Planar graphs are in 1-STRING

J. Chalopin, D. Gonçalves, P. Ochem
LaBRI, U.M.R. 5800, Université Bordeaux I
351 cours de la Libération 33405 Talence Cedex, France.
\{chalopin, goncalve,ochem\}@labri.fr

12th September 2006

Abstract

We prove that every planar graph is the intersection graph of strings in the plane, such that any two strings intersect at most once.

1 Introduction

A string σ is a curve of the plane homeomorphic to a segment. A string σ has two ends, the points of σ that are not ends of σ are internal points of σ. Two strings σ_{1} and σ_{2} intersect if they have a common point $p \in \sigma_{1} \cap \sigma_{2}$ and if going around p we successively meet $\sigma_{1}, \sigma_{2}, \sigma_{1}$, and σ_{2}. This means that two tangent strings do not intersect. Given a region τ of the plane \mathcal{P}, let $\bar{\tau}$ be the region defined by $\mathcal{P} \backslash \tau$.

In this paper, we consider intersection models for planar graphs. A string representation of a graph $G=(V, E)$ maps every vertex $v \in V$ to a string σ_{v} in the plane such that any two vertices are adjacent if and only if their corresponding strings intersect at least once. A graph belongs to the graph class STRING if and only if it admits a string representation. Similarly, a segment representation of a graph G is a string representation of G in which the strings are segments. A graph belongs to the graph class $S E G$ if and only if it admits a segment representation.

These notions were introduced in 1976 by Ehrlich et al. [4], who proved the following:
Theorem 1 [4] Planar graphs are in STRING.
In his thesis, Scheinerman [10] conjectures a stronger result:

Conjecture 1 [10] Planar graphs are in SEG.

Kratochvíl and Matoušek [8] obtained many interesting results about SEG and related graph classes. Independently, Hartman et al. [1] and de Fraysseix et al. [5] proved Conjecture 1 for bipartite planar graphs. Castro et al. [2] proved Conjecture 1 for triangle-free planar graphs. In [7], Grötzsch proved that triangle-free planar graphs are 3-colorable. Observe that, since parallel segments never intersect, a set of parallel segments in a segment representation of a graph induces a stable set of vertices. The construction in [1, 5] (resp. [2]) has the nice property that there are only 2 (resp. 3) possible directions for the segments. So the
construction induces a 2 -coloring (resp. 3-coloring) of G. In [11], West proposed a stronger version of Conjecture 1 in which only 4 directions are allowed.

Notice that two segments intersect at at most one point, whereas in the construction of Theorem 1, strings may intersect twice. We make another step towards Conjecture 1 by proving that every planar graph admits a 1 -string representation, that is a string representation such that any two strings intersect at most once. A graph belongs to the graph class 1-STRING if and only if it admits a 1 -string representation.

Theorem 2 Planar graphs are in 1-STRING.
This answers an open problem of Ossona de Mendez and de Fraysseix [9], which was also mentionned by Kratochvíl.

2 Preliminaries

2.1 Restriction to triangulations

Lemma 1 Every planar graph is the induced subgraph of some planar triangulation.
Proof. Let G be a planar graph embedded in the plane, i.e. a plane graph. The graph $h(G)$ is obtained from G by adding in every face f of G a new vertex v_{f} adjacent to every vertex incident to f in G. Notice that $h(G)$ is also a plane graph and that G is an induced subgraph of $h(G)$. Moreover $h(G)$ is connected, $h(h(G))$ is 2-connected, and $h(h(h(G)))$ is a triangulation.

Since 1-STRING is a graph class defined by an intersection model, it is closed under taking induced subgraphs. By Lemma 1, it is thus sufficient to prove Theorem 2 for triangulations.

2.2 Definitions

In an embedded planar graph G, the unbounded face of G is called the outer-face and every other face of G is an inner-face of G. Given an embedded planar graph G, an outer-vertex (resp. outer-edge) of G is a vertex (resp. edge) of G incident to the outer face. The other vertices (resp. edges) of G are called inner-vertices (resp. inner-edges) of G. The set of outer-vertices (resp. outer-edges, inner-vertices, and inner-edges) of G is denoted by $V_{o}(G)$ (resp. $E_{o}(G), V_{i}(G)$, and $\left.E_{i}(G)\right)$. A near-triangulation is a planar graph in which all the inner-faces are triangles. An edge $u v$ is a chord of some near-triangulation T if u and v are outer-vertices of T and $u v$ is an inner-edge.

Definition 1 Let $G=(V, E)$ be a graph with a 1-string representation Σ. Given a triplet (a, b, c) of vertices of G, an (a, b, c)-region ρ is a region of the plane homeomorphic to the disk and such that (see Figure 1):

- for any vertex $v \neq a, b$, and c we have $\rho \cap \sigma_{v}=\emptyset$
- $\rho \cap \sigma_{a} \cap \sigma_{b}=\emptyset, \rho \cap \sigma_{b} \cap \sigma_{c}=\emptyset$, and $\rho \cap \sigma_{c} \cap \sigma_{a}=\emptyset$,
- $\rho \cap \sigma_{b}$ and $\rho \cap \sigma_{c}$ are connected,
- $\rho \cap \sigma_{a}$ has two components,
- $\left|\rho \cap \sigma_{a}\right|=3,\left|\rho \cap \sigma_{b}\right|=2$, and $\left|\rho \cap \sigma_{c}\right|=2$,
- in the boundary of ρ we successively intersect $\sigma_{a}, \sigma_{a}, \sigma_{b}, \sigma_{b}, \sigma_{c}, \sigma_{a}$, and σ_{c}.

Figure 1: An (a, b, c)-region $\rho_{a b c}$.
Note that according to this definition, in an (a, b, c)-region ρ, one end of the string σ_{a} is in ρ. When the vertices a, b, and c are not mentionned, we call these regions face-regions. Notice that by definition, an (a, b, c)-region, an (a, c, b)-region, a ($b, a, c)$-region, a (b, c, a) region, a (c, a, b)-region, and a (c, b, a)-region are pairwise distinct. An region τ of the plane cannot be an (a, b, c)-region and a (c, b, a)-region for example. A region ρ of the plane is an $\{a, b, c\}$-region if it is an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region, a (c, a, b)-region, or a (c, b, a)-region.

Definition $2 A$ strong 1-string representation of a near-triangulation T is a pair (Σ, R) such that:
(1) Σ is a 1-string representation of T,
(2) R is a set of disjoint face-regions such that for every inner-face abc of T, R contains an $\{a, b, c\}$-region.

Definition 3 A partial strong 1-string representation of a near-triangulation T is a triplet ($\Sigma, R, X)$ such that
(1) Σ is a 1-string representation of $T \backslash X$ where $X \subseteq E_{o}(T)$ is a set of outer-edges,
(2) R is a set of face-regions such that for every inner-face abc of T, R contains an $\{a, b, c\}$ region.

Note that in a partial strong 1 -string representation (Σ, R, X) of a near-triangulation T, some outer-edges of T do not appear as intersections of two strings of Σ, but for each inner-face of T, there is a corresponding face-region in R.

Definition $4 A$ separating 3 -cycle C of an embedded near-triangulation T is a cycle of length 3 such that some vertices of T lie inside C whereas other vertices are outside.

It is well known that a triangulation is 4 -connected if and only if it contains no separating 3 -cycle.

Definition 5 A W-triangulation is a 2-connected near-triangulation containing no separating 3-cycle.

In particular, any 4 -connected triangulation is a W-triangulation. Notice that a Wtriangulation has no cut vertex, so its outer-edges induce a cycle. The following lemma gives a sufficient condition for a subgraph of a W-triangulation T to be a W-triangulation.

Lemma 2 Let T be a W-triangulation and consider a cycle C of T. The subgraph defined by C and the edges inside C (according to the embedding of T) is a W-triangulation.

Proof. Consider the near-triangulation T^{\prime} induced by some cycle C of T and the edges inside C. By definition, T has no separating 3 -cycle and consequently T^{\prime} does not have any separating 3 -cycle. It is then sufficient to show that T^{\prime} is 2 -connected, i.e. T does not have any cut vertex. Consider a vertex v of T, all the faces incident to v are triangles, except at most one (the outer face). Consequently, there exists a path that contains all the neighbors of v, and so $T \backslash v$ is connected.

Definition $6 A W$-triangulation T is 3 -bounded if the outer-boundary of T is the union of three paths $\left(a_{1}, \ldots, a_{p}\right),\left(b_{1}, \ldots, b_{q}\right)$, and $\left(c_{1}, \ldots, c_{r}\right)$ that satisfy the following conditions (see Figure 2):

- $a_{1}=c_{r}, b_{1}=a_{p}$, and $c_{1}=b_{q}$.
- the paths are non-trivial, i.e. $p \geq 2, q \geq 2$, and $r \geq 2$.
- there exists no chord $a_{i} a_{j}$ (resp. $b_{i} b_{j}, c_{i} c_{j}$), i.e. an edge $a_{i} a_{j}$ (resp. $b_{i} b_{j}, c_{i} c_{j}$) with $1<i+1<j \leq p$ (resp. $1<i+1<j \leq q, 1<i+1<j \leq r)$.

This 3-boundary of T will be denoted by $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$.

Figure 2: 3-boundary of T.
In the following, we will use the order on the three paths and their directions, i.e. $\left(a_{1}, \ldots, a_{p}\right)$ $\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ will be different from $\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)-\left(a_{1}, \ldots, a_{p}\right)$ and $\left(a_{p}, \ldots, a_{1}\right)$ $\left(c_{r}, \ldots, c_{1}\right)-\left(b_{q}, \ldots, b_{1}\right)$. The following property describes the shape of a partial strong 1 -string representation of a 3 -bounded W -triangulation.

Property $1 A W$-triangulation T, 3 -bounded by $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$, admits a partial strong 1-string representation (Σ, R, X) contained in a region $\tau(\Sigma \cup R \subset \tau)$ that satisfies the following properties:
(a) $X=E_{o}(G) \backslash\left\{a_{1} a_{2}\right\}$,
(b) τ is a region of the plane homeomorphic to the disk,
(c) for each inner-vertex v, the intersection of σ_{v} with the boundary of τ is empty,
(d) for each outer-vertex v, the intersection of σ_{v} with the boundary of τ is a set containing at most two specific points, the ends of σ_{v},
(e) in the boundary of τ we successively meet the ends of $\sigma_{a_{2}}, \sigma_{a_{3}}, \ldots, \sigma_{a_{p}}, \sigma_{b_{1}}, \ldots, \sigma_{b_{q}}, \sigma_{c_{1}}, \ldots, \sigma_{c_{r}}$.

Notice that for condition (e), we do not precise whether the boundary is traversed clockwise or anticlockwise. This is not necessary since by an axial symmetry of (Σ, R, X) we obtain ($\Sigma^{\prime}, R^{\prime}, X$) which has the same properties as (Σ, R, X) with respect to the opposite direction. Note that since $a_{p}=b_{1}, b_{q}=c_{1}$, and $c_{r}=a_{1}$, both ends of $\sigma_{b_{1}}$ and $\sigma_{c_{1}}$ lie on the boundary of τ, but it is not the case for $\sigma_{a_{1}}$.

Figure 3: Property 1
Due to its length, the proof of Property 1 is in Appendix A.

3 Proof in the general case

Theorem 3 Each embedded triangulation T admits a strong 1-string representation (Σ, R).
Proof. We prove this result by induction on the number of separating 3 -cycles. Notice that any triangulation T is 3 -connected, and that if T has no separating 3 -cycle, then T is 4 connected and is a W-triangulation. Consequently, if T is a 4 -connected triangulation whose outer-vertices are a, b, and c, then T is a 3 -bounded W -triangulation and $(a, b)-(b, c)-(c, a)$ is a 3-boundary of T. By Property $1, T$ admits a partial strong 1 -string representation (Σ, R, X), with $X=\{b c, c a\}$, that is contained in a region $\tau(\Sigma \cup R \subset \tau)$. Furthermore, in the boundary of τ we successively meet the ends of $\sigma_{b}, \sigma_{b}, \sigma_{c}, \sigma_{c}, \sigma_{a}$. To obtain a strong 1 -string representation of T, it is sufficient (since $X=\{b c, c a\}$) to extend σ_{a}, σ_{b}, and σ_{c} outside of τ in order to obtain an intersection with σ_{a} and σ_{c} and with σ_{b} and σ_{c}, as depicted on Figure 4.

Suppose now that T is a triangulation that contains at least one separating 3 -cycle. Consider a separating 3 -cycle (a, b, c) such that there is no separating 3 -cycle in the subgraph T^{\prime} that lies inside the cycle (a, b, c) (according to the embedding of T). Note that T^{\prime} is a 4 -connected triangulation.

Let T_{1} be the triangulation obtained by removing all the vertices that lie inside the cycle (a, b, c). Let T_{2} be the subgraph of T induced by all the vertices of T that lie inside the cycle (a, b, c). Note that the vertices a, b, and c belong to T_{1} but not to T_{2}. In T_{1}, the cycle (a, b, c) is a face of the triangulation and is no more a separating 3 -cycle. By induction hypothesis, T_{1} admits a strong 1 -string representation $\left(\Sigma_{1}, R_{1}\right)$. In the strong 1 -string representation $\left(\Sigma_{1}, R_{1}\right)$

Figure 4: Strong 1-string-representation of T from $(\Sigma, R, X) \subset \tau$.
of T_{1}, there exists a face-region $\rho_{a b c}$ corresponding to the face $a b c$. W.l.o.g., say that $\rho_{a b c}$ is an (a, b, c)-region, as depicted on Figure 5.

Figure 5: In the strong 1-string representation $\left(\Sigma_{1}, R_{1}\right)$ of T_{1}, the (a, b, c)-region $\rho_{a b c}$.
Since T^{\prime} is a triangulation, for each vertex v of T^{\prime}, there exists a cycle $\left(v_{1}, \ldots, v_{n}\right)$ in T^{\prime} whose vertices are exactly the neighbors of v. Suppose that the vertex a (resp. b and c) has exactly one neighbor v that lies inside (a, b, c). Then there exists a cycle (b, v, c) (resp. (a, v, c) and $(a, v, b))$ in T^{\prime} and consequently v is a neighbor of a, b, and c in T^{\prime}. Suppose that there exists another vertex w in T^{\prime}, then w lies either inside the cycle (a, v, b), inside (a, v, c), or inside (b, v, c) and then one of this cycle is a separating 3 -cycle. This is impossible by definition of the cycle (a, b, c). So we can distinguish two cases (see Figure 6), (A) the case where the vertices a, b, and c have a common neighbor inside (a, b, c) and where $T^{\prime}=K_{4}$, and (B) the case where each of the vertices a, b, and c have at least two neighbors inside (a, b, c).

Case (A): The vertices a, b, and c have a common neighbor inside (a, b, c) and $T^{\prime}=K_{4}$. To obtain a strong 1-string representation (Σ, R) of T, we need to define a string σ_{v} that corresponds to v. Since $E(T) \backslash E\left(T_{1}\right)=\{v a, v b, v c\}$ this string σ_{v} has to intersect the strings $\sigma_{a}, \sigma_{b}, \sigma_{c}$ that corresponds respectively to the vertices a, b, c. Moreover, we also need to define three disjoint face-regions $\rho_{a c v}, \rho_{v b c}, \rho_{v a b}$ that correspond respectively to the faces $a c v, v b c, v a b$. In our construction, this string σ_{v} and these three face-regions $\rho_{a c v}, \rho_{v b c}, \rho_{v a b}$

Figure 6: The cases (A) and (B).
are drawn inside the region $\rho_{a b c}$. This construction appears on Figure 7 .
Since $\left(\Sigma_{1}, R_{1}\right)$ is a strong 1 -string representation of T_{1} and since $\sigma_{v}, \rho_{a c v}, \rho_{v b c}, \rho_{v a b}$ are drawn inside $\rho_{a b c},\left(\Sigma \cup\left\{\sigma_{v}\right\}, R \backslash\left\{\rho_{a b c}\right\} \cup\left\{\rho_{a c v}, \rho_{v b c}, \rho_{v a b}\right\}\right.$ is a strong 1-string representation of T.

Figure 7: Case (A): Modifications inside $\rho_{a b c}$.

Case (B): Each of the vertices a, b, and c have at least two neighbors inside (a, b, c). Suppose now that a (resp. b and c) has at least two neighbors in T^{\prime} that lie inside the cycle (a, b, c).

There exists a cycle $\left(c, a_{1}, \ldots, a_{p}, b\right)\left(\right.$ resp. $\left(a, b_{1}, \ldots, b_{q}, c\right)$ and $\left.\left(b, c_{1}, \ldots, c_{r}, a\right)\right)$ in T^{\prime} whose vertices are exactly the neighbors of a (resp. b and c). We already know that $p>1, q>1, r>1$ and that $a_{p}=b_{1}, b_{q}=c_{1}$, and $c_{r}=a_{1}$. Moreover, since b_{1} and c (resp. c_{1} and a, and a_{1} and b) are the only two common neighbors of a and b (resp. b and c, and a and c) in T^{\prime} (else there would be a separating 3 -cycle) then ($a_{1}, \ldots, a_{p}=b_{1}, \ldots, b_{q}=c_{1}, \ldots, c_{r}=a_{1}$) is a cycle. This implies from Lemma 2 that T_{2} is a W-triangulation.

Suppose that there exists an edge $a_{i} a_{j}$ (resp. $b_{i} b_{j}, c_{i} c_{j}$) with $1<i+1<j \leq p$ (resp. $1<i+1<j \leq q, 1<i+1<j \leq r)$. Then, the cycle $\left(a, a_{i}, a_{j}\right)\left(\right.$ resp. $\left.\left(b, b_{i}, b_{j}\right),\left(c, c_{i}, c_{j}\right)\right)$ would be a separating 3 -cycle of T^{\prime}. Consequently, T_{2} is a 3 -bounded W -triangulation and since the face region $\rho_{a b c}$ in $\left(\Sigma_{1}, R_{1}\right)$ is an (a, b, c)-region (not an (b, a, c) or an (c, a, b)-region), let us consider the 3 -boundary $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ of T_{2}. With respect to this 3 -boundary, T_{2} has a partial strong 1 -string representation $\left(\Sigma_{2}, R_{2}, X_{2}\right)$, with $X_{2}=E_{o} \backslash\left\{a_{1} a_{2}\right\}$ (c.f. Property 1). Let τ_{2} be the region of the plane homeomorphic to the disk containing this representation.

Let $\sigma_{a}^{1}, \sigma_{b}^{1}, \sigma_{c}^{1}$ be the strings of Σ_{1} corresponding respectively to the vertices a, b, and c in the strong 1 -string representation of the triangulation T_{1}. By symmetry, one can suppose that in the boundary of $\rho_{a b c}$, one can find anticlockwise $\sigma_{a}^{1}, \sigma_{a}^{1}, \sigma_{b}^{1}, \sigma_{b}^{1}, \sigma_{c}^{1}, \sigma_{a}^{1}, \sigma_{c}^{1}$.

Let $\sigma_{a_{2}}^{2}, \ldots, \sigma_{a_{p}}^{2}=\sigma_{b_{1}}^{2}, \sigma_{c_{1}}^{2}, \ldots, \sigma_{c_{r}}^{2}=\sigma_{a_{1}}^{2}$ be the strings corresponding respectively to the vertices $a_{2}, \ldots, a_{p}=b_{1}, \ldots b_{q}=c_{1}, \ldots c_{r}=a_{1}$ in the partial strong 1 -string representation of T_{2}. Again, by symmetry, one can suppose that in the boundary of τ_{2} one can find anticlockwise the ends of $\sigma_{a_{2}}^{2}, \ldots, \sigma_{a_{p}}^{2}, \sigma_{b_{1}}^{2}, \ldots, \sigma_{b_{q}}^{2}, \sigma_{c_{1}}^{2}, \ldots, \sigma_{c_{r}}^{2}$. W.l.o.g., one can suppose that one can insert the region τ_{2} in the center of the face-region $\rho_{a b c}$ (see Figure 8).

To obtain a strong 1 -string representation (Σ, R) of T, we need to extend the strings $\sigma_{a_{2}}^{2}, \ldots, \sigma_{a_{p}}^{2}, \sigma_{b_{1}}^{2}, \ldots, \sigma_{b_{q}}^{2}, \sigma_{c_{1}}^{2}, \ldots, \sigma_{c_{r}}^{2}$ to obtain intersections that correspond to the edges in the set $E(T) \backslash\left(E\left(T_{1}\right) \cup\left(E\left(T_{2}\right) \backslash X_{2}\right)\right)=\left\{a a_{i} \mid i \in[1, p]\right\} \cup\left\{b b_{i} \mid i \in[1, q]\right\} \cup\left\{c c_{i} \mid i \in[1, r]\right\} \cup\left\{a_{i} a_{i+1} \mid\right.$ $i \in[2, p-1]\} \cup\left\{b_{i} b_{i+1} \mid i \in[1, q-1]\right\} \cup\left\{c_{i} c_{i+1} \mid i \in[1, r-1]\right\}$. Let us denote $\sigma_{a_{2}}, \ldots, \sigma_{a_{p}}=$ $\sigma_{b_{1}}, \sigma_{c_{1}}, \ldots, \sigma_{c_{r}}=\sigma_{a_{1}}$ the extensions of the strings $\sigma_{a_{2}}^{2}, \ldots, \sigma_{a_{p}}^{2}=\sigma_{b_{1}}^{2}, \sigma_{c_{1}}^{2}, \ldots, \sigma_{c_{r}}^{2}=\sigma_{a_{1}}^{2}$. We also need to define face regions for the faces in the set $\left\{a b b_{1}, a c a_{1}, b c c_{1}\right\} \cup\left\{a a_{i} a_{i+1} \mid i \in\right.$ $[1, p-1]\} \cup\left\{b b_{i} b_{i+1} \mid i \in[1, q-1]\right\} \cup\left\{c c_{i} c_{i+1} \mid i \in[1, r-1]\right\}$.

The construction of (Σ, R) appears on Figure 8. Let $\Sigma=\Sigma_{1} \cup \Sigma_{2} \backslash\left\{\sigma_{a_{2}}^{2}, \ldots, \sigma_{a_{p}}^{2}, \sigma_{b_{2}}^{2}, \ldots, \sigma_{b_{q}}^{2}\right.$, $\left.\sigma_{c_{2}}^{2}, \ldots, \sigma_{c_{r}}^{2}\right\} \cup\left\{\sigma_{a_{2}}, \ldots, \sigma_{a_{p}}, \sigma_{b_{2}}, \ldots, \sigma_{b_{q}}, \sigma_{c_{2}}, \ldots, \sigma_{c_{r}}\right\}$ and $R=R_{1} \backslash\left\{\rho_{a b c}\right\} \cup R_{2} \cup\left\{\rho_{a c a_{1}}, \rho_{c_{1} b c}\right.$, $\left.\rho_{b_{1} a b}, \rho_{a_{2} a_{1} a}\right\} \cup\left\{\rho_{a_{i+1} a a_{i}} \mid i \in[2, p-1]\right\} \cup\left\{\rho_{b_{i+1} b b_{i}} \mid i \in[1, q-1]\right\} \cup\left\{\rho_{c_{i+1} c c_{i}} \mid i \in[1, r-1]\right\}$.

Since (Σ_{1}, R_{1}) is a strong 1 -string representation of T_{1} and $\left(\Sigma_{2}, R_{2}, X_{2}\right)$ is a partial strong 1 -string representation of T_{2}, it is clear that (Σ, R) is a strong 1 -string representation of T.

Figure 8: Case (B): Modifications inside $\rho_{a b c}$.
Consequently, every triangulation admits a strong 1-string representation, which proves Theorem 3 and then Theorem 2.

4 Conclusion

One can wonder whether the method we use in this paper that is based on Whitney's decomposition can be used to prove that any planar graph admits a segment representation. This would need strong conditions on the way (a, b, c)-region are represented to use the same
inductive scheme.
Another interesting question is whether this result holds for other surfaces. For exemple, does any graph embedded in an oriented surface \mathbb{S}_{g} have a 1 -string representation in \mathbb{S}_{g} ?

References

[1] I.B.-A. Hartman, I. Newman, R. Ziv. On grid intersection graphs. Discrete Math., 87(1):41-52, 1991.
[2] N. de Castro, F. Cobos, J.C. Dana, A. Márquez, and M. Noy. Triangle-free planar graphs as segment intersection graphs. J. Graph Algorithms Appl., 6(1):7-26, 2002.
[3] J. Czyzowicz, E. Kranakis, and J. Urrutia. A simple proof of the representation of bipartite planar graphs as the contact graphs of orthogonal straight line segments. Inform. Process. Lett., 66(3):125-126, 1998.
[4] G. Ehrlich, S. Even, and R.E. Tarjan. Intersection Graphs of Curves in the Plane. J. Combin. Theory. Ser. B 21:8-20, 1976.
[5] H. de Fraysseix, P. Ossona de Mendez, and J. Pach. Representation of planar graphs by segments. Intuitive geometry (Szeged, 1991), Colloq. Math. Soc. János Bolyai, 63:109117, 1994.
[6] D. Gonçalves. Edge-Partition of Planar Graphs into two Outerplanar Graphs. Proceedings of the 37th Annual ACM Symposium on Theory of Computing, 504-512, 2005.
[7] H. Grötzsch. Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel. Math. Nat. Reihe, 8:390-408, 1959.
[8] J. Kratochvíl and J. Matoušek. Intersection Graphs of Segments. J. Combin. Theory. Ser. B, 62:180-181, 1994.
[9] P. Ossona de Mendez and H. de Fraysseix. Intersection Graphs of Jordan Arcs. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 49:11-28, 1999.
[10] E.R. Scheinerman. Intersection classes and multiple intersection parameters of graphs. PhD Thesis, Princeton University, 1984.
[11] D. West. Open problems. SIAM J. Discrete Math. Newslett., 2(1):10-12, 1991.
[12] H. Whitney. A theorem on graphs. Ann. of Math. (2), 32(2):378-390, 1931.

A Proof of Property 1.

Before proving Property 1, we give some definitions and we present Property 2. Consider a 3-bounded W -triangulation $T \neq K_{3}$ whose boundary is $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ such that T does not contain any chord $a_{i} b_{j}$ or $a_{i} c_{j}$.

Let $D \subseteq V_{i}(T)$ be the set of inner-vertices of T that are adjacent to some vertex a_{i} with $i>1$.

Since T has at least 4 vertices, no separating 3 -cycle, and no chord $a_{i} a_{j}, a_{i} b_{j}$, or $a_{i} c_{j}$, then a_{1} and a_{2} (resp. b_{1} and b_{2}) have exactly one common neighbor in $V(T) \backslash\left\{c_{1}\right\}$ (resp. $\left.V(T) \backslash\left\{a_{1}\right\}\right)$ that will be denoted a (resp. d_{1}).

Since there is no chord $a_{i} a_{j}, a_{i} b_{j}$, or $a_{i} c_{j}$, for each vertex a_{i} with $i \in[2, p-1]$ (resp. a_{p}), all the neighbors of a_{i} (resp. a_{p}) except a_{i-1} and a_{i+1} (resp. a_{p-1} and b_{2}) are in D. Since for each $i \in[2, p]$, there is a path between the neighbors of a_{i}, and since the vertices a_{i} and a_{i+1} have a common neighbor in D, then the set D induces a connected graph. Since a is in D, the set $D \cup\left\{a_{1}\right\}$ also induces a connected graph.

The adjacent path of T with respsect to the 3 -boundary $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ is the shortest path linking d_{1} and a_{1} in $T\left[D \cup\left\{a_{1}\right\}\right]$ (the graph induced by $D \cup\left\{a_{1}\right\}$). This path will be denoted $\left(d_{1}, d_{2}, \ldots, d_{s}, a_{1}\right)$.

Observation 1 There exists neither an edge $d_{i} d_{j}$ with $2 \leq i+1<j \leq s$, nor an edge $a_{1} d_{i}$ with $1 \leq i<s$. Otherwise $\left(d_{1}, d_{2}, \ldots d_{s}\right)$ is not the shortest path between d_{1} and a_{1}.

Figure 9: the adjacent path of T and the graph $T_{d_{2} a_{5}}$.
For each edge $d_{x} a_{y} \in E(T)$ with $x \in[1, s]$ and $y \in[2, p]$, we define the graph $T_{d_{x} a_{y}}$. Since $D \subseteq V_{i}(T), C=\left(a_{1}, d_{s}, \ldots, d_{x}, a_{y}, \ldots, a_{p}, b_{2}, \ldots, b_{q}, c_{2}, \ldots, c_{r}\right)$ is a cycle. The graph $T_{d_{x} a_{y}}$ is the graph lying inside the cycle C (see Figure 9).

From Lemma 2, the graph $T_{d_{x} a_{y}}$ is a W-triangulation.
Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)$ $\left(c_{1}, \ldots, c_{r}\right)$ that does not have any chord $a_{i} b_{j}$ or $a_{i} c_{j}$ and with an adjacent path $\left(d_{1}, d_{2}, \ldots, d_{s}, a_{1}\right)$.

For each edge $d_{x} a_{y} \in E(T)$, the graph $T_{d_{x} a_{y}}$ admits a partial strong 1-string representation (Σ, R, X) contained in a region $\tau(\Sigma \cup R \subset \tau)$ that satisfies the following properties:
(a) $X=E_{o}(G) \backslash\left\{d_{x} a_{y}\right\}$,
(b) τ is a region of the plane homeomorphic to the disk,
(c) for each inner-vertex v, the intersection of σ_{v} with the boundary of τ is empty,
(d) for each outer-vertex v different from d_{x} and a_{y}, the intersection of σ_{v} with the boundary of τ is a set containing at most two specific points, the ends of σ_{v},
(e) the intersection of d_{x} with the boundary of τ is a set containing exactly two internal points of $\sigma_{d_{x}}$. Furthermore, $\sigma_{d_{x}} \cap \bar{\tau}$ is connected.
(f) the intersection of a_{y} with the boundary of τ is a set containing exactly two internal points of $\sigma_{a_{y}}$ and at least one end of $\sigma_{a_{y}}$ (two when $a_{y}=a_{p}$). Furthermore, $\sigma_{a_{y}} \cap \bar{\tau}$ is connected.
(g) in the boundary of τ we successively meet the ends of $\sigma_{a_{y}}, \ldots, \sigma_{a_{p}}, \sigma_{b_{1}}, \ldots, \sigma_{b_{q}}, \sigma_{c_{1}}, \ldots, \sigma_{c_{r}}$, $\sigma_{d_{s}}, \ldots, \sigma_{d_{x+1}}$, and then we successively meet internal points of $\sigma_{d_{x}}, \sigma_{a_{y}}, \sigma_{d_{x}}$, and $\sigma_{a_{y}}$.

The last condition implies that $\sigma_{d_{x}}$ and $\sigma_{a_{y}}$ intersect inside $\bar{\tau}$.

Figure 10: Property 2.
We now prove Properties 1 and 2.
Theorem 4 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. $T_{d_{x} a_{y}}$).
This theorem implies Property 1 which is used in the proof of Theorem 2. Although Property 2 is not used in the proof of Theorem 2, we need it to prove Property 1. Indeed, we prove these two properties by doing a "crossed" induction.
Proof. The proof of Theorem 4 uses a decomposition of triangulations defined by Whitney in [12] and recently used by the second author in [6]. We prove Theorem 4 by induction on the number of edges of T or $T_{d_{x} a_{y}}$. For the initial step we prove the following lemma.

Lemma 3 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. $T_{d_{x} a_{y}}$) with $|E(T)| \leq 3$ (resp. $\left|E\left(T_{d_{x} a_{y}}\right)\right| \leq 3$).

Proof. There is only one W-triangulation with at most 3 edges, the graph K_{3}. This implies that there is no W -triangulation $T_{d_{x} a_{y}}$ with at most 3 edges, so Property 2 obviously holds for any W-triangulation $T_{d_{x} a_{y}}$ with at most 3 edges.

Figure 11: Initial case for Theorem 4.

For Property 1, we have to consider all the possibles 3-boundaries of K_{3}. All these 3boundaries are equivalent. Let $V\left(K_{3}\right)=\{a, b, c\}$ and consider the 3-boundary $(a, b)-(b, c)$ (c, a). In the Figure 11 there is a partial strong 1 -string representation (Σ, R, X) of K_{3} contained in τ and with $\Sigma=\left\{\sigma_{a}, \sigma_{b}, \sigma_{c}\right\}, R=\left\{\rho_{a b c}\right\}$, and $X=\{b c, a c\}$.

We now prove the inductive step with the following lemma.
Lemma 4 For any integer $m>3$, Property 1 holds for any W-triangulation T such that $|E(T)|<m$ and Property 2 holds for any W-triangulation $T_{d_{x} a_{y}}$ such that $\left|E\left(T_{d_{x} a_{y}}\right)\right|<m$, then Property 1 and Property 2 respectively holds for any W-triangulation T or $T_{d_{x} a_{y}}$ such that $|E(T)|=m$ and $\left|E\left(T_{d_{x} a_{y}}\right)\right|=m$.

Proof. We first prove that if the conditions of Lemma 4 are satisfied, then Property 1 holds for any W -triangulations T such that $|E(T)|=m$. We then prove that it is also the case for Property 2 with any W-triangulations $T_{d_{x} a_{y}}$ such that $\left|E\left(T_{d_{x} a_{y}}\right)\right|=m$.

Case 1: Proof of Property 1 for a W-triangulation T such that $|E(T)|=m$. Let $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ be the 3-boundary of T considered. We distinguish different cases according to the existence of a chord $a_{i} b_{j}$ or $a_{i} c_{j}$ in T. We successively consider the case where there is a chord $a_{1} b_{j}$, with $1<j<q$, the case where there is a chord $a_{i} b_{j}$, with $1<i<p$ and $1<j \leq q$, and the case where there is a chord $a_{i} c_{j}$, with $1<i \leq p$ and $1<j<r$. We then finish with the case where there is no chord $a_{i} b_{j}$, with $1 \leq i \leq p$ and $1 \leq j \leq q$ (by definition of 3-boundary, T has no chord $a_{1} b_{q}, a_{i} b_{1}$, or $a_{p} b_{j}$), and no chord $a_{i} c_{j}$, with $1 \leq i \leq p$ and $1 \leq j \leq r$ (by definition of 3 -boundary, T has no chord $a_{p} c_{1}, a_{i} c_{r}$, or $a_{1} c_{j}$).

Figure 12: Case 1.1: Chord $a_{1} b_{i}$.

Case 1.1: There is a chord $a_{1} b_{j}$, with $1<j<q$ (see Figure 12). Let T_{1} (resp. T_{2}) be the subgraph of T that lies inside the cycle ($a_{1}, b_{i}, \ldots, b_{q}, c_{2}, \ldots, c_{r}$) (resp. $\left(a_{1}, a_{2}, \ldots, b_{1}, b_{i}, a_{1}\right)$). By Lemma 2, T_{1} and T_{2} are W -triangulations. Since T has no chord $a_{x} a_{y}, b_{x} b_{y}$, or $c_{x} c_{y},\left(b_{i} c_{r}\right)$ $\left(c_{r}, \ldots, c_{1}\right)-\left(b_{q}, \ldots, b_{i}\right)$ (resp. $\left.\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{i}\right)-\left(b_{i} a_{1}\right)\right)$ is a 3 -boundary of T_{1} (resp. T_{2}). Furthermore, since $a_{1} a_{2} \notin E\left(T_{1}\right)$ (resp. $c_{1} c_{2} \notin E\left(T_{2}\right)$), T_{1} (resp. T_{2}) has less edges then T, Property 1 holds for T_{1} and T_{2} with the mentioned 3-boundaries. Let (Σ_{1}, R_{1}, X_{1}) (resp. $\left(\Sigma_{2}, R_{2}, X_{2}\right)$) be the partial strong 1 -string representations contained in the region τ_{1} (resp. τ_{2}) obtained for T_{1} (resp. T_{2}). In Figure 13 we show how to associate this two representations to obtain (Σ, R, X), a partial strong 1 -string representation of T that satisfies Property 1 . Notice that the boundary of τ_{1} is traversed anticlockwise and the boundary of τ_{2} is traversed clockwise.

Figure 13: Case 1.1: (Σ, R, X).
We can easily check that (Σ, R, X) is as expected:

- Σ is a 1-string representation: Since $\left.\left(E\left(T_{1}\right) \backslash X_{1}\right) \cap E\left(T_{2}\right) \backslash X_{2}\right)=\emptyset$, there is no pair of strings cossing each other more than once.
- Σ is a 1 -string representation of $T \backslash X$ with $X=E_{o}(T) \backslash\left\{a_{1} a_{2}\right\}$: Indeed, $\left(T_{1} \backslash X_{1}\right) \cup$ $\left.T_{2} \backslash X_{2}\right)=T \backslash X$.
- (Σ, R) is "strong": Each inner-face of T is an inner-face in T_{1} or T_{2} and the regions τ_{1} and τ_{2} are disjoint (so the face-regions in τ_{1} are disjoint from the face-regions in τ_{2}).
- We see in Figure 13 that conditions (b), (c), (d), and (e) of Property 1 are satisfied.

Figure 14: Case 1.2: Chord $a_{i} b_{j}$.
Case 1.2: There is a chord $a_{i} b_{j}$, with $1<i<p$ and $1<j \leq q$ (see Figure 14). If there are several chords $a_{i} b_{j}$, we consider one which maximizes j, i.e. such that there is no
chord $a_{i} b_{k}$ with $j<k \leq q$. Let T_{1} (resp. T_{2}) be the subgraph of T that lies inside the cycle $\left(a_{1}, a_{2}, \ldots, a_{i}, b_{j}, \ldots, b_{q}, c_{2}, \ldots, c_{r}\right)$ (resp. $\left(a_{i}, \ldots, a_{p}, b_{2}, \ldots, b_{j}, a_{i}\right)$). By Lemma 2, T_{1} and T_{2} are W -triangulations. Since T has no chord $a_{x} a_{y}, b_{x} b_{y}, c_{x} c_{y}$, or $a_{i} b_{k}$ with $k>j,\left(a_{1}, \ldots, a_{i}\right)$ $\left(a_{i}, b_{j}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$ (resp. $\left.\left(a_{i}, b_{j}\right)-\left(b_{j}, \ldots, b_{1}\right)-\left(a_{p}, \ldots, a_{i}\right)\right)$ is a 3-boundary of T_{1} (resp. T_{2}). Furthermore, since $b_{1} b_{2} \notin E\left(T_{1}\right)$ (resp. $a_{1} a_{2} \notin E\left(T_{2}\right)$), T_{1} (resp. T_{2}) has less edges then T, Property 1 holds for T_{1} and T_{2} with the mentioned 3-boundaries. Let (Σ_{1}, R_{1}, X_{1}) (resp. $\left(\Sigma_{2}, R_{2}, X_{2}\right)$) be the partial strong 1 -string representations contained in the region τ_{1} (resp. τ_{2}) obtained for T_{1} (resp. T_{2}). In Figure 15 we show how to associate this two representations to obtain (Σ, R, X), a partial strong 1 -string representation of T that satisfies Property 1 . Notice that the boundary of τ_{1} is traversed clockwise and the boundary of τ_{2} is traversed anticlockwise.

Figure 15: Case 1.2: (Σ, R, X).
As in Case 1.1, we easily check that (Σ, R, X) is correct.

Figure 16: Case 1.3: Chord $a_{i} c_{j}$.
Case 1.3: There is a chord $a_{i} c_{j}$, with $1<i \leq p$ and $1<j<r$ (see Figure 16). If there are several chords $a_{i} c_{j}$, we consider one which maximizes i, i.e. such that there is no chord $a_{k} c_{j}$ with $i<k<r$. Let T_{1} (resp. T_{2}) be the subgraph of T that lies inside the cycle $\left(a_{1}, a_{2}, \ldots, a_{i}, c_{j}, \ldots, c_{r}\right)\left(\right.$ resp. $\left.\left(c_{j}, a_{i}, \ldots, a_{p}, b_{2}, \ldots, b_{q}, c_{2}, \ldots, c_{j}\right)\right)$. By Lemma $2, T_{1}$ and T_{2} are W-triangulations. Since T has no chord $a_{x} a_{y}, b_{x} b_{y}, c_{x} c_{y}$ ou $a_{k} c_{j}$ avec $k>i,\left(a_{1}, \ldots, a_{i}\right)$ $\left(a_{i}, c_{j}\right)-\left(c_{j}, \ldots, c_{r}\right)\left(\operatorname{resp} .\left(c_{j}, a_{i}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{j}\right)\right)$ is a 3-boundary of T_{1} (resp. T_{2}). Furthermore, since $b_{1} b_{2} \notin E\left(T_{1}\right)$ (resp. $a_{1} a_{2} \notin E\left(T_{2}\right)$), T_{1} (resp. T_{2}) has less edges then T, Property 1 holds for T_{1} and T_{2} with the mentioned 3-boundaries. Let (Σ_{1}, R_{1}, X_{1}) (resp. $\left(\Sigma_{2}, R_{2}, X_{2}\right)$) be the partial strong 1 -string representations contained in the region τ_{1} (resp. τ_{2}) obtained for T_{1} (resp. T_{2}). In Figure 17 we show how to associate this two representations to obtain (Σ, R, X), a partial strong 1 -string representation of T that satisfies Property 1 .

Notice that the boundary of τ_{1} is traversed clockwise and the boundary of τ_{2} is traversed anticlockwise.

Figure 17: Case 1.3: (Σ, R, X).
As in Case 1.1, we easily check that (Σ, R, X) is correct.
Case 1.4: There is no chord $a_{i} b_{j}$, with $1 \leq i \leq p$ and $1 \leq j \leq q$, and no chord $a_{i} c_{j}$, with $1 \leq i \leq p$ and $1 \leq j \leq r$ (see Figure 18). In this case we consider the adjacent path $\left(d_{1}, \ldots, d_{s}, a_{1}\right)$ (see Figure ??) of T with respect to its 3 -boundary, $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)$ $\left(c_{1}, \ldots, c_{r}\right)$. Consider the edge $d_{s} a_{y}$, with $1<y \leq p$, which minimizes y. This edge exists since, by definition of d_{s}, d_{s} is adjacent to some vertex a_{y} with $y>1$. The W -triangulation $T_{d_{s} a_{y}}$ having less edges than $T\left(a_{1} a_{2} \notin E\left(T_{d_{s} a_{y}}\right)\right.$, Proprerty 2 holds for $T_{d_{s} a_{y}}$. Let ($\left.\Sigma^{\prime}, R^{\prime}, X^{\prime}\right)$ be the partial strong 1 -string representations contained in the region τ^{\prime} obtained for $T_{d_{s} a_{y}}$.

Figure 18: Case 1.4: No chord $a_{i} b_{j}$ or $a_{i} c_{j}$.
Now we distinguish two cases according to the position of a_{y}, the first is when $y=2$ and the second is when $y>2$.

Case 1.4.1: $y=2$ (see Figure 19). In Figure 19, starting from ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$), we show how to extend the string $\sigma_{a_{1}}^{\prime} \in \Sigma^{\prime}$ and how to draw the (a_{1}, a_{2}, d_{s})-region $\rho_{a_{1} a_{2} d_{s}}$ to obtain (Σ, R, X), a partial strong 1 -string representation of T that satisfies Property 1 . Here we have $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{a_{1}}^{\prime}\right\}\right) \cup\left\{\sigma_{a_{1}}\right\}$, with $\sigma_{a_{1}}$ being the extension of $\sigma_{a_{1}}^{\prime}, R=R^{\prime} \cup\left\{\rho_{a_{1} a_{2} d_{s}}\right\}$, and $X=E_{o}(T) \backslash\left\{a_{1} a_{2}\right\}$.

We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: Since $a_{1} d_{s} \notin E\left(T_{d_{s} a_{2}}\right) \backslash X^{\prime}$ (resp. $\left.a_{1} a_{2} \notin E\left(T_{d_{s} a_{2}}\right) \backslash X^{\prime}\right)$,

Figure 19: Case 1.4.1.
the two strings $\sigma_{a_{1}}$ and $\sigma_{d_{s}}$ (resp. $\sigma_{a_{1}}$ and $\sigma_{a_{2}}$) intersect only once, in $\tau \cap \overline{\tau^{\prime}}$. So there is no pair of strings cossing each other more than once.

- Σ is a 1 -string representation of $T \backslash X$ with $X=E_{o}(T) \backslash\left\{a_{1} a_{2}\right\}$: Indeed, $\left(E\left(T_{d_{s} a_{2}}\right) \backslash\right.$ $\left.X^{\prime}\right) \cup\left\{a_{1} d_{s}, a_{1} a_{2}\right\}=E(T) \backslash X$.
- (Σ, R) is "strong": The only inner-face of T that is not an inner-face in $T_{d_{s} a_{2}}$ is $a_{1} a_{2} d_{s}$. Since the regions τ^{\prime} and $\rho_{a_{1} a_{2} d_{s}}$ are disjoint, all the face-regions of $R=R^{\prime} \cup\left\{\rho_{a_{1} a_{2} d_{s}}\right\}$ are disjoint.
- We see in Figure 19 that conditions (b), (c), (d), and (e) of Property 1 are satisfied.

Case 1.4.2: $y>2$ (see Figure 20). Let us denote $e_{1}, e_{2}, \ldots, e_{t}$ the neighbors of d_{s} strictly inside the cycle ($d_{s}, a_{1}, a_{2}, \ldots, a_{y}$), going "from right to left" (see Figure 20). By minimality of y we have $e_{i} \neq a_{j}$, for all $1 \leq i \leq t$ and $1 \leq j \leq y$.

Let T_{1} be the subgraph of T that lies inside the cycle $\left(a_{1}, \ldots, a_{y}, e_{1}, \ldots, e_{t}, a_{1}\right)$. By Lemma $2, T_{1}$ is a W-triangulation. Since the W-triangulation T has no separating 3 -cycle $\left(d_{s}, a_{y}, e_{i}\right)$ or $\left(d_{s}, e_{i}, e_{j}\right)$, there exists no chord $a_{y} e_{i}$ or $e_{i} e_{j}$ in T_{1}. So $\left(a_{2}, a_{1}\right)-\left(a_{1}, e_{t}, \ldots, e_{1}, a_{y}\right)-\left(a_{y}, \ldots, a_{2}\right)$ is a 3 -boundary of T_{1}. Finally, since T_{1} has less edges than $T\left(a_{1} d_{s} \notin E\left(T_{1}\right)\right)$, Property 1 holds for T_{1} with respect to the mentionned 3 -boundary. Let $\left(\Sigma_{1}, R_{1}, X_{1}\right)$ be the partial strong 1 -string representations contained in the region τ_{1} obtained for T_{1}.

In Figure 20, starting from $\left(\Sigma^{\prime}, R^{\prime}, X^{\prime}\right)$ and $\left(\Sigma_{1}, R_{1}, X_{1}\right)$, we show how to join the strings $\sigma_{a_{1}}^{\prime} \in \Sigma^{\prime}$ and $\sigma_{a_{1}}^{1} \in \Sigma_{1}$ (resp. $\sigma_{a_{y}}^{\prime} \in \Sigma^{\prime}$ and $\sigma_{a_{y}}^{1} \in \Sigma_{1}$), how to extend the strings $\sigma_{e_{i}}^{1} \in \Sigma^{1}$, for $1 \leq i \leq t]$, and how to draw the face-regions $\rho_{a_{y} e_{1} d_{s}}, \rho_{e_{t} a_{1} d_{s}}$, and $\rho_{e_{i} e_{i-1} d_{s}}$, for $2 \leq i \leq t$, in order to obtain (Σ, R, X), a partial strong 1 -string representation of T that satisfies Property 1 . Here we have $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{a_{1}}^{\prime}, \sigma_{a_{y}}^{\prime}\right\}\right) \cup\left(\Sigma_{1} \backslash\left(\left\{\sigma_{a_{y}}^{1}, \sigma_{a_{1}}^{1}\right\} \cup\left\{\sigma_{e_{i}}^{1} \mid i \in[1, t]\right\}\right)\right) \cup\left\{\sigma_{a_{1}}, \sigma_{a_{y}}\right\} \cup\left\{\sigma_{e_{i}} \mid i \in\right.$ $[1, t]\}$, with $\sigma_{a_{1}}\left(\right.$ resp. $\left.\sigma_{a_{y}}\right)$ being the junction of $\sigma_{a_{1}}^{\prime}$ and $\sigma_{a_{1}}^{1}$ (resp. $\sigma_{a_{y}}^{\prime}$ and $\sigma_{a_{y}}^{1}$), the strings
$\sigma_{e_{i}}$ being the extensions of the strings $\sigma_{e_{i}}^{1} \in \Sigma_{1}, R=R^{\prime} \cup R_{1} \cup\left\{\rho_{a_{y} e_{1} d_{s}}, \rho_{e_{t} a_{1} d_{s}}\right\} \cup\left\{\rho_{d_{s} e_{i} e_{i-1}} \mid\right.$ $i \in[2, t]\}$ and $X=E_{o}(T) \backslash\left\{a_{1} a_{2}\right\}$.

Figure 20: Case 1.4.2.
We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: Since the edges $a_{1} e_{t}, a_{1} d_{s}, a_{y} e_{1}, e_{i} e_{i+1}$, and $e_{i} d_{s}$ are not in $\left(E\left(T_{d_{s} a_{y}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right)$ there is no two strings intersecting more than once.
- Σ is a 1 -string representation of $T \backslash X$ with $X=E_{o}(T) \backslash\left\{a_{1} a_{2}\right\}$: Indeed, $E(T) \backslash X=$ $\left(E\left(T_{d_{s} a_{y}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right) \cup\left\{a_{y} e_{1}, e_{t} a_{1}, d_{s} a_{1}\right\} \cup\left\{e_{i} e_{i-1} \mid i \in[2, t]\right\} \cup\left\{d_{s} e_{i} \mid i \in[1, t]\right\}$.
- (Σ, R) is "strong": The only inner-faces of T that are not inner-faces in $T_{d_{s} a_{y}}$ or T_{1} are $a_{1} e_{t} d_{s}, a_{y} e_{1} d_{s}$, and the faces $e_{i} e_{i-1} d_{s}$, for $2 \leq i \leq t$. Since the regions $\tau^{\prime}, \tau_{1}, \rho_{a_{y} e_{1} d_{s}}$, $\rho_{e_{t} a_{1} d_{s}}$, and $\rho_{e_{i} e_{i-1} d_{s}}$, for $2 \leq i \leq t$, are all disjoint, all the face-regions of R are disjoint.
- We see in Figure 20 that conditions (b), (c), (d), and (e) of Property 1 are satisfied.

This completes the study of Case 1. So, Property 1 holds for any W-triangulation T such that $|E(T)|=m$.

Case 2: Proof of Property 2 for any W-triangulation $T_{d_{x} a_{y}}$ such that $\left|E\left(T_{d_{x} a_{y}}\right)\right|=m$. Recall that the W-triangulation $T_{d_{x} a_{y}}$ is a subgraph of a W -triangulation T with 3-boundary $\left(a_{1}, \ldots, a_{p}\right)-\left(b_{1}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)$. Moreover, T has no chord $a_{i} b_{j}$ or $a_{i} c_{j}$ and its adjacent path is $\left(d_{1}, \ldots, d_{s}, a_{1}\right)$, avec $s \geq 1$.

When $d_{x} a_{y} \neq d_{1} a_{p}$ we define the couple of integers $(z, w) \neq(x, y)$, with $1 \leq z \leq x$ and $y \leq w \leq p$, such that there is an edge $d_{z} a_{w} \in E\left(T_{d_{x} a_{y}}\right)$ (there is at least one such edge, $\left.d_{1} a_{p}\right)$. Within all the possibles couples $(z, w) \neq(x, y)$, we consider the one that maximizes z and then minimizes w. Since the vertex d_{x-1} is by definition adjacent to some vertex a_{i} we observe that, by maximality of z, we have $z=x$ or $x-1$.

We distinguish five cases. First we consider the case where $d_{x} a_{y}=d_{1} a_{p}$ (Case 2.1). When $d_{x} a_{y} \neq d_{1} a_{p}$ the cases depend on the edge $d_{z} a_{w}$. When $z=x$ we have the case where $w=y+1$
(Case 2.2) and the case where $w>y+1$ (Case 2.4), and when $z=x-1$ we have the case where $w=y$ (Case 2.3) and the case where $w>y$ (Case 2.5).

Figure 21: Case 2.1: $T_{d_{x} a_{y}}=T_{d_{1} a_{p}}$.
Case 2.1: $d_{x} a_{y}=d_{1} a_{p}$ (see Figure 21). Let T_{1} be the subgraph of $T_{d_{1} a_{p}}$ that lies inside the cycle $\left(a_{1}, d_{s}, \ldots, d_{1}, b_{2}, \ldots, b_{q}, c_{2}, \ldots, c_{r}\right)$. By Lemma $2, T_{1}$ is a W-triangulation. This W-triangulation has no chord $b_{i} b_{j}, c_{i} c_{j}, d_{i} d_{j}$, or $a_{1} d_{j}$. We consider two cases according to the existence of an edge $d_{1} b_{i}$ with $2<i \leq q$.

- If T_{1} has no chord $d_{1} b_{i}$ then $\left(d_{1}, b_{2}, \ldots, b_{q}\right)-\left(c_{1}, \ldots, c_{r}\right)-\left(a_{1}, d_{s}, \ldots, d_{1}\right)$ is a 3 -boundary of T_{1}.
- If T_{1} has a chord $d_{1} b_{i}$, with $2<i \leq q$, note that $q>2$ and that there cannot be a chord $b_{2} a_{1}$ or $b_{2} d_{j}$, with $1<j \leq s$ (this would violate the planarity of $T_{d_{x} a_{y}}$, see Figure 21) So in this case, $\left(b_{2}, d_{1}, \ldots, d_{s}, a_{1}\right)-\left(c_{r}, \ldots, c_{1}\right)-\left(b_{q}, \ldots, b_{2}\right)$ is a 3 -boundary of T_{1}.

Finally, since T_{1} is a W-triangulation with less edges than $T_{d_{1} a_{p}}$, Property 1 holds for T_{1} with respect to at least one of the two mentionned 3 -boundaries. Whichever 3-boundary we consider, we obtain a partial strong 1 -string representation $\left(\Sigma_{1}, R_{1}, X_{1}\right)$ of T_{1} with the same properties:

- $X_{1}=E_{o}(T) \backslash\left\{d_{1} b_{2}\right\}$,
- $\Sigma_{1} \cup R_{1}$ is contained in a regoin τ_{1} homeomorphic to the disk,
- in the boundary of τ_{1} we successively meet the ends of $\sigma_{d_{1}}^{1}, \ldots, \sigma_{d_{s}}^{1}, \sigma_{a_{1}}^{1}, \sigma_{c_{r}}^{1}, \ldots, \sigma_{c_{1}}^{1}, \sigma_{b_{q}}^{1}, \ldots, \sigma_{b_{2}}^{1}$ (in the clockwise or in the anticlockwise sense).

In Figure 22 we modify $\left(\Sigma_{1}, R_{1}, X_{1}\right)$, by extending the strings $\sigma_{d_{1}}^{1}$ and $\sigma_{b_{2}}^{1} \in \Sigma^{1}$ and by adding a new string $\sigma_{a_{p}}$ and a new face region $\rho_{d_{1} b_{2} a_{p}}$. This leads to (Σ, R, X), a partial strong 1string representation of $T_{d_{1} a_{p}}$ that satisfies Property 2 . Here we have $X=E_{o}\left(T_{d_{1} a_{p}}\right) \backslash\left\{d_{1} a_{p}\right\}$, $R=R_{1} \cup\left\{\rho_{d_{1} b_{2} a_{p}}\right.$, and $\Sigma=\left(\Sigma_{1} \backslash\left\{\sigma_{d_{1}}^{1}, \sigma_{b_{2}}^{1}\right\}\right) \cup\left\{\sigma_{d_{1}}, \sigma_{b_{2}}, \sigma_{a_{p}}\right\}$, the strings $\sigma_{d_{1}}$ and $\sigma_{b_{2}}$ being the extensions of the strings $\sigma_{d_{1}}^{1}$ and $\sigma_{b_{2}}^{1} \in \Sigma_{1}$.

We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: It is clear that there is no two strings intersecting more than once.
- Σ is a 1 -string representation of $T_{d_{1} a_{p}} \backslash X$: Indeed, $E\left(T_{d_{1} a_{p}}\right) \backslash X=\left(E\left(T_{1}\right) \backslash X_{1}\right) \cup$ $\left\{a_{p} d_{1}, a_{p} b_{2}\right\}$.

Figure 22: Case 2.1: (Σ, R, X).

- (Σ, R) is "strong": The only inner-face of $T_{d_{1} a_{p}}$ that is not an inner-face of T_{1} is $d_{1} a_{p} b_{2}$. Since the regions τ_{1} and $\rho_{d_{1} a_{p} b_{2}}$ are disjoint, all the face-regions of R are disjoint.
- We see in Figure 22 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are satisfied.

Figure 23: Case 2.2: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x$ and $w=y+1$.
Case 2.2: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x$ and $w=y+1$ (see Figure 23). By Lemma $2, T_{d_{z} a_{w}}$ is a W-triangulation. Since $T_{d_{z} a_{w}}$ has less edges than $T_{d_{x} a_{y}}\left(d_{x} a_{y} \notin E\left(T_{d_{z} a_{w}}\right)\right)$, Property 2 holds for $T_{d_{z} a_{w}}$. Let ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$) be the partial strong 1-string representation of $T_{d_{z} a_{w}}$ contained in the region τ^{\prime} with $X^{\prime}=E_{o}\left(T_{d_{z} a_{w}}\right) \backslash\left\{d_{z} a_{w}\right\}$.

In Figure 24 we modify $\left(\Sigma^{\prime}, R^{\prime}, X^{\prime}\right)$, by extending the string $\sigma_{a_{w}}^{\prime} \in \Sigma^{\prime}$ and by adding a new string $\sigma_{a_{y}}$ and a new face region $\rho_{a_{y} a_{w} d_{x}}$. This leads to (Σ, R, X), a partial strong 1string representation of $T_{d_{x} a_{y}}$ that satisfies Property 2 . Here we have $X=E_{o}\left(T_{d_{x} a_{y}}\right) \backslash\left\{d_{x} a_{y}\right\}$, $R=R^{\prime} \cup\left\{\rho_{a_{y} a_{w} d_{x}}\right.$, and $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{a_{w}}^{\prime}\right\}\right) \cup\left\{\sigma_{a_{w}}, \sigma_{a_{y}}\right\}$, the string $\sigma_{a_{w}}$ being the extension $\sigma_{a_{w}}^{1} \in \Sigma^{\prime}$.

We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: It is clear that there is no two strings intersecting more than once.
- Σ is a 1-string representation of $T_{d_{x} a_{y}} \backslash X$: Indeed, $E\left(T_{d_{x} a_{y}}\right) \backslash X=\left(E\left(T_{d_{z} a_{w}}\right) \backslash X^{\prime}\right) \cup$ $\left\{d_{z} a_{w}\right\}$.

Figure 24: Case 2.2: (Σ, R, X).

- (Σ, R) is "strong": The only inner-face of $T_{d_{x} a_{y}}$ that is not an inner-face of $T_{d_{z} a_{w}}$ is $d_{x} a_{y} a_{w}$. Since the regions τ^{\prime} and $\rho_{d_{x} a_{y} a_{w}}$ are disjoint, all the face-regions of R are disjoint.
- We see in Figure 24 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are satisfied.

Figure 25: Case 2.3: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x-1$ and $w=y$.
Case 2.3: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x-1$ and $w=y$ (see Figure 25). By Lemma $2, T_{d_{z} a_{w}}$ is a W-triangulation. Since $T_{d_{z} a_{w}}$ has less edges than $T_{d_{x} a_{y}}\left(d_{x} a_{y} \notin E\left(T_{d_{z} a_{w}}\right)\right)$, Property 2 holds for $T_{d_{z} a_{w}}$. Let ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$) be the partial strong 1-string representation of $T_{d_{z} a_{w}}$ contained in the region τ^{\prime} with $X^{\prime}=E_{o}\left(T_{d_{z}} a_{w}\right) \backslash\left\{d_{z} a_{w}\right\}$.

In Figure 26, we modify ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$) by extending the string $\sigma_{d_{x}}^{\prime} \in \Sigma^{\prime}$ and by adding a new face region $\rho_{d_{x} a_{y} d_{w}}$. This leads to (Σ, R, X), a partial strong 1 -string representation of
$T_{d_{x} a_{y}}$ that satisfies Property 2. Here we have $X=E_{o}\left(T_{d_{x} a_{y}}\right) \backslash\left\{d_{x} a_{y}\right\}, R=R^{\prime} \cup\left\{\rho_{d_{x} a_{y} d_{w}}\right.$, and $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{d_{x}}^{\prime}\right\}\right) \cup\left\{\sigma_{d_{x}}\right\}$, the string $\sigma_{d_{x}}$ being the extension $\sigma_{d_{x}}^{1} \in \Sigma^{\prime}$.

Figure 26: Case 2.3: (Σ, R, X).
We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: Since the edges $d_{x} d_{z}$ and $d_{x} a_{y}$ are not in $\left(E\left(T_{d_{z} a_{w}}\right) \backslash X^{\prime}\right)$ there is no two strings intersecting more than once.
- Σ is a 1 -string representation of $T_{d_{x} a_{y}} \backslash X$: Indeed, $E\left(T_{d_{x} a_{y}}\right) \backslash X=\left(E\left(T_{d_{z} a_{w}}\right) \backslash X^{\prime}\right) \cup$ $\left\{d_{x} d_{z}, d_{x} a_{y}\right\}$.
- (Σ, R) is "strong": The only inner-face of $T_{d_{x} a_{y}}$ that is not an inner-face of $T_{d_{z} a_{w}}$ is $d_{x} d_{z} a_{y}$. Since the regions τ^{\prime} and $\rho_{d_{x} d_{z} a_{y}}$ are disjoint, all the face-regions of R are disjoint.
- We see in Figure 26 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are satisfied.

Figure 27: Case 2.4: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x$ and $w>y+1$.

Case 2.4: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x$ and $w>y+1$ (see Figure 27). By Lemma $2, T_{d_{z} a_{w}}$ is a W-triangulation. Since $T_{d_{z} a_{w}}$ has less edges than $T_{d_{x} a_{y}}\left(d_{x} a_{y} \notin E\left(T_{d_{z} a_{w}}\right)\right)$, Property 2 holds for $T_{d_{z} a_{w}}$. Let ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$) be the partial strong 1-string representation of $T_{d_{z} a_{w}}$ contained in the region τ^{\prime} with $X^{\prime}=E_{o}\left(T_{d_{z} a_{w}}\right) \backslash\left\{d_{z} a_{w}\right\}$.

Let us denote $e_{1}, e_{2}, \ldots, e_{t}$ the neighbors of d_{x} strictly inside the cycle $\left(d_{x}, a_{y}, \ldots, a_{w}\right)$, going "from right to left" (see Figure 27). Since there is no chord $a_{i} a_{j}$ we have $t>0$. Furthermore by minimality of w we have $e_{i} \neq a_{j}$, for all $1 \leq i \leq t$ and $y \leq j \leq w$. Let T_{1} be the subgraph of $T_{d_{x} a_{y}}$ that lies inside the cycle $\left(a_{y}, \ldots, a_{w}, e_{1}, \ldots, e_{t}, a_{y}\right)$. By Lemma $2, T_{1}$ is a W-triangulation. Since the W-triangulation $T_{d_{x} a_{y}}$ has no separating 3 -cycle (d_{x}, a_{w}, e_{i}) or (d_{x}, e_{i}, e_{j}), there exists no chord $a_{w} e_{i}$ or $e_{i} e_{j}$ in T_{1}. With the fact that $t>0$, we know that $\left(e_{t}, a_{y}\right)-\left(a_{y}, \ldots, a_{w}\right)-\left(a_{w}, e_{1}, \ldots, e_{t}\right)$ is a 3 -boundary of T_{1}. Finally, since T_{1} has less edges than $T_{d_{x} a_{y}}\left(d_{x} a_{y} \notin E\left(T_{1}\right)\right)$, Property 1 holds for T_{1} with respect to the mentionned 3-boundary. Let (Σ_{1}, R_{1}, X_{1}) be the partial strong 1 -string representations contained in the region τ_{1} obtained for T_{1}.

In Figure 28, starting from $\left(\Sigma^{\prime}, R^{\prime}, X^{\prime}\right)$ and $\left(\Sigma_{1}, R_{1}, X_{1}\right)$, we show how to join the strings $\sigma_{a_{w}}^{\prime} \in \Sigma^{\prime}$ and $\sigma_{a_{w}}^{1} \in \Sigma_{1}$, how to extend the string $\sigma_{a_{y}}^{1} \in \Sigma^{1}$ and the strings $\sigma_{e_{i}}^{1} \in \Sigma^{1}$, for $1 \leq i \leq t$, and how to draw the face-regions $\rho_{a_{y} e_{t} d_{x}}, \rho_{e_{1} a_{w} d_{x}}$, and $\rho_{e_{i} e_{i-1} d_{x}}$, for $2 \leq$ $2 \leq t$, in order to obtain (Σ, R, X), a partial strong 1 -string representation of $T_{d_{x} a_{y}}$ that satisfies Property 2. Here we have $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{a_{w}}^{\prime}\right\}\right) \cup\left(\Sigma_{1} \backslash\left(\left\{\sigma_{a_{i}}^{1} \mid i \in[y, w]\right\} \cup\left\{\sigma_{e_{i}}^{1} \mid i \in\right.\right.\right.$ $[1, t]\})) \cup\left\{\sigma_{a_{i}} \mid i \in[y, w]\right\} \cup\left\{\sigma_{e_{i}} \mid i \in[1, t]\right\}$, with $\sigma_{a_{w}}$ being the junction of $\sigma_{a_{w}}^{\prime}$ and $\sigma_{a_{w}}^{1}$, the strings $\sigma_{a_{i}}$ (resp. $\sigma_{e_{i}}$) being the extensions of the strings $\sigma_{a_{i}}^{1} \in \Sigma_{1}$ (resp. $\sigma_{e_{i}}^{1} \in \Sigma_{1}$), $R=R^{\prime} \cup R_{1} \cup\left\{\rho_{e_{1} a_{w} d_{x}}, \rho_{a_{y} e_{t} d_{x}}\right\} \cup\left\{\rho_{d_{s} e_{t} e_{t-1}} \mid i \in[2, t]\right\}$ and $X=E_{o}(T) \backslash\left\{d_{x} a_{y}\right\}$.

Figure 28: Case 2.4: (Σ, R, X).
We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: Since the edges $d_{x} a_{y}, a_{w} e_{1}, e_{i} e_{i+1}$, and $d_{x} e_{i}$ are not in $\left(E\left(T_{d_{x} a_{y}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right)$ there is no two strings intersecting more than once.
- Σ is a 1 -string representation of $T_{d_{x} a_{y}} \backslash X$ with $X=E_{o}\left(T_{d_{x} a_{y}}\right) \backslash\left\{d_{x} a_{y}\right\}$: Indeed, $E\left(T_{d_{x} a_{y}}\right) \backslash X=\left(E\left(T_{d_{z} a_{w}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right) \cup\left\{a_{w} e_{1}, d_{x} a_{y}\right\} \cup\left\{e_{i} e_{i-1} \mid i \in[2, t]\right\} \cup\left\{d_{x} e_{i} \mid\right.$

$$
i \in[1, t]\} .
$$

- (Σ, R) is "strong": The only inner-faces of $T_{d_{x} a_{y}}$ that are not inner-faces in $T_{d_{z} a_{w}}$ or T_{1} are $d_{x} a_{y} e_{t}, d_{x} a_{w} e_{1}$, and the faces $d_{x} e_{i} e_{i-1}$, for $2 \leq i \leq t$. Since the regions $\tau^{\prime}, \tau_{1}, \rho_{d_{x} a_{y} e_{t}}$, $\rho_{d_{x} a_{w} e_{1}}$, and $\rho_{d_{x} e_{i} e_{i-1}}$, for $2 \leq i \leq t$, are all disjoint, all the face-regions of R are disjoint.
- We see in Figure 28 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are satisfied.

Figure 29: Case 2.5: $T_{d_{x} a_{y}} \neq T_{d_{1} a_{p}}, z=x-1$ and $w>y$.
Case 2.5: $d_{x} a_{y} \neq d_{1} a_{p}, z=x-1$ and $w>y$ (see Figure 29). By Lemma 2, $T_{d_{z} a_{w}}$ is a W-triangulation. Since $T_{d_{z} a_{w}}$ has less edges than $T_{d_{x} a_{y}}\left(d_{x} a_{y} \notin E\left(T_{d_{z} a_{w}}\right)\right)$, Property 2 holds for $T_{d_{z} a_{w}}$. Let ($\Sigma^{\prime}, R^{\prime}, X^{\prime}$) be the partial strong 1-string representation of $T_{d_{z} a_{w}}$ contained in the region τ^{\prime} with $X^{\prime}=E_{o}\left(T_{d_{z} a_{w}}\right) \backslash\left\{d_{z} a_{w}\right\}$.

Let us denote $e_{1}, e_{2}, \ldots, e_{t}$ the neighbors of d_{z} strictly inside the cycle $\left(d_{z}, d_{x}, a_{y}, \ldots, a_{w}, d_{z}\right)$, going "from right to left" (see Figure 29). By maximality of z, there is no edge $d_{x} a_{w}$, so $t>0$. Let us denote f_{1}, \ldots, f_{u} the neighbors of d_{x} strictly inside the cycle $\left(d_{x}, a_{y}, \ldots, a_{w}, d_{z}\right)$, going "from right to left" (see Figure 29). Note that $f_{1}=e_{t}$ and that by minimality of w, there is no edge $d_{z} a_{y}$, so $u>0$.

By minimality of w we have $e_{i} \neq a_{j}$ (resp. $f_{i} \neq a_{j}$), for all $1 \leq i \leq t$ (resp. $1 \leq i \leq u$) and $y \leq j \leq w$. Let T_{1} be the subgraph of $T_{d_{x} a_{y}}$ that lies inside the cycle $\left(a_{y}, \ldots, a_{w}, e_{1}, \ldots, e_{t}, f_{2}, \ldots, f_{u}, a_{y}\right)$. By Lemma $2, T_{1}$ is a W -triangulation. Since the W -triangulation $T_{d_{x} a_{y}}$ has no separating 3 -cycle $\left(d_{z}, a_{w}, e_{i}\right),\left(d_{z}, e_{i}, e_{j}\right),\left(d_{x}, f_{i}, f_{j}\right)$, or $\left(d_{x}, f_{i}, a_{y}\right)$, there exists no chord $a_{w} e_{i}, e_{i} e_{j}$, $f_{i} f_{j}$, or $f_{i} a_{y}$ in T_{1}. With the fact that $t>0$ and $u>0$, we know that $\left(f_{1}, f_{2}, \ldots, f_{u}, a_{y}\right)$ $\left(a_{y}, \ldots, a_{w}\right)-\left(a_{w}, e_{1}, \ldots, e_{t}\right)$ is a 3 -boundary of T_{1}. Finally, since T_{1} has less edges than $T_{d_{x} a_{y}}$ $\left(d_{x} a_{y} \notin E\left(T_{1}\right)\right.$), Property 1 holds for T_{1} with respect to the mentionned 3-boundary. Let (Σ_{1}, R_{1}, X_{1}) be the partial strong 1 -string representations contained in the region τ_{1} obtained for T_{1}.

In Figure 30, starting from $\left(\Sigma^{\prime}, R^{\prime}, X^{\prime}\right)$ and $\left(\Sigma_{1}, R_{1}, X_{1}\right)$, we show how to join the strings $\sigma_{a_{w}}^{\prime} \in \Sigma^{\prime}$ and $\sigma_{a_{w}}^{1} \in \Sigma_{1}$, how to extend the string $\sigma_{d_{x}}^{\prime} \in \Sigma^{\prime}, \sigma_{a_{y}}^{1} \in \Sigma^{1}$ the strings $\sigma_{e_{i}}^{1} \in \Sigma^{1}$, for $1 \leq i \leq t$, and the strings $\sigma_{f_{i}}^{1} \in \Sigma^{1}$, for $2 \leq i \leq u$, and how to draw the face-regions $\rho_{d_{z} a_{w} e_{1}}, \rho_{d_{z} e_{i} e_{i-1}}$, for $2 \leq i \leq t, \rho_{d_{z} d_{x} e_{t}}, \rho_{d_{x} f_{i} f_{i-1}}$, for $2 \leq i \leq u$, and $\rho_{d_{x} a_{y} f_{u}}$ in order to obtain ($\Sigma, R, X)$, a partial strong 1 -string representation of $T_{d_{x} a_{y}}$ that satisfies Property 2. Here we have $\Sigma=\left(\Sigma^{\prime} \backslash\left\{\sigma_{d_{x}}^{\prime}, \sigma_{a_{w}}^{\prime}\right\}\right) \cup\left(\Sigma_{1} \backslash\left(\left\{\sigma_{a_{i}}^{1} \mid i \in[y, w]\right\} \cup\left\{\sigma_{e_{i}}^{1} \mid i \in[1, t]\right\} \cup\left\{\sigma_{e_{i}}^{1} \mid i \in[2, u]\right\}\right)\right) \cup\left\{\sigma_{a_{i}} \mid\right.$
$i \in[y, w]\} \cup\left\{\sigma_{e_{i}} \mid i \in[1, t]\right\} \cup\left\{\sigma_{e_{i}} \mid i \in[2, u]\right\}$, with $\sigma_{a_{w}}$ being the junction of $\sigma_{a_{w}}^{\prime}$ and $\sigma_{a_{w}}^{1}$, the strings $\sigma_{a_{i}}$ (resp. $\sigma_{e_{i}}$ or $\sigma_{f_{i}}$) being the extensions of the strings $\sigma_{a_{i}}^{1} \in \Sigma_{1}$ (resp. $\sigma_{e_{i}}^{1}$ or $\sigma_{f_{i}}^{1} \in \Sigma_{1}$), $R=R^{\prime} \cup R_{1} \cup\left\{\rho_{d_{z} a_{w} e_{1}}, \rho_{d_{z} d_{x} e_{t}}, \rho_{d_{x} a_{y} f_{u}}\right\} \cup\left\{\rho_{d_{z} e_{i} e_{i-1}} \mid i \in[2, t]\right\} \cup\left\{\rho_{d_{x} f_{i} f_{i-1}} \mid i \in[2, u]\right\}$, and $X=E_{o}(T) \backslash\left\{d_{x} a_{y}\right\}$.

Figure 30: Case 2.5: (Σ, R, X).
We check that (Σ, R, X) is correct:

- Σ is a 1 -string representation: Since the edges $d_{z} e_{i}$ with $1 \leq i \leq t, d_{x} d_{z}, a_{w} e_{1}, e_{i} e_{i-1}$ with $2 \leq i \leq t, d_{x} f_{i}$ with $1 \leq i \leq u, d_{x} a_{y}, f_{i} f_{i-1}$ with $3 \leq i \leq u$, and $f_{u} a_{y}$ are not in $\left(E\left(T_{d_{x} a_{y}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right)$ there is no two strings intersecting more than once.
- Σ is a 1-string representation of $T_{d_{x} a_{y}} \backslash X$ with $X=E_{o}\left(T_{d_{x} a_{y}}\right) \backslash\left\{d_{x} a_{y}\right\}$: Indeed, $E\left(T_{d_{x} a_{y}}\right) \backslash X=\left(E\left(T_{d_{z} a_{w}}\right) \backslash X^{\prime}\right) \cup\left(E\left(T_{1}\right) \backslash X_{1}\right) \cup\left\{d_{x} a_{y}, d_{x} d_{z}, a_{w} e_{1}, a_{y} f_{u}\right\} \cup\left\{d_{z} e_{i} \mid\right.$ $i \in[1, t]\} \cup\left\{d_{x} f_{i} \mid i \in[1, u]\right\} \cup\left\{e_{i} e_{i-1} \mid i \in[2, t]\right\} \cup\left\{f_{i} f_{i-1} \mid i \in[2, u]\right\}$.
- (Σ, R) is "strong": The only inner-faces of $T_{d_{x} a_{y}}$ that are not inner-faces in $T_{d_{z} a_{w}}$ or T_{1} are $d_{z} a_{w} e_{1}, d_{z} e_{i} e_{i-1}$ for $2 \leq i \leq t, d_{z} d_{x} e_{t} d_{x} f_{i} f_{i-1}$ for $2 \leq i \leq u$, and $d_{x} a_{y} f_{u}$. Since the regions $\tau^{\prime}, \tau_{1}, \rho_{d_{z} a_{w} e_{1}}, \rho_{d_{z} e_{i} e_{i-1}}$ for $2 \leq i \leq t, \rho_{d_{z} d_{x} e_{t}} \rho_{d_{x} f_{i} f_{i-1}}$ for $2 \leq i \leq u$, and $\rho_{d_{x} a_{y} f_{u}}$ are all disjoint, all the face-regions of R are disjoint.
- We see in Figure 30 that conditions (b), (c), (d), (e), (f), and (g) of Property 2 are satisfied.

This completes the study of Case 2. So, Property 2 holds for any W-triangulation $T_{d_{x} a_{y}}$ such that $\left|E\left(T_{d_{x} a_{y}}\right)\right|=m$. This completes the proof of Lemma 4.

This completes the proof of Theorem 4.

