Tools

Coverings and Quasi-coverings. Distributed tasks like election, enumeration (assigning different numbers to
the nodes), and mutual exclusion require the network to reach a non-symmetric state. A network state is symmetric
if it contains different nodes that are in exactly the same situation; not only their local states, but also the states of
their neighbors, of their neighbors’ neighbors, etcaetera. That is, there exists a “local similarity” between different
nodes of infinite radius.

The replay argument shows that different nodes that are locally similar with infinite radius will exhibit the
same behavior in some infinite computation. Thus, there is no algorithm that guarantees that the symmetry ceases
in all finite computations. Symmetry can be broken only by randomized protocols.

It is not difficult to see that local similarity of infinite radius may exist in finite graphs. The classical example
is a ring G6 of six nodes, with initial states a, b, c, a, b, c. Indeed, the two nodes with state a both have neighbors
in state b and c, and so on, so the local similarity exists over an infinite radius.

The ring G6 can be mapped into a ring G3 with only three nodes, with initial states a, b, and c, in such a
way that each node is mapped to a node with the same initial state and with the same states in neighbors. Such a
mapping is called a covering and is the mathematical tool to prove the existence of symmetries.

Networks in which symmetries exist were called ambiguous by Mazurkiewicz [Maz97]; impossibility of symmetry
breaking can be shown for these graphs. Termination detection requires that a node certifies, in a finite computation,
that all nodes of the network have completed their computation. However, in a finite computation only information
about a bounded region in the network can be gathered. The algorithm by Szymanski, Shy, and Prywes does this
for a region of pre-specified diameter; the assumption is necessary that the diameter of the entire network is known.
This implies, that termination detection, unlike symmetry breaking, is possible in every graph, but: provided some
knowledge.

Network knowledge in an algorithm is modeled by a graph family in which the algorithm is required to work. The
detection algorithm by Szymanski et al. can be generalized in this way to work in a graph family F . Nodes observe
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their neighborhood and determine in what graph H of F they are. Then they try to get a bound k on the radius
to which a different graph of F can be locally similar to H , and then certify that all nodes within distance k are
completed. The universal termination detection algorithm thus combines the universal graph reconstruction with
(minimal) topological knowledge [Maz97] and a known termination detection algorithm. Of course the approach
fails if a graph H ∈ F is locally similar, with unbounded radius, to other graphs in F . Local similarities of this type
are made precise in the notion of quasi-coverings. Fortunately, the impossibility proofs for termination detection can
be extended to cover exactly those families of graphs that contain such unbounded-radius coverings. Consequently,
the sketched universal termination detection algorithm is the most general algorithm possible.

Labelled (Di)Graphs and Local Computations on Arcs. We use a labelled directed graph which encodes the
network in which processes communicate by asynchronous message passing with a port numbering. The labelling
may encode anonymous networks (all the vertices have the same label) or any initial process knowledge. Examples
of such knowledge include: (a bound on) the number of processes, (a bound on) the diameter of the graph, the
topology, identity or partial identity, distinguished vertices, the sense of direction. The basic events (send, receive,
internal, transmission) are encoded by local computations on arcs. From this directed graph, we deduce necessary
conditions for the existence of a transformation of algorithms into algorithms having an explicit termination. The
conditions are also sufficient (Theorem 22): we give an explicit transformation.

1.4 Overview

The structure of this paper is as follows. Section 2 reviews the definitions of coverings, quasi-coverings and local
computations on arcs. Sections 3 explains how to encode a network into an equivalent digraph and basic instruc-
tions of the asynchronous message passing model into local computations on arcs. Sections 4 and 5 present a
Mazurkiewicz-like algorithm which enables the computation of the maximal knowledge common to all vertices of
the network. Section 6 presents the main result and some applications.

2 Preliminaries

The notations used here are essentially standard. Definitions and main properties are presented in [BvL86,Bod89,BV02].

Undirected Graphs, Directed Graphs and Labelled (Di)Graphs. We consider finite, undirected, connected
graphs having possibly self-loops and multiple edges, G = (V (G), E(G), Ends), where V (G) denotes the set of
vertices, E(G) denotes the set of edges and Ends is a map assigning to every edge two vertices: its ends. Two
vertices u and v are said to be adjacent or neighbours if there exists an edge e such that Ends(e) = {u, v}. A simple
graph G = (V (G), E(G)) is a graph without self-loop or multiple edges. For an edge e, if the vertex v belongs to
Ends(e) then we say that e is incident to v. The set of neighbours of v in G, denoted NG(v), is the set of all vertices
of G adjacent to v. A homomorphism between G and H is a mapping γ : V (G) ∪ E(G) → V (H) ∪ E(H) such
that if e is an edge of G and Ends(e) = {u, v} then Ends(γ(e)) = {γ(u), γ(v)}. We say that γ is an isomorphism
if γ is bijective and γ−1 is a homomorphism, too. We write G ≃ G′ whenever G and G′ are isomorphic. In some
applications we need a direction on each edge of a graph; a graph augmented in this way is called a directed graph
or a digraph. More formally, a digraph D = (V (D), A(D), sD , tD) is defined by a set V (D) of nodes, a set A(D) of
arcs and by two maps sD and tD that assign to each arc two elements of V (D) : a source and a target (in general,
the subscripts will be omitted); if a is an arc, Ends(a) denotes the set {s(a), t(a)}; the arc a is said to be going out
of s(a) and coming into t(a). A self-loop is an arc with the same source and target.

A symmetric digraph (V, A, s, t) is a digraph endowed with a symmetry, that is, an involution Sym : A → A
such that for every a ∈ A : s(a) = t(Sym(a)). A digraph D is strongly connected if for all vertices v1 and v2 there
is a directed path from v1 to v2. A digraph homomorphism γ between the digraph D and the digraph D′ is a
mapping γ : V (D) ∪A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of D and e is an arc such that u = s(e)
and v = t(e) then γ(u) = s(γ(e)) and γ(v) = t(γ(e)). Let G = (V, E) be a simple graph.

Throughout the paper we will consider graphs where vertices and edges are labelled with labels from a recursive
label set L. A graph G labelled over L will be denoted by (G, λ), where λ : V (G) ∪ E(G) → L is the labelling
function. The graph G is called the underlying graph and the mapping λ is a labelling of G. Let G be a graph, let
L be a set of labels, and let neutral be a label that is not in L. A partial labelling λ of G with labels from L defined
on a subset B of V (G)∪E(G) is canonically extended to V (G)∪E(G) by putting for each x ∈ ((V (G)∪E(G))\B) :
λ(x) = neutral.

A mapping γ : V (G) ∪ E(G) → V (G′) ∪ E(G′) is a homomorphism from (G, λ) to (G′, λ′) if γ is a graph
homomorphism from G to G′ which preserves the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (G) ∪
E(G). In some applications we need several labelling functions for a given graph G. Let (λ1, ..., λk) be a tuple of
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labelling functions of G, the labelled graph obtained with this tuple is denoted (G, (λ1, ..., λk)), the label of an
element x ∈ V (G) ∪ E(G) is (λ1(x), ..., λk(x)). Labelled graphs will be designated by bold letters like G, H, . . . If
G is a labelled graph, then G denotes the underlying graph. The same definitions are available for digraphs.
Fibration, covering and quasi-covering. Coverings and quasi-coverings are fundamental tools in this work.

Definition 1. A fibration between the digraphs D and D′ is a homomorphism ϕ from D to D′ such that for each
arc a′ of A(D′) and for each vertex v of V (D) such that ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such
that t(a) = v and ϕ(a) = a′.

The arc a is called the lifting of a′ at v, D is called the total digraph and D′ the base of ϕ. We shall also say that
D is fibred (over D′). The fibre over a vertex v of D′ is the set ϕ−1(v) of vertices of D. A fibre over v is trivial
if it is a singleton, i.e., |ϕ−1(v)| = 1. A fibration is nontrivial if at least one fibre is nontrivial, trivial otherwise;
it is proper if all fibres are not trivial. A graph D is fibration prime if it cannot be fibred non trivially, that is,
every surjective fibration is an isomorphism. In the sequel directed graphs are always strongly connected and total
digraphs non empty thus fibrations will be always surjective.

Definition 2. An opfibration between the digraphs D and D′ is a homomorphism ϕ from D to D′ such that for
each arc a′ of A(D′) and for each vertex v of V (D) such that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D)
such that s(a) = v and ϕ(a) = a′. A covering projection is a fibration that is also an opfibration.

If a covering projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ. Covering projections satisfy:

Proposition 3. A covering projection ϕ : D → D′ with a connected base and a nonempty covering is surjective;
moreover, all the fibres have the same cardinality. This cardinality is called the number of sheets of the covering.

As for fibrations, a digraph D is covering prime if there is no digraph D′ not isomorphic to D such that D is a
covering of D′ (i.e., D is a covering of D′ implies that D ≃ D′). Let D and D′ be two digraphs such that D is a
surjective covering of D′ via ϕ. If D′ has no self-loop then for each arc a ∈ A(D) : ϕ(s(a)) 6= ϕ(t(a)). Finally the
following property is a direct consequence of the definitions and it is fundamental in the sequel of this paper :

Proposition 4. Let D and D′ be two digraphs such that D′ has no self-loop and D is a surjective covering of D′

via ϕ. If a1 6= a2 and ϕ(a1) = ϕ(a2) then Ends(a1) ∩Ends(a2) = ∅.

The notions of fibrations and of coverings extend to labelled digraphs in an obvious way: the homomorphisms must
preserve the labelling.

The last notion we will use is a generalisation of coverings, it is called quasi-coverings.

Definition 5. Let D,D′ be two labelled digraphs and let γ be a partial function on V (D) that assigns to each
element of a subset of V (D) exactly one element of V (D′). Then D is a quasi-covering of D′ via γ of radius r if
there exists a finite or infinite covering D0 of D′ via δ, vertices z0 ∈ V (D0), z ∈ V (D) such that:

1. BD(z, r) is isomorphic via ϕ to BD0
(z0, r),

2. the domain of definition of γ contains BD(z, r), and
3. γ = δ ◦ ϕ when restricted to V (BD(z, r)).

card(V (BD(z, r))) is called the size of the quasi-covering, and z the center. The digraph D0 is called the associated
covering of the quasi-covering.

Local Computations on Arcs. In this paper we consider labelled digraphs and we assume that local computations
modify only labels of vertices. Digraph relabelling systems on arcs and more generally local computations on arcs
satisfy the following constraints, that arise naturally when describing distributed computations with decentralized
control:

(C1) they do not change the underlying digraph but only the labelling of vertices, the final labelling being the result
of the computation (relabelling relations),

(C2) they are local, that is, each relabelling step changes only the label of the source and the label of the target of
an arc,

(C3) they are locally generated, that is, the applicability of a relabelling rule on an arc only depends on the label of
the arc, the labels of the source and of the target (locally generated relabelling relation).

The relabelling is performed until no more transformation is possible, i.e., until a normal form is obtained. Let
R be a locally generated relabelling relation, we assume that it is closed under isomorphism, i.e., if D R D1 and
D′ ≃ D then D′ R D′

1
for some labelled digraph D′

1
≃ D1. In the remainder of the paper R∗ stands for the

reflexive-transitive closure of R . The labelled digraph D is R-irreducible (or just irreducible if R is fixed) if there
is no D1 such that D R D1. The relation R is said noetherian if there is no infinite relabelling chain.
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3 From Asynchronous Message Passing to Local Computations on Arcs

The model. Our model follows standard models for distributed systems given in [AW04,Tel00]. The communication
model is a point-to-point communication network which is represented as a simple connected undirected graph where
vertices represent processes and two vertices are linked by an edge if the corresponding processes have a direct
communication link. Processes communicate by message passing, and each process knows from which channel it
receives a message or it sends a message. An edge between two vertices v1 and v2 represents a channel connecting
a port i of v1 to a port j of v2. Let ν be the port numbering function, we assume that for each vertex u and each
adjacent vertex v, νu(v) is a unique integer belonging to [1, deg(u)]. We consider the asynchronous message passing
model: processes cannot access a global clock and a message sent from a process to a neighbour arrives within some
finite but unpredictable time.

From Undirected Labelled Graphs to Labelled Digraphs. The construction presented in this section may
appear technical nevertheless the intuition is very natural and simple, and it is illustrated in Figure 1. A first
approximation of a network, with knowledge about the structure of the underlying graph, is a simple labelled

graph G = (V (G), E(G)). We associate to this undirected labelled graph a labelled digraph
←→
G = (V (

←→
G ), A(

←→
G ))

defined in the following way.

1

1

2

1

3

1

(G, ν)
v4

v1

v3 v2
v4

v1

v3 v2

outbuf(v1, v4)

t(v1, v4)

inbuf(v1, v4)

2

1

3

1

1

1

(
↔

G, κG, νG) = bG

Fig. 1. We adopt the following notation conventions for vertices of (
↔

G, κG, νG). A black-circle vertex corresponds to the label
process, a square vertex corresponds to the label send, a diamond vertex corresponds to the label transmission,

and a double-square vertex corresponds to the label receive.

Let u and v be two adjacent vertices of G. We associate to the edge {u, v} the set V{u,v} of 6 vertices de-
noted : {outbuf(u, v), t(u, v), inbuf(u, v), outbuf(v, u), t(v, u), inbuf(v, u)}, and the set A{u,v} of 8 arcs equals to:
{(u, outbuf(u, v)), (outbuf(u, v), t(u, v)), (t(u, v), inbuf(u, v)),
(inbuf(u, v), v), (v, outbuf(v, u)), (outbuf(v, u), t(v, u)), (t(v, u), inbuf(v, u)), (inbuf(v, u), u)}.

Finally, V (
←→
G ) = V (G) ∪ (

⋃
{u,v}∈E(G)

V{u,v}) and A(
←→
G ) =

⋃
{u,v}∈E(G)

A{u,v}.

The arc (u, outbuf(u, v)) is denoted out(u, v), receiver(out(u, v)) is the vertex v, and the arc (inbuf(v, u), u) is
denoted by in(v, u).

If G = (G, λ) then
←→
G = (

←→
G , λ←→

G
) where λ←→

G
(v) = λ(v) for each v ∈ V (G).

We need to memorize the meaning (semantic) of vertices thus we label vertices of
←→
G with a labelling function

κ, the set of labels is: {process, send, receive, transmission},

- if a vertex x of V (
←→
G ) corresponds to a vertex u of V (G) then κ(x) = process,

- if a vertex x of V (
←→
G ) corresponds to a vertex of the form outbuf(u, v) then κ(x) = send,

- if a vertex x of V (
←→
G ) corresponds to a vertex of the form inbuf(u, v) then κ(x) = receive,

- if a vertex x of V (
←→
G ) corresponds to a vertex of the form t(u, v) then κ(x) = transmission. Using the label

neutral, κ is extended to (V (
←→
G ), A(

←→
G )).
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Two adjacent vertices of (
←→
G , κ) have different labels thus if the digraph (

←→
G , κ) is a covering of a digraph D

then D has no self-loop.

Port Numbering and Symmetric Port Numbering. We can notice, that for a digraph (
←→
G , κ), if we consider

a vertex x labelled process then deg+(x) = deg−(x). Each process knows from which channel it receives a message
or it sends a message, that is, each process assigns numbers to its ports. Thus we consider the labelling ν of the

arcs of (
←→
G , κ) coming into or going out of vertices labelled process such that for each vertex x labelled process

the restriction of ν assigns to each outgoing arc a unique integer of [1, deg+(x)] and assigns to each arc coming
into a unique integer of [1, deg−(x)], such a labelling is a local enumeration of arcs incident to process vertices
(it corresponds to the port numbering). This enumeration is symmetric, i.e., ν verifies for each arc of the form
out(u, v) : ν(out(u, v)) = ν(in(v, u)); this condition is called the symmetry of the port numbering (or equivalently
of ν). Such a port numbering is said symmetric. As usual, using the special label neutral, ν is considered as a

labelling function of (
←→
G , κ). The hypothesis of the symmetry of the port numbering is done in [YK96] and it

corresponds to the complete port awareness model in [BCG+96]. In the sequel, (
←→
G , κ, ν) is denoted by Ĝ.

Basic Instructions. As in [YK96] (see also [Tel00] pp. 45-46), we assume that each process, depending on its
state, either changes its state, or receives a message via a port or sends a message via a port. Let Inst be this
set of instructions. This model is equivalent to the model of local computations on arcs with respect to the initial
labelling as it is depicted in the following remark.

Remark 6. Let G be a labelled graph equipped with a port numbering ν, let Ĝ be the labelled digraph obtained
from G, this labelled digraph enables to encode the following events using local computations on arcs:

– an internal event “a process changes its state” can be encoded by a relabelling rule concerning a vertex labelled
process,

– a send event “the process x sends a message via the port i” can be encoded by a relabelling rule concerning an
arc of the form (x, y) with κ(x) = process, κ(y) = send and ν((x, y)) = i,

– a receive event “the process y receives a message via the port i” can be encoded by a relabelling rule concerning
an arc of the form (x, y) with κ(x) = receive, κ(y) = process and ν((x, y)) = i,

– an event concerning the transmission control can be encoded by a relabelling rule concerning an arc of the form
(x, y) or (y, z) with κ(x) = send, κ(y) = transmission and κ(z) = receive.

Remark 7. ¿From now one will speak indistinctly of distributed algorithm encoded in the asynchronous message
passing model on the labelled graph G equipped with a port numbering ν or of a distributed algorithm encoded
using local computations on arcs on the labelled digraph Ĝ.

4 A Mazurkiewicz-like Algorithm

In this section, we recall the algorithmM inspired by [Maz97] and described in [CM05] and we prove that we can

interpret the mailbox of a vertex v at a step i of the computation as a graph Ĥi such that Ĝ is a quasi-covering

of Ĥi. Furthermore when the algorithm has reached the final labelling all the vertices compute the same graph Ĥ
and Ĝ is a covering of Ĥ.
Description ofM. We first give a general description of the algorithmM applied to a labelled graph G equipped
with a port numbering ν. We assume that G is connected. Let G = (G, λ) and consider a vertex v0 of G, and
the set {v1, ..., vd} of neighbours of v0. During the computation, each vertex v0 will be labelled by a pair of the
form (λ(v0), c(v0)), where c(v0) is a triple (n(v0), N(v0), M(v0)) representing the following information obtained
during the computation (formal definitions are given below): n(v0) ∈ N is the number of the vertex v0 computed
by the algorithm, N(v0) ∈ N is the local view of v0, this view can be either empty or it is a set of the form:
{((n(vi), ps,i, pr,i), λ(vi))|1 ≤ i ≤ d} , M(v0) ⊆ L × N × N is the mailbox of v0 containing the whole information
received by v0 at previous computation steps. Let (((n(vi), ps,i, pr,i), λ(vi))1 ≤ i ≤ d) be the local view of v0. For
each i, (n(vi), ps,i, pr,i)) encodes a neighbour vi of v0, where: n(vi) is the number of vi, vi has sent its number to
v0 via the port ps,i, and v0 has received this message via the port pr,i. Each vertex v gets information from its
neighbours via messages and then attempts to calculate its own number n(v), which will be an integer between 1
and |V (G)|. If a vertex v discovers the existence of another vertex u with the same number, then it compares its
own label and its own local view with the label and the local view of u. If the label of u or the local view of u is
“stronger”, then v chooses another number. Each new number, with its local view, is broadcasted again over the
network. At the end of the computation, it is not guaranteed that every vertex has a unique number, unless the
graph is covering prime. However, all vertices with the same number will have the same label and the same local
view.
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Algorithm 1: The algorithmM.

Var : n(v0) : integer init 0 ;
N(v0) : set of local view init ∅;
N : set of local view ;
M(v0) : mailbox init ∅;
M, Ma : mailbox;
λ(v0), ca, l : element of L;
i, x, p, q, na : integer;

I0 : {n(v0) = 0 and no message has arrived at v0}
begin

n(v0) := 1;
M(v0) := {(λ(v0), 1, ∅)};
for i := 1 to deg(v0) do send< (n(v0), M(v0)), i > via port i ;

end

R0 : {A message < (na, Ma) , p > has arrived at v0 from port q}
begin

M := M(v0);
M(v0) := M(v0) ∪Ma;
if ((x, p, q) /∈ N(v0) for some x) then

N(v0) := N(v0) ∪ {(na, p, q)};

if ((x, p, q) ∈ N(v0) for some x < na) then
N(v0) := (N(v0) \ {(x, p, q)}) ∪ {(na, p, q)};

if (n(v0) = 0) or (n(v0) > 0 and there exists (l, n(v0), N) ∈M(v0) such that (λ(v0) <L l) or ((λ(v0) = l)
and (N(v0) ≺ N)))) then

n(v0) := 1 + max{n ∈ N | (l, n, N) ∈M(v0) for some l, N};
M(v0) := M(v0) ∪ {(λ(v0), n(v0), N(v0))};

if (M(v0) 6= M)) then
for (i := 1 to deg(v0)) do send < (n(v0), M(v0)), i > via port i;

end

An Order on Local Views. We assume for the rest of this paper that the set of labels L is totally ordered by <L.
Consider a vertex v such that the local view N(v) ∈ N is the set {(n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . , (nd, ps,d, pr,d)}.

We assume that for each i < d, (ni+1, ps,i+1, pr,i+1) <Lex (ni, ps,i, pr,i) where <Lex denotes the usual lexical
order. We say that ((n1, ps,1, pr,1), (n2, ps,2, pr,2), . . . , (nd, ps,d, pr,d)) is the ordered representation N>(v0) of the
local view of v0. Let N> be the set of such ordered tuples. We define a total order ≺ on N> using the alphabetical
order that induces naturally a total order on N . This order can also be defined on N as follows: N1 ≺ N2 if the
maximal element for the lexical order <Lex of the symmetric difference N1 △N2 = N1 ∪N2 \N1 ∩N2 belongs to
N2. If N(u) ≺ N(v), then we say that the local view N(v) of v is stronger than the one of u.

The Final Labelling. Let G = (G, λ) be a connected labelled graph with the port numbering ν. If v is a vertex
of G then the label of v after a run ρ ofM is denoted (λ(v), cρ(v)) with cρ(v) = (nρ(v), Nρ(v), Mρ(v)) and (λ, cρ)
denotes the final labelling. FinallyM verifies:

Proposition 8. Any run ρ ofM on G = (G, λ), a connected labelled graph with the port numbering ν, terminates
and yields a final labelling (λ, cρ) verifying the following conditions for all vertices v, v′ of G:

1. there exists an integer k ≤ V (G) such that {nρ(v) | v ∈ V (G)} = [1, k].

2. Mρ(v) = Mρ(v
′).

3. (λ(v), nρ(v), Nρ(v)) ∈Mρ(v
′).

4. Let (l, n, N) ∈ Mρ(v
′). Then λ(v) = l, nρ(v) = n and Nρ(v) = N for some vertex v if and only if there is no

triple (l′, n, N ′) ∈Mρ(v
′) with l <L l′ or (l = l′ and N ≺ N ′).

5. nρ(v) = nρ(v
′) implies (λ(v) = λ(v′) and N(v) = N(v′)).

For a mailbox M , we define the graph of the “strongest” vertices as follows. First, for l ∈ L, n ∈ N, N ∈
N , M ⊆ L× N×N , we define the predicate Strong(l, n, N, M) that is true if there is no (l′, n, N ′) ∈M verifying

l < l′ or (l = l′ and N ≺ N ′).
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The digraph HM of strongest vertices of M is then defined by

V (HM ) = {n | ∃N, l : Strong(l, n, N, M)},

A(HM ) = {a = (n, p, q, n′) with s(a) = n, t(a) = n′, Sym(a) = (n′, q, p, n)

| ∃N, l s.t. Strong(l, n, N, M), and ∃p, q s.t. (n′, p, q) ∈ N }.

We also define a labelling on this digraph by λM (n) = l, with Strong(n, l, N, M) for some N.

The uniqueness of this definition comes from the definition of Strong and from Theorem 8.5.

Let ρ be a run of M. Then (HMρ(u), λMρ(u)) does not depend on u by Theorem 8.2. We then define ρ(G) =
(HMρ(u), λMρ(u)), for any vertex u. The labelling defined also a canonical port numbering denoted νρ. Finally, we
have:

Proposition 9. For a given execution ρ of Mazurkiewicz algorithm, we have

V (ρ(G)) = {nρ(v)|v ∈ V (G)},

A(ρ(G)) = {(nρ(v), p, q, nρ(w))|{v, w} ∈ E(G)},

and it is equipped with the port numbering νρ induced by the labelling.

Remark 10. Before we emphasize the role of ρ(G), note that ρ(G) can be locally computed by every vertex, and
that the graph depends only on the label Mρ.

The next proposition states that we can see a run ofM as computing a graph covered by Ĝ. Conversely, every
graph covered by Ĝ can be obtained by a run of the algorithm.

Proposition 11. Let G be a labelled graph equipped with a port numbering ν.

1. For all runs ρ of M, Ĝ is a covering of ρ̂(G).

2. (completeness) For all H such that Ĝ is a covering of Ĥ, there exists a run ρ such that Ĥ ≃ ρ̂(G).

If the underlying graph is covering-minimal, then ρ̂(G) is an isomorphic copy of Ĝ. This copy can be computed
from their mailbox by any vertex, providing a “map” – with numbers of identification – of the underlying network.
Thus, on minimal networks, the algorithm of Mazurkiewicz can actually be seen as a cartography algorithm.

Interpretation of the Mailboxes at the Step i. The previous results concern the interpretation of the final
mailboxes. Now, we consider a relabelling chain (Gi)0≤i. For a given i and a given vertex v we prove that it is

possible to interpret the label of v in Gi as a graph quasi-covered by Ĝi. We recall notation. Let G be a labelled
graph equipped with a port numbering. Let ρ be a run of the Mazurkiewicz algorithm and let (Gi)0≤i be a chain
associated to ρ with (G0 = G). If v is a vertex of G then the label of v at step i is denoted by (λ(v), ci(v)) =
(λ(v), (ni(v), Ni(v), Mi(v))). Using the interpretation of the previous section by defining Strong(Mi(v)), this label
enables in some cases the reconstruction of the graph HMi(v). We note

Hi(v) =

{
HMi(v)if it is defined and (ni(v), λ(v), Ni(v)) ∈ Strong(Mi(v))

⊥ otherwise.
(1)

We prove that Ĝi is a quasi-covering of Ĥi(v). First, we need a definition:

Definition 12. Let (Gi)0≤i, be a relabelling chain obtained with the Mazurkiewicz algorithm and let v be a vertex.

We associate to the vertex v and to the step i the integer r
(i)
agree(v) being the maximal integer bounded by the

diameter of G such that any vertex w of B(v, r
(i)
agree(v)) verifies: Hi(v) = Hi(w).

Now we can state the main result of this section:

Theorem 13. Let (Gi)0≤i, be a relabelling chain obtained with the Mazurkiewicz algorithm and let v be a vertex.

The graph Ĝi is a quasi-covering of Ĥi(v) centered on v of radius r
(i)
agree(v).
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5 An Algorithm to Detect Stable Properties

In this section we describe a generalisation of the algorithm by Szymanski, Shy and Prywes (the SSP algorithm
for short) [SSP85]. We consider a distributed algorithm which terminates when all processes reach their local
termination conditions. Each process is able to determine only its own termination condition. The SSP algorithm
detects an instant in which the entire computation is achieved.

We present here a generalization of the hypothesis under which the SSP rules are run. For every vertex v,
the value of P (v) is no more a boolean and can have any value which depends on the label (state) of v denoted
by state(v). Hence, we do not require each process to determine when it reachs its own termination condition.
Moreover the function P must verify the following property: for any α, if P (state(v)) has the value α (α 6= ⊥)
and changes to α′ 6= α then it can not be equal to α at an other time. In other words, under this hypothesis, the
function is constant between two moments where it has the same value (different from ⊥). We say that the function
P is value-convex. We extend the SSP rules and we shall denote by GSSP this generalisation. In GSSP, the counter
of v is incremented only if P is constant on the ball B(v). As previously, every underlying rule that computes in
particular P (state(v)), has to be modified in order to eventually reinitialize the counter. Initially a(v) = −1 for
all vertices. The GSSP rule modifies the counter a.

Algorithm 2: Algorithm GSSP.

Var : a(v0) : integer init −1 ;
tv0

[i] : integer init −1 for each port i of v0;
valv0

[i] : value init ⊥ for each port i of v0;
i, j, x, temp : integer;

C0 : {A new value P (state(v0)) = ⊥ is computed}
begin

a(v0) := −1 ;
for i := 1 to deg(v0) do send< ⊥,−1 > via port i ;

end

C1 : {A new value P (state(v0)) different from ⊥ is computed}
begin

a(v0) := 0 ;
if (P (state(v0)) is equal to valv0

[i] for each port i) then
a(v0) := 1;

for i := 1 to deg(v0) do send< P (state(v0)), a(v0) > via port i ;
end

C2 : {A message < α, x > has arrived at v0 from port j}
begin

valv0
[j] := α;

tv0
[j] := x;

temp := a(v0);
if (P (state(v0)) 6= ⊥ is equal to valv0

[i] for each port i) then
a(v0) := 1 + Min{tv0

[i] | i is a port of v0};

if (temp 6= a(v0)) then
for i := 1 to deg(v0) do send< P (state(v0)), a(v0) > via port i ;

end

We shall now use the following notation. Let G be a labelled graph equipped with a port numbering ν. Let
(Gi)0≤i be a relabelling chain associated to an execution of the GSSP algorithm. We denote by ai(v) (resp.
Pi(state(v))) the value of the counter (resp. of the function) associated to the vertex v of Gi. According to the
definition of the GSSP rule, we remark that for every vertex v, a(v) can be increased, at each step, by 1 at most
and that if a(v) increases from h to h + 1, that means that at the previous step, all the neighbours w of v were
such that a(w) ≥ h and P (state(w)) = P (state(v)). Now we give the fundamental property of GSSP algorithm.

Lemma 14 (GSSP). Consider an execution of the GSSP algorithm under the hypothesis that the function P is

value-convex. For all j, for all v, there exists i ≤ j such that for all w ∈ B(v, ⌊aj(v)
3 ⌋), Pi(state(w)) = Pj(state(v)).

5.1 Mazurkiewicz Algorithm + GSSP algorithm = Maximal Common Knowledge

The main idea in this section is to use the GSSP algorithm in order to compute, in each node, the radius of
stability of M. In other words, each node u will know how far other nodes agree with its reconstructed graph
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HM(u). Let G = (G, λ) be a labelled graph equipped with a port numbering, let (Gi)0≤i be a relabelling chain
associated to a run of Mazurkiewicz’ Algorithm on the graph G. The vertex v of Gi is associated to the label
(λ(v), (ni(v), Ni(v), Mi(v))). Using the interpretation of Section 4, this labelling enables to compute the maximal
common knowledge for all vertices.

Let’s consider the algorithm obtained by adding to each rule of the Mazurkiewicz algorithm, the calculus of
Hi(v) on each node v and the modifications for the GSSP rule.

We note AS the merging of the two algorithms. The output of AS on the node v is < Hi(v), ai(v) > .
¿From Lemma 14 and Theorem 13, the main property of the computation of AS is:

Theorem 15 (quasi-covering progression). At all step j, for all vertex v, the output of AS on v is a couple

< Hj(v), aj(v) > such that if Hj 6= ⊥, then there exists a previous step i < j, such that Ĝi is a quasi-covering of

Ĥi(v) of center v and of radius ⌊aj(v)
3 ⌋.

And as the underlying Mazurkiewicz Algorithm is always terminating, we have that the value of H will stabilize
with a going to the infinite.

Finally, and considering the previous theorem, we note rt = ⌊aj(v)
3 ⌋, the radius of trust for the algorithm AS.

6 Termination Detection

6.1 Some Definitions

As it is said in Remark 7 distributed algorithm is synonymous with local computations on arcs.
First, we recall from the previous section: let R be a locally generated relabelling relation, let D a labelled

digraph, we say that D is an irreducible configuration modulo R if D is a R-normal form, i.e., no further step with
R is possible (DRD′ holds for no D′).

Irreducibility with respect to a relabelling relation yields a notion of implicit termination : the computation has
ended – no more relabelling rule can be applied – but no node is aware of the termination. On the other hand, one
shall ask a node to be aware of the termination of the algorithm. We consider two kinds of terminations :

– Termination of the algorithm but without detection : implicit termination.
– The nodes know when all other nodes have computed their final output value. Due to the asynchronous aspect of

distributed computations, there is still some observational computations that are going on. This is the observed
termination detection as when termination is detected, some observation computations are not necessarily
terminated; it is called usually explicit termination.

We give the formal definition of the observed termination detection for digraphs relabelling systems. In order
to have a unified presentation, we restrict ourselves to “normalized relabelling systems” w.l.o.g.

Definition 16. A normalized labelled digraph D is a labelled digraph whose labelling is of the form (mem, out, term).
A normalized relabelling system R is a digraph relabelling system on normalized digraphs where : mem can be

used in preconditions and relabelled, out is only relabelled, term is only relabelled and has a value in {⊥,Term}.
We also use the following convention : if the initial labelled digraph is D = (D, in) then it is implicitly extended to
the normalized labelling (D, (in,⊥,⊥)). The initial value of mem is therefore given by in.

All digraphs are labelled digraphs and are now all considered to be normalized. All relabelling relations are
relabelling relations of normalized labelled digraphs. We also use the following notations. Let D and D’ be some
given normalized digraphs then, for any vertex u ∈ D (resp. ∈ D′), for any x ∈ {mem, out, term}, x(u) (resp. x′(u))
is the x component of u in D (resp. D’). This presentation will find its justifications with the following definitions.

For the implicit termination, there is no detection mechanism. Hence term is not used. If the underlying
distributed algorithm is aimed at the computation of a special value, we will, in order to distinguish this value
from the intermediate computed values, only look the special purpose component out. As there is no detection
of termination, this label is written all over the computation. It becomes significant only when the digraph is
irreducible, but no node knows when this happens.

Now we give the definition of the observed termination detection.

Definition 17. Let F be a family of labelled digraphs. A digraph relabelling relation R has an observed termination
detection (OTD) on F if :

17.i R is noetherian on F ,
17.ii the term component of R-irreducible digraphs is equal to Term,
17.iii for all digraphs D, D′ ∈ F such that DR∗D′, if there exists a vertex u such that term(u) = Term, then
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– term
′(u) = Term,

– for all vertex v ∈ D, out′(v) = out(v).

In this definition, we ask the network to detect the termination of the computation (in the sense of the out

value that is computed), but not to detect the termination of that detection. We have at least one vertex that
detects that the out values are final and then it can perform a broadcast of Term. This broadcast is performed
by an “observer algorithm” whose termination we do not consider.

6.2 Some Useful Properties

Definition 18. Let F be a digraph family. We denote by F↓ the family of digraphs that are covered by a digraph
of F : F↓ = {D′ | ∃D ∈ F ,D is a covering of D′}.

Note that F is a subset of F↓. We have:

Lemma 19. Let R be a relabelling system. If R is noetherian on F , it is also noetherian on F↓.

We now present the fundamental lemma, due to Angluin [Ang80], connecting coverings and locally generated
relabelling relations. It states that whenever D is a covering of D′, every relabelling step in D′ can be lifted to a
relabelling sequence in D, which is compatible with the covering relation.

Lemma 20 (Lifting Lemma). Let R be a locally generated relabelling relation and let D be a covering of D′

via γ. If D′ R∗ D′1 then there exists D1 such that D R∗ D1 and D1 is a covering of D′1 via γ.

Quasi-coverings have been introduced to study the problem of the detection of the termination in [MMW97].
The idea behind them is to enable the partial simulation of local computations on a given digraph in a restricted
area of a larger digraph. The restricted area where we can perform the simulation will shrink while the number
of simulated steps increases. The following lemma makes precise how much the radius shrinks when one step of
simulation is performed :

Lemma 21 (Quasi-Lifting Lemma). Let R be a locally generated relabelling relation and let D be a quasi-
covering of D′ of radius r via γ. Moreover, let D′ R D′1. Then there exists D1 such that D R∗ D1 and D1 is a
quasi-covering of radius r − 2 of D′1.

6.3 The Main Result

Let G be a recursive family of labelled graphs equipped with a port numbering. Let F be the family of labelled
digraphs obtained from G and defined by: F = {D | ∃G ∈ G and D = Ĝ}. Let R be a noetherian digraph
relabelling relation on arcs, now we can state the characterization for the existence of an equivalent relation with
the observed termination detection. With the notation of this section:

Theorem 22. For family F , there exists a transformation that maps any noetherian digraph relabelling relation
on arcs R to a noetherian digraph relabelling relation on arcs with observed termination detection if and only if
there exists a recursive function r : F↓ −→ N such that for any D′ ∈ F↓, there is no strict quasi-covering of D’ of
radius r(D′) in F .

Proof. Necessary Condition. This is actually a simple corollary of the quasi-lifting lemma. We prove this by
contradiction. We suppose there exists D′ ∈ F↓ that admits strict quasi-coverings of unbounded radius in F . By
Lemma 19, R is noetherian for D’. Consider an execution of R of length l. By hypothesis, there exists D′′ ∈ F a
strict quasi-covering of D’ of radius 2l +1. By the quasi-lifting lemma, we can simulate on a ball of radius 2l +1 of
D” the execution of R on D’. At the end of this relabelling steps, there is a node in D” that is labelled Term. As
the quasi-covering D” is strict, there exists at least one node outside of the ball that has not even taken a relabelling
step of R, hence that has not written anything to out. Hence R has not the observed termination property on D”.
A contradiction.

Sufficient Condition. The main idea is to compose R with the algorithm AS. On each vertex v of D and for
each port i of v we define two counters cout(i) and cin(i) : cout(i) stores the number of basic messages sent by v
via i for R and cin(i) stores the number of messages received by v via i for R.

We use the algorithm AS of Subsection 5.1 with notation of digraphs (we use D′ instead of H). We add the
values of the counters of the vertex to the messages that GSSP sends. We add to AS for each vertex v and for each
port i the number of basic messages in the corresponding channel that we deduce from the values of the counters.

Now we consider the following termination detection condition: each channel is empty, and D’ is irreducible for
R, and there exists D ∈ F such that D is a covering of D’, and r(D′(v)) < rt(v). To test if there exists D ∈ F
such that D is a covering of D’, we enumerate always in the same order all the graphs of F by order of increasing
diameter. We denote ASR this algorithm. If R is noetherian then ASR is noetherian: as R is noetherian this implies
that the numbers of input-values for computing D’ is bounded and the result follows.
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Known Results as Corollaries. This theorem admits well known corollaries; more precisely we deduce immedi-
atly that in the asynchronous message passing model a distributed algorithm having an implicit termination may
be transformed into a distributed algorithm having an observed (explicit) termination detection for the following
families of graphs : graphs having a distinguished vertex, graphs such that each node is identified by a unique
name graphs having a known size or diameter bounds the family of connected subgraphs of grids with a sense of
direction trees. We deduce there is no observed (explicit) termination detection for : the family of rings, the family
of connected subgraphs of grids without sense of direction, the family of rings having a prime size.
New Corollaries. New corollaries are obtained from this theorem; in the asynchronous message passing model
a distributed algorithm having an implicit termination may be transformed into a distributed algorithm having
an observed (explicit) termination detection for the following families of graphs : graphs having exactly k leaders
(distinguished vertices), graphs having at least one and at most k, leaders (distinguished vertices).

For the election problem this theorem and results of [CM05] imply:

Theorem 23. For family F , there exists an election algorithm if and only if graphs of F are minimal for the
covering relation and there exists a recursive function r : F −→ N such that for any D ∈ F , there is no strict
quasi-covering of D of radius r(D) in F , except D itself.
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