
Planar graphs are in 1-STRINGJ. Chalopin, D. Gonçalves, P. OhemLaBRI, U.M.R. 5800, Université Bordeaux I351 ours de la Libération 33405 Talene Cedex, Frane.{halopin,gonalve,ohem}�labri.fr12th September 2006AbstratWe prove that every planar graph is the intersetion graph of strings in the plane,suh that any two strings interset at most one.1 IntrodutionA string σ is a urve of the plane homeomorphi to a segment. A string σ has two ends, thepoints of σ that are not ends of σ are internal points of σ. Two strings σ1 and σ2 interset ifthey have a ommon point p ∈ σ1 ∩ σ2 and if going around p we suessively meet σ1, σ2, σ1,and σ2. This means that two tangent strings do not interset. Given a region τ of the plane
P, let τ be the region de�ned by P \ τ .In this paper, we onsider intersetion models for planar graphs. A string representationof a graph G = (V,E) maps every vertex v ∈ V to a string σv in the plane suh that any twoverties are adjaent if and only if their orresponding strings interset at least one. A graphbelongs to the graph lass STRING if and only if it admits a string representation. Similarly,a segment representation of a graph G is a string representation of G in whih the stringsare segments. A graph belongs to the graph lass SEG if and only if it admits a segmentrepresentation.These notions were introdued in 1976 by Ehrlih et al. [4℄, who proved the following:Theorem 1 [4℄ Planar graphs are in STRING.In his thesis, Sheinerman [10℄ onjetures a stronger result:Conjeture 1 [10℄ Planar graphs are in SEG.Kratohvíl and Matou²ek [8℄ obtained many interesting results about SEG and relatedgraph lasses. Independently, Hartman et al. [1℄ and de Fraysseix et al. [5℄ proved Conjeture1 for bipartite planar graphs. Castro et al. [2℄ proved Conjeture 1 for triangle-free planargraphs. In [7℄, Grötzsh proved that triangle-free planar graphs are 3-olorable. Observe that,sine parallel segments never interset, a set of parallel segments in a segment representationof a graph indues a stable set of verties. The onstrution in [1, 5℄ (resp. [2℄) has thenie property that there are only 2 (resp. 3) possible diretions for the segments. So the1



onstrution indues a 2-oloring (resp. 3-oloring) of G. In [11℄, West proposed a strongerversion of Conjeture 1 in whih only 4 diretions are allowed.Notie that two segments interset at at most one point, whereas in the onstrutionof Theorem 1, strings may interset twie. We make another step towards Conjeture 1 byproving that every planar graph admits a 1-string representation, that is a string representationsuh that any two strings interset at most one. A graph belongs to the graph lass 1-STRINGif and only if it admits a 1-string representation.Theorem 2 Planar graphs are in 1-STRING.This answers an open problem of Ossona de Mendez and de Fraysseix [9℄, whih was alsomentionned by Kratohvíl.2 Preliminaries2.1 Restrition to triangulationsLemma 1 Every planar graph is the indued subgraph of some planar triangulation.Proof. Let G be a planar graph embedded in the plane, i.e. a plane graph. The graph
h(G) is obtained from G by adding in every fae f of G a new vertex vf adjaent to everyvertex inident to f in G. Notie that h(G) is also a plane graph and that G is an induedsubgraph of h(G). Moreover h(G) is onneted, h(h(G)) is 2-onneted, and h(h(h(G))) is atriangulation. 2Sine 1-STRING is a graph lass de�ned by an intersetion model, it is losed under takingindued subgraphs. By Lemma 1, it is thus su�ient to prove Theorem 2 for triangulations.2.2 De�nitionsIn an embedded planar graph G, the unbounded fae of G is alled the outer-fae and everyother fae of G is an inner-fae of G. Given an embedded planar graph G, an outer-vertex(resp. outer-edge) of G is a vertex (resp. edge) of G inident to the outer fae. The otherverties (resp. edges) of G are alled inner-verties (resp. inner-edges) of G. The set ofouter-verties (resp. outer-edges, inner-verties, and inner-edges) of G is denoted by Vo(G)(resp. Eo(G), Vi(G), and Ei(G)). A near-triangulation is a planar graph in whih all theinner-faes are triangles. An edge uv is a hord of some near-triangulation T if u and v areouter-verties of T and uv is an inner-edge.De�nition 1 Let G = (V,E) be a graph with a 1-string representation Σ. Given a triplet
(a, b, c) of verties of G, an (a, b, c)-region ρ is a region of the plane homeomorphi to thedisk and suh that (see Figure 1):

• for any vertex v 6= a, b, and c we have ρ ∩ σv = ∅

• ρ ∩ σa ∩ σb = ∅, ρ ∩ σb ∩ σc = ∅, and ρ ∩ σc ∩ σa = ∅,
• ρ ∩ σb and ρ ∩ σc are onneted,
• ρ ∩ σa has two omponents, 2



• |ρ ∩ σa| = 3, |ρ ∩ σb| = 2, and |ρ ∩ σc| = 2,
• in the boundary of ρ we suessively interset σa, σa, σb, σb, σc, σa, and σc.

ρabc

σa

σc

σb

Figure 1: An (a, b, c)-region ρabc.Note that aording to this de�nition, in an (a, b, c)-region ρ, one end of the string σa isin ρ. When the verties a, b, and c are not mentionned, we all these regions fae-regions.Notie that by de�nition, an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region, a (c, a, b)-region, and a (c, b, a)-region are pairwise distint. An region τ of the planeannot be an (a, b, c)-region and a (c, b, a)-region for example. A region ρ of the plane is an
{a, b, c}-region if it is an (a, b, c)-region, an (a, c, b)-region, a (b, a, c)-region, a (b, c, a)-region,a (c, a, b)-region, or a (c, b, a)-region.De�nition 2 A strong 1-string representation of a near-triangulation T is a pair (Σ, R) suhthat:(1) Σ is a 1-string representation of T ,(2) R is a set of disjoint fae-regions suh that for every inner-fae abc of T , R ontains an

{a, b, c}-region.De�nition 3 A partial strong 1-string representation of a near-triangulation T is a triplet
(Σ, R,X) suh that(1) Σ is a 1-string representation of T \ X where X ⊆ Eo(T ) is a set of outer-edges,(2) R is a set of fae-regions suh that for every inner-fae abc of T , R ontains an {a, b, c}-region.Note that in a partial strong 1-string representation (Σ, R,X) of a near-triangulation T ,some outer-edges of T do not appear as intersetions of two strings of Σ, but for eah inner-faeof T , there is a orresponding fae-region in R.De�nition 4 A separating 3-yle C of an embedded near-triangulation T is a yle of length
3 suh that some verties of T lie inside C whereas other verties are outside.It is well known that a triangulation is 4-onneted if and only if it ontains no separating3-yle.De�nition 5 A W-triangulation is a 2-onneted near-triangulation ontaining no separating3-yle. 3



In partiular, any 4-onneted triangulation is a W-triangulation. Notie that a W-triangulation has no ut vertex, so its outer-edges indue a yle. The following lemma givesa su�ient ondition for a subgraph of a W-triangulation T to be a W-triangulation.Lemma 2 Let T be a W-triangulation and onsider a yle C of T . The subgraph de�ned by
C and the edges inside C (aording to the embedding of T ) is a W-triangulation.Proof. Consider the near-triangulation T ′ indued by some yle C of T and the edgesinside C. By de�nition, T has no separating 3-yle and onsequently T ′ does not have anyseparating 3-yle. It is then su�ient to show that T ′ is 2-onneted, i.e. T does not haveany ut vertex. Consider a vertex v of T , all the faes inident to v are triangles, exept atmost one (the outer fae). Consequently, there exists a path that ontains all the neighborsof v, and so T \ v is onneted. 2De�nition 6 A W-triangulation T is 3-bounded if the outer-boundary of T is the union ofthree paths (a1, . . . , ap), (b1, . . . , bq), and (c1, . . . , cr) that satisfy the following onditions (seeFigure 2):

• a1 = cr, b1 = ap, and c1 = bq.
• the paths are non-trivial, i.e. p ≥ 2, q ≥ 2, and r ≥ 2.
• there exists no hord aiaj (resp. bibj , cicj), i.e. an edge aiaj (resp. bibj , cicj) with

1 < i + 1 < j ≤ p (resp. 1 < i + 1 < j ≤ q, 1 < i + 1 < j ≤ r).This 3-boundary of T will be denoted by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr).
a1 = cr b1 = ap

c1 = bq

T

a2

b1

b2

c1

c2

Figure 2: 3-boundary of T .In the following, we will use the order on the three paths and their diretions, i.e. (a1, . . . , ap)-
(b1, . . . , bq)-(c1, . . . , cr) will be di�erent from (b1, . . . , bq)-(c1, . . . , cr)-(a1, . . . , ap) and (ap, . . . , a1)-
(cr, . . . , c1)-(bq, . . . , b1). The following property desribes the shape of a partial strong 1-stringrepresentation of a 3-bounded W-triangulation.Property 1 A W-triangulation T , 3-bounded by (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr), admitsa partial strong 1-string representation (Σ, R,X) ontained in a region τ (Σ ∪ R ⊂ τ) thatsatis�es the following properties:(a) X = Eo(G) \ {a1a2},(b) τ is a region of the plane homeomorphi to the disk,4



() for eah inner-vertex v, the intersetion of σv with the boundary of τ is empty,(d) for eah outer-vertex v, the intersetion of σv with the boundary of τ is a set ontainingat most two spei� points, the ends of σv,(e) in the boundary of τ we suessively meet the ends of σa2
, σa3

, . . . , σap , σb1 , . . . , σbq
, σc1, . . . , σcr .Notie that for ondition (e), we do not preise whether the boundary is traversed lokwiseor antilokwise. This is not neessary sine by an axial symmetry of (Σ, R,X) we obtain

(Σ′, R′,X) whih has the same properties as (Σ, R,X) with respet to the opposite diretion.Note that sine ap = b1, bq = c1, and cr = a1, both ends of σb1 and σc1 lie on the boundaryof τ , but it is not the ase for σa1
.

σap

τ

σa2

σb1

σbq

σcr

σc1

Figure 3: Property 1Due to its length, the proof of Property 1 is in Appendix A.3 Proof in the general aseTheorem 3 Eah embedded triangulation T admits a strong 1-string representation (Σ, R).Proof. We prove this result by indution on the number of separating 3-yles. Notie thatany triangulation T is 3-onneted, and that if T has no separating 3-yle, then T is 4-onneted and is a W-triangulation. Consequently, if T is a 4-onneted triangulation whoseouter-verties are a, b, and c, then T is a 3-bounded W-triangulation and (a, b)-(b, c)-(c, a) is a3-boundary of T . By Property 1, T admits a partial strong 1-string representation (Σ, R,X),with X = {bc, ca}, that is ontained in a region τ (Σ∪R ⊂ τ). Furthermore, in the boundary of
τ we suessively meet the ends of σb, σb, σc, σc, σa. To obtain a strong 1-string representationof T , it is su�ient (sine X = {bc, ca}) to extend σa, σb, and σc outside of τ in order toobtain an intersetion with σa and σc and with σb and σc, as depited on Figure 4.Suppose now that T is a triangulation that ontains at least one separating 3-yle. Con-sider a separating 3-yle (a, b, c) suh that there is no separating 3-yle in the subgraph
T ′ that lies inside the yle (a, b, c) (aording to the embedding of T ). Note that T ′ is a4-onneted triangulation.Let T1 be the triangulation obtained by removing all the verties that lie inside the yle
(a, b, c). Let T2 be the subgraph of T indued by all the verties of T that lie inside the yle
(a, b, c). Note that the verties a, b, and c belong to T1 but not to T2. In T1, the yle (a, b, c)is a fae of the triangulation and is no more a separating 3-yle. By indution hypothesis, T1admits a strong 1-string representation (Σ1, R1). In the strong 1-string representation (Σ1, R1)5



σbσa

σc σc

σb

τ

Figure 4: Strong 1-string-representation of T from (Σ, R,X) ⊂ τ .of T1, there exists a fae-region ρabc orresponding to the fae abc. W.l.o.g., say that ρabc isan (a, b, c)-region, as depited on Figure 5.
(Σ1, R1)

ρabc
σa

σc

σa

σb

Figure 5: In the strong 1-string representation (Σ1, R1) of T1, the (a, b, c)-region ρabc.Sine T ′ is a triangulation, for eah vertex v of T ′, there exists a yle (v1, . . . , vn) in T ′whose verties are exatly the neighbors of v. Suppose that the vertex a (resp. b and c)has exatly one neighbor v that lies inside (a, b, c). Then there exists a yle (b, v, c) (resp.
(a, v, c) and (a, v, b)) in T ′ and onsequently v is a neighbor of a, b, and c in T ′. Supposethat there exists another vertex w in T ′, then w lies either inside the yle (a, v, b), inside
(a, v, c), or inside (b, v, c) and then one of this yle is a separating 3-yle. This is impossibleby de�nition of the yle (a, b, c). So we an distinguish two ases (see Figure 6), (A) the asewhere the verties a, b, and c have a ommon neighbor inside (a, b, c) and where T ′ = K4, and(B) the ase where eah of the verties a, b, and c have at least two neighbors inside (a, b, c).Case (A): The verties a, b, and c have a ommon neighbor inside (a, b, c) and
T ′ = K4. To obtain a strong 1-string representation (Σ, R) of T , we need to de�ne a string
σv that orresponds to v. Sine E(T ) \E(T1) = {va, vb, vc} this string σv has to interset thestrings σa, σb, σc that orresponds respetively to the verties a, b, c. Moreover, we also needto de�ne three disjoint fae-regions ρacv, ρvbc, ρvab that orrespond respetively to the faes
acv, vbc, vab. In our onstrution, this string σv and these three fae-regions ρacv, ρvbc, ρvab6



b

c

a

b

c

a

Figure 6: The ases (A) and (B).are drawn inside the region ρabc. This onstrution appears on Figure 7.Sine (Σ1, R1) is a strong 1-string representation of T1 and sine σv, ρacv, ρvbc, ρvab aredrawn inside ρabc, (Σ ∪ {σv}, R \ {ρabc} ∪ {ρacv, ρvbc, ρvab} is a strong 1-string representationof T .
σv

ρabc

σa

σc

ρacv

ρvbc

ρvab
σb

σa

Figure 7: Case (A): Modi�ations inside ρabc.Case (B): Eah of the verties a, b, and c have at least two neighbors inside (a, b, c).Suppose now that a (resp. b and c) has at least two neighbors in T ′ that lie inside the yle
(a, b, c).There exists a yle (c, a1, . . . , ap, b) (resp. (a, b1, . . . , bq, c) and (b, c1, . . . , cr, a)) in T ′ whoseverties are exatly the neighbors of a (resp. b and c). We already know that p > 1, q > 1, r > 1and that ap = b1, bq = c1, and cr = a1. Moreover, sine b1 and c (resp. c1 and a, and a1 and
b) are the only two ommon neighbors of a and b (resp. b and c, and a and c) in T ′ (else therewould be a separating 3-yle) then (a1, . . . , ap = b1, . . . , bq = c1, . . . , cr = a1) is a yle. Thisimplies from Lemma 2 that T2 is a W-triangulation.Suppose that there exists an edge aiaj (resp. bibj , cicj) with 1 < i + 1 < j ≤ p (resp.
1 < i + 1 < j ≤ q, 1 < i + 1 < j ≤ r). Then, the yle (a, ai, aj) (resp. (b, bi, bj), (c, ci, cj))would be a separating 3-yle of T ′. Consequently, T2 is a 3-bounded W-triangulation andsine the fae region ρabc in (Σ1, R1) is an (a, b, c)-region (not an (b, a, c) or an (c, a, b)-region),let us onsider the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) of T2. With respet to this3-boundary, T2 has a partial strong 1-string representation (Σ2, R2,X2), with X2 = Eo\{a1a2}(.f. Property 1). Let τ2 be the region of the plane homeomorphi to the disk ontaining thisrepresentation.Let σ1

a, σ
1
b , σ

1
c be the strings of Σ1 orresponding respetively to the verties a, b, and c inthe strong 1-string representation of the triangulation T1. By symmetry, one an suppose thatin the boundary of ρabc, one an �nd antilokwise σ1

a, σ
1
a, σ

1
b , σ1

b , σ
1
c , σ

1
a, σ

1
c .7



Let σ2
a2

, . . . , σ2
ap

= σ2
b1

, σ2
c1

, . . . , σ2
cr

= σ2
a1

be the strings orresponding respetively to theverties a2, . . . , ap = b1, . . . bq = c1, . . . cr = a1 in the partial strong 1-string representation of
T2. Again, by symmetry, one an suppose that in the boundary of τ2 one an �nd antilokwisethe ends of σ2

a2
, . . . , σ2

ap
, σ2

b1
, . . . , σ2

bq
, σ2

c1
, . . . , σ2

cr
. W.l.o.g., one an suppose that one an insertthe region τ2 in the enter of the fae-region ρabc (see Figure 8).To obtain a strong 1-string representation (Σ, R) of T , we need to extend the strings

σ2
a2

, . . . , σ2
ap

, σ2
b1

, . . . , σ2
bq

, σ2
c1

, . . . , σ2
cr
to obtain intersetions that orrespond to the edges in theset E(T )\(E(T1)∪(E(T2)\X2)) = {aai | i ∈ [1, p]}∪{bbi | i ∈ [1, q]}∪{cci | i ∈ [1, r]}∪{aiai+1 |

i ∈ [2, p − 1]} ∪ {bibi+1 | i ∈ [1, q − 1]} ∪ {cici+1 | i ∈ [1, r − 1]}. Let us denote σa2
, . . . , σap =

σb1 , σc1 , . . . , σcr = σa1
the extensions of the strings σ2

a2
, . . . , σ2

ap
= σ2

b1
, σ2

c1
, . . . , σ2

cr
= σ2

a1
. Wealso need to de�ne fae regions for the faes in the set {abb1, aca1, bcc1} ∪ {aaiai+1 | i ∈

[1, p − 1]} ∪ {bbibi+1 | i ∈ [1, q − 1]} ∪ {ccici+1 | i ∈ [1, r − 1]}.The onstrution of (Σ, R) appears on Figure 8. Let Σ = Σ1∪Σ2\{σ
2
a2

, . . . , σ2
ap

, σ2
b2

, . . . , σ2
bq

,

σ2
c2

, . . . , σ2
cr
}∪{σa2

, . . . , σap , σb2 , . . . , σbq
, σc2, . . . , σcr} and R = R1 \{ρabc}∪R2 ∪{ρaca1

, ρc1bc,
ρb1ab, ρa2a1a} ∪ {ρai+1aai

| i ∈ [2, p − 1]} ∪ {ρbi+1bbi
| i ∈ [1, q − 1]} ∪ {ρci+1cci

| i ∈ [1, r − 1]}.Sine (Σ1, R1) is a strong 1-string representation of T1 and (Σ2, R2,X2) is a partial strong1-string representation of T2, it is lear that (Σ, R) is a strong 1-string representation of T .
ρcrccr−1

ρc2cc1
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ρb2bb1
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σ2
bq
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apσ2
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cr
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Figure 8: Case (B): Modi�ations inside ρabc.Consequently, every triangulation admits a strong 1-string representation, whih provesTheorem 3 and then Theorem 2. 24 ConlusionOne an wonder whether the method we use in this paper that is based on Whitney's de-omposition an be used to prove that any planar graph admits a segment representation.This would need strong onditions on the way (a, b, c)-region are represented to use the same8



indutive sheme.Another interesting question is whether this result holds for other surfaes. For exemple,does any graph embedded in an oriented surfae Sg have a 1-string representation in Sg ?Referenes[1℄ I.B.-A. Hartman, I. Newman, R. Ziv. On grid intersetion graphs. Disrete Math.,87(1):41�52, 1991.[2℄ N. de Castro, F. Cobos, J.C. Dana, A. Márquez, and M. Noy. Triangle-free planar graphsas segment intersetion graphs. J. Graph Algorithms Appl., 6(1):7�26, 2002.[3℄ J. Czyzowiz, E. Kranakis, and J. Urrutia. A simple proof of the representation ofbipartite planar graphs as the ontat graphs of orthogonal straight line segments. Inform.Proess. Lett., 66(3):125�126, 1998.[4℄ G. Ehrlih, S. Even, and R.E. Tarjan. Intersetion Graphs of Curves in the Plane. J.Combin. Theory. Ser. B 21:8�20, 1976.[5℄ H. de Fraysseix, P. Ossona de Mendez, and J. Pah. Representation of planar graphs bysegments. Intuitive geometry (Szeged, 1991), Colloq. Math. So. János Bolyai, 63:109�117, 1994.[6℄ D. Gonçalves. Edge-Partition of Planar Graphs into two Outerplanar Graphs. Proeedingsof the 37th Annual ACM Symposium on Theory of Computing, 504�512, 2005.[7℄ H. Grötzsh. Ein Dreifarbensatz fur dreikreisfreie Netze auf der Kugel. Math. Nat. Reihe,8:390�408, 1959.[8℄ J. Kratohvíl and J. Matou²ek. Intersetion Graphs of Segments. J. Combin. Theory.Ser. B, 62:180�181, 1994.[9℄ P. Ossona de Mendez and H. de Fraysseix. Intersetion Graphs of Jordan Ars. DIMACSSeries in Disrete Mathematis and Theoretial Computer Siene, 49:11�28, 1999.[10℄ E.R. Sheinerman. Intersetion lasses and multiple intersetion parameters of graphs.PhD Thesis, Prineton University, 1984.[11℄ D. West. Open problems. SIAM J. Disrete Math. Newslett., 2(1):10�12, 1991.[12℄ H. Whitney. A theorem on graphs. Ann. of Math. (2), 32(2):378�390, 1931.A Proof of Property 1.Before proving Property 1, we give some de�nitions and we present Property 2. Considera 3-bounded W-triangulation T 6= K3 whose boundary is (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)suh that T does not ontain any hord aibj or aicj .Let D ⊆ Vi(T ) be the set of inner-verties of T that are adjaent to some vertex ai with
i > 1. 9



Sine T has at least 4 verties, no separating 3-yle, and no hord aiaj, aibj , or aicj ,then a1 and a2 (resp. b1 and b2) have exatly one ommon neighbor in V (T ) \ {c1} (resp.
V (T ) \ {a1}) that will be denoted a (resp. d1).Sine there is no hord aiaj , aibj, or aicj, for eah vertex ai with i ∈ [2, p − 1] (resp. ap),all the neighbors of ai (resp. ap) exept ai−1 and ai+1 (resp. ap−1 and b2) are in D. Sine foreah i ∈ [2, p], there is a path between the neighbors of ai, and sine the verties ai and ai+1have a ommon neighbor in D, then the set D indues a onneted graph. Sine a is in D,the set D ∪ {a1} also indues a onneted graph.The adjaent path of T with respset to the 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr)is the shortest path linking d1 and a1 in T [D ∪ {a1}] (the graph indued by D ∪ {a1}). Thispath will be denoted (d1, d2, . . . , ds, a1).Observation 1 There exists neither an edge didj with 2 ≤ i + 1 < j ≤ s, nor an edge a1diwith 1 ≤ i < s. Otherwise (d1, d2, . . . ds) is not the shortest path between d1 and a1.

a1

a2

b2
ds d1d2

a3

c1 = bq

a4 a5 b1 = ap

a1

b2
ds d1d2

c1 = bq

a5 b1 = ap

T Td2a5Figure 9: the adjaent path of T and the graph Td2a5
.For eah edge dxay ∈ E(T ) with x ∈ [1, s] and y ∈ [2, p], we de�ne the graph Tdxay

. Sine
D ⊆ Vi(T ), C = (a1, ds, . . . , dx, ay, . . . , ap, b2, . . . , bq, c2, . . . , cr) is a yle. The graph Tdxay

isthe graph lying inside the yle C (see Figure 9).From Lemma 2, the graph Tdxay
is a W-triangulation.Property 2 Consider a 3-bounded W-triangulation T with a 3-boundary (a1, . . . , ap)-(b1, . . . , bq)-

(c1, . . . , cr) that does not have any hord aibj or aicj and with an adjaent path (d1, d2, . . . , ds, a1).For eah edge dxay ∈ E(T ), the graph Tdxay
admits a partial strong 1-string representation

(Σ, R,X) ontained in a region τ (Σ ∪ R ⊂ τ) that satis�es the following properties:(a) X = Eo(G) \ {dxay},(b) τ is a region of the plane homeomorphi to the disk,() for eah inner-vertex v, the intersetion of σv with the boundary of τ is empty,(d) for eah outer-vertex v di�erent from dx and ay, the intersetion of σv with the boundaryof τ is a set ontaining at most two spei� points, the ends of σv,10



(e) the intersetion of dx with the boundary of τ is a set ontaining exatly two internal pointsof σdx
. Furthermore, σdx

∩ τ is onneted.(f) the intersetion of ay with the boundary of τ is a set ontaining exatly two internal pointsof σay and at least one end of σay (two when ay = ap). Furthermore, σay ∩ τ is onneted.(g) in the boundary of τ we suessively meet the ends of σay , . . . , σap , σb1 , . . . , σbq
, σc1, . . . , σcr ,

σds
, . . . , σdx+1

, and then we suessively meet internal points of σdx
, σay , σdx

, and σay .The last ondition implies that σdx
and σay interset inside τ .

τ

σa1

σcr

σc2

σds

σdx
σay

σay

σap

σb1

σb2

σbq
σc1

Figure 10: Property 2.We now prove Properties 1 and 2.Theorem 4 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
).This theorem implies Property 1 whih is used in the proof of Theorem 2. Although Property2 is not used in the proof of Theorem 2, we need it to prove Property 1. Indeed, we provethese two properties by doing a �rossed� indution.Proof. The proof of Theorem 4 uses a deomposition of triangulations de�ned by Whitneyin [12℄ and reently used by the seond author in [6℄. We prove Theorem 4 by indution onthe number of edges of T or Tdxay

. For the initial step we prove the following lemma.Lemma 3 Property 1 (resp. Property 2) holds for any W-triangulation T (resp. Tdxay
) with

|E(T )| ≤ 3 (resp. |E(Tdxay
)| ≤ 3).Proof. There is only one W-triangulation with at most 3 edges, the graph K3. This impliesthat there is no W-triangulation Tdxay

with at most 3 edges, so Property 2 obviously holdsfor any W-triangulation Tdxay
with at most 3 edges.11



σa

σb

σc

τ
ρabc

Figure 11: Initial ase for Theorem 4.For Property 1, we have to onsider all the possibles 3-boundaries of K3. All these 3-boundaries are equivalent. Let V (K3) = {a, b, c} and onsider the 3-boundary (a, b)-(b, c)-
(c, a). In the Figure 11 there is a partial strong 1-string representation (Σ, R,X) of K3ontained in τ and with Σ = {σa, σb, σc}, R = {ρabc}, and X = {bc, ac}.

2We now prove the indutive step with the following lemma.Lemma 4 For any integer m > 3, Property 1 holds for any W-triangulation T suh that
|E(T )| < m and Property 2 holds for any W-triangulation Tdxay

suh that |E(Tdxay
)| < m,then Property 1 and Property 2 respetively holds for any W-triangulation T or Tdxay

suhthat |E(T )| = m and |E(Tdxay
)| = m.Proof. We �rst prove that if the onditions of Lemma 4 are satis�ed, then Property 1 holdsfor any W-triangulations T suh that |E(T )| = m. We then prove that it is also the ase forProperty 2 with any W-triangulations Tdxay

suh that |E(Tdxay
)| = m.Case 1: Proof of Property 1 for a W-triangulation T suh that |E(T )| = m. Let

(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr) be the 3-boundary of T onsidered. We distinguish di�er-ent ases aording to the existene of a hord aibj or aicj in T . We suessively onsiderthe ase where there is a hord a1bj, with 1 < j < q, the ase where there is a hord aibj ,with 1 < i < p and 1 < j ≤ q, and the ase where there is a hord aicj, with 1 < i ≤ p and
1 < j < r. We then �nish with the ase where there is no hord aibj, with 1 ≤ i ≤ p and
1 ≤ j ≤ q (by de�nition of 3-boundary, T has no hord a1bq, aib1, or apbj), and no hord aicj ,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (by de�nition of 3-boundary, T has no hord apc1, aicr, or a1cj).

a1 = cr b1 = ap

c1 = bq

bi

T2

T1

T

Figure 12: Case 1.1: Chord a1bi.12



Case 1.1: There is a hord a1bj, with 1 < j < q (see Figure 12). Let T1 (resp. T2) bethe subgraph of T that lies inside the yle (a1, bi, . . . , bq, c2, . . . , cr) (resp. (a1, a2, . . . , b1, bi, a1)).By Lemma 2, T1 and T2 are W-triangulations. Sine T has no hord axay, bxby, or cxcy, (bicr)-
(cr, . . . , c1)-(bq, . . . , bi) (resp. (a1, . . . , ap)-(b1, . . . , bi)-(bia1)) is a 3-boundary of T1 (resp. T2).Furthermore, sine a1a2 /∈ E(T1) (resp. c1c2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 13 we show how to assoiate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Notie that the boundary of τ1 is traversed antilokwise and the boundary of τ2 is traversedlokwise.

σ1
biσ1

c1

σ′

c1
σ′

bq

σ1
a1

σ2
bqσ2

bi

σ2
b1

σ2
apσ2

a2

σ2
a1

τ1

τ2

Figure 13: Case 1.1: (Σ, R,X).We an easily hek that (Σ, R,X) is as expeted:
• Σ is a 1-string representation: Sine (E(T1) \X1) ∩ E(T2) \X2) = ∅, there is no pair ofstrings ossing eah other more than one.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, (T1 \ X1) ∪

T2 \ X2) = T \ X.
• (Σ, R) is �strong�: Eah inner-fae of T is an inner-fae in T1 or T2 and the regions τ1and τ2 are disjoint (so the fae-regions in τ1 are disjoint from the fae-regions in τ2).
• We see in Figure 13 that onditions (b), (), (d), and (e) of Property 1 are satis�ed.

a1 = cr b1 = ap

c1 = bq

ai

bj

T2

T1

T

Figure 14: Case 1.2: Chord aibj .Case 1.2: There is a hord aibj, with 1 < i < p and 1 < j ≤ q (see Figure 14). Ifthere are several hords aibj , we onsider one whih maximizes j, i.e. suh that there is no13



hord aibk with j < k ≤ q. Let T1 (resp. T2) be the subgraph of T that lies inside the yle
(a1, a2, . . . , ai, bj , . . . , bq, c2, . . . , cr) (resp. (ai, . . . , ap, b2, . . . , bj , ai)). By Lemma 2, T1 and T2are W-triangulations. Sine T has no hord axay, bxby, cxcy, or aibk with k > j, (a1, . . . , ai)-
(ai, bj , . . . , bq)-(c1, . . . , cr) (resp. (ai, bj)-(bj , . . . , b1)-(ap, . . . , ai)) is a 3-boundary of T1 (resp.
T2). Furthermore, sine b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 15 we show how to assoiate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Notie that the boundary of τ1 is traversed lokwise and the boundary of τ2 is traversedantilokwise.

σ2
ap

σ2
ai

σ2
b1

σ2
bj

σ2
bj

σ1
ai

σ1
ai

σ1
bj

σ1
c1

σ1
cr

σ1
a2

σ1
bq

τ1

τ2

Figure 15: Case 1.2: (Σ, R,X).As in Case 1.1, we easily hek that (Σ, R,X) is orret.
a1 = cr b1 = ap

c1 = bq

cj

ai

T2

T1

T

Figure 16: Case 1.3: Chord aicj .Case 1.3: There is a hord aicj, with 1 < i ≤ p and 1 < j < r (see Figure 16). Ifthere are several hords aicj , we onsider one whih maximizes i, i.e. suh that there is nohord akcj with i < k < r. Let T1 (resp. T2) be the subgraph of T that lies inside the yle
(a1, a2, . . . , ai, cj , . . . , cr) (resp. (cj , ai, . . . , ap, b2, . . . , bq, c2, . . . , cj)). By Lemma 2, T1 and T2are W-triangulations. Sine T has no hord axay, bxby, cxcy ou akcj ave k > i, (a1, . . . , ai)-
(ai, cj)-(cj , . . . , cr) (resp. (cj , ai, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cj)) is a 3-boundary of T1 (resp.
T2). Furthermore, sine b1b2 /∈ E(T1) (resp. a1a2 /∈ E(T2)), T1 (resp. T2) has less edges then
T , Property 1 holds for T1 and T2 with the mentioned 3-boundaries. Let (Σ1, R1,X1) (resp.
(Σ2, R2,X2)) be the partial strong 1-string representations ontained in the region τ1 (resp.
τ2) obtained for T1 (resp. T2). In Figure 17 we show how to assoiate this two representationsto obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.14



Notie that the boundary of τ1 is traversed lokwise and the boundary of τ2 is traversedantilokwise.
σ1

cj σ1
cj σ2

b1
σ2

cj

σ1
ai

σ1
ai

σ1
a2

σ1
cr

σ2
bqσ2

ci

σ2
ap

σ2
aiτ1

τ2

Figure 17: Case 1.3: (Σ, R,X).As in Case 1.1, we easily hek that (Σ, R,X) is orret.Case 1.4: There is no hord aibj, with 1 ≤ i ≤ p and 1 ≤ j ≤ q, and no hord aicj,with 1 ≤ i ≤ p and 1 ≤ j ≤ r (see Figure 18). In this ase we onsider the adjaent path
(d1, . . . , ds, a1) (see Figure ??) of T with respet to its 3-boundary, (a1, . . . , ap)-(b1, . . . , bq)-
(c1, . . . , cr). Consider the edge dsay, with 1 < y ≤ p, whih minimizes y. This edge existssine, by de�nition of ds, ds is adjaent to some vertex ay with y > 1. The W-triangulation
Tdsay

having less edges than T (a1a2 /∈ E(Tdsay
)), Proprerty 2 holds for Tdsay

. Let (Σ′, R′,X ′)be the partial strong 1-string representations ontained in the region τ ′ obtained for Tdsay
.

c1 = bq

ay

ds

b1 = ap

cr−1

ds

cr−1

ds

ay

e1

cr = a1a2cr = a1a1 = cr a2

e2
Tdsay

T1

Figure 18: Case 1.4: No hord aibj or aicj .Now we distinguish two ases aording to the position of ay, the �rst is when y = 2 andthe seond is when y > 2.Case 1.4.1: y = 2 (see Figure 19). In Figure 19, starting from (Σ′, R′,X ′), we showhow to extend the string σ′

a1
∈ Σ′ and how to draw the (a1, a2, ds)-region ρa1a2ds

to obtain
(Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1. Here wehave Σ = (Σ′ \ {σ′

a1
}) ∪ {σa1

}, with σa1
being the extension of σ′

a1
, R = R′ ∪ {ρa1a2ds

}, and
X = Eo(T ) \ {a1a2}.We hek that (Σ, R,X) is orret:

• Σ is a 1-string representation: Sine a1ds /∈ E(Tdsa2
) \ X ′ (resp. a1a2 /∈ E(Tdsa2

) \ X ′),15



ρa1a2ds

σ′

a2σ′

ds
σ′

a1

σ′

cr

σ′

a2

σ′

ap

σ′

b1

σ′

b2

σ′

bq
σ′

c1

σ′

c2

τ ′

Figure 19: Case 1.4.1.the two strings σa1
and σds

(resp. σa1
and σa2

) interset only one, in τ ∩ τ ′. So thereis no pair of strings ossing eah other more than one.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, (E(Tdsa2

) \
X ′) ∪ {a1ds, a1a2} = E(T ) \ X.

• (Σ, R) is �strong�: The only inner-fae of T that is not an inner-fae in Tdsa2
is a1a2ds.Sine the regions τ ′ and ρa1a2ds

are disjoint, all the fae-regions of R = R′ ∪ {ρa1a2ds
}are disjoint.

• We see in Figure 19 that onditions (b), (), (d), and (e) of Property 1 are satis�ed.Case 1.4.2: y > 2 (see Figure 20). Let us denote e1, e2, . . . , et the neighbors of ds stritlyinside the yle (ds, a1, a2, . . . , ay), going �from right to left� (see Figure 20). By minimalityof y we have ei 6= aj , for all 1 ≤ i ≤ t and 1 ≤ j ≤ y.Let T1 be the subgraph of T that lies inside the yle (a1, . . . , ay, e1, . . . , et, a1). By Lemma2, T1 is a W-triangulation. Sine the W-triangulation T has no separating 3-yle (ds, ay, ei)or (ds, ei, ej), there exists no hord ayei or eiej in T1. So (a2, a1)-(a1, et, . . . , e1, ay)-(ay, . . . , a2)is a 3-boundary of T1. Finally, sine T1 has less edges than T (a1ds /∈ E(T1)), Property 1holds for T1 with respet to the mentionned 3-boundary. Let (Σ1, R1,X1) be the partial strong1-string representations ontained in the region τ1 obtained for T1.In Figure 20, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

a1
∈ Σ′ and σ1

a1
∈ Σ1 (resp. σ′

ay
∈ Σ′ and σ1

ay
∈ Σ1), how to extend the strings σ1

ei
∈ Σ1, for

1 ≤ i ≤ t], and how to draw the fae-regions ρaye1ds
, ρeta1ds

, and ρeiei−1ds
, for 2 ≤ i ≤ t, inorder to obtain (Σ, R,X), a partial strong 1-string representation of T that satis�es Property 1.Here we have Σ = (Σ′\{σ′

a1
, σ′

ay
})∪(Σ1\({σ1

ay
, σ1

a1
}∪{σ1

ei
| i ∈ [1, t]}))∪{σa1

, σay}∪{σei
| i ∈

[1, t]}, with σa1
(resp. σay) being the juntion of σ′

a1
and σ1

a1
(resp. σ′

ay
and σ1

ay
), the strings16



σei
being the extensions of the strings σ1

ei
∈ Σ1, R = R′ ∪ R1 ∪ {ρaye1ds

, ρeta1ds
} ∪ {ρdseiei−1

|
i ∈ [2, t]} and X = Eo(T ) \ {a1a2}.

σ′

ds
σ′

a1

σ′

cr

σ1
e1

σ1
ay

σ′

ay

σ′

ay

σ1
a2 σ1

a3

σ′

ay+1

τ1

τ ′

σ1
et

σ1
a1

Figure 20: Case 1.4.2.We hek that (Σ, R,X) is orret:
• Σ is a 1-string representation: Sine the edges a1et, a1ds, aye1, eiei+1, and eids are notin (E(Tdsay

) \ X ′) ∪ (E(T1) \ X1) there is no two strings interseting more than one.
• Σ is a 1-string representation of T \ X with X = Eo(T ) \ {a1a2}: Indeed, E(T ) \ X =

(E(Tdsay
)\X ′)∪ (E(T1)\X1)∪{aye1, eta1, dsa1}∪{eiei−1 | i ∈ [2, t]}∪{dsei | i ∈ [1, t]}.

• (Σ, R) is �strong�: The only inner-faes of T that are not inner-faes in Tdsay
or T1 are

a1etds, aye1ds, and the faes eiei−1ds, for 2 ≤ i ≤ t. Sine the regions τ ′, τ1, ρaye1ds
,

ρeta1ds
, and ρeiei−1ds

, for 2 ≤ i ≤ t, are all disjoint, all the fae-regions of R are disjoint.
• We see in Figure 20 that onditions (b), (), (d), and (e) of Property 1 are satis�ed.This ompletes the study of Case 1. So, Property 1 holds for any W-triangulation T suhthat |E(T )| = m.Case 2: Proof of Property 2 for any W-triangulation Tdxay

suh that |E(Tdxay
)| = m.Reall that the W-triangulation Tdxay

is a subgraph of a W-triangulation T with 3-boundary
(a1, . . . , ap)-(b1, . . . , bq)-(c1, . . . , cr). Moreover, T has no hord aibj or aicj and its adjaentpath is (d1, . . . , ds, a1), ave s ≥ 1.When dxay 6= d1ap we de�ne the ouple of integers (z,w) 6= (x, y), with 1 ≤ z ≤ x and
y ≤ w ≤ p, suh that there is an edge dzaw ∈ E(Tdxay

) (there is at least one suh edge, d1ap).Within all the possibles ouples (z,w) 6= (x, y), we onsider the one that maximizes z andthen minimizes w. Sine the vertex dx−1 is by de�nition adjaent to some vertex ai we observethat, by maximality of z, we have z = x or x − 1.We distinguish �ve ases. First we onsider the ase where dxay = d1ap (Case 2.1). When
dxay 6= d1ap the ases depend on the edge dzaw. When z = x we have the ase where w = y+117



(Case 2.2) and the ase where w > y + 1 (Case 2.4), and when z = x − 1 we have the asewhere w = y (Case 2.3) and the ase where w > y (Case 2.5).
b1 = ap

b2

d1
a1

a2

c1

ds

T1

Figure 21: Case 2.1: Tdxay
= Td1ap

.Case 2.1: dxay = d1ap (see Figure 21). Let T1 be the subgraph of Td1ap
that lies insidethe yle (a1, ds, . . . , d1, b2, . . . , bq, c2, . . . , cr). By Lemma 2, T1 is a W-triangulation. ThisW-triangulation has no hord bibj, cicj , didj , or a1dj. We onsider two ases aording to theexistene of an edge d1bi with 2 < i ≤ q.

• If T1 has no hord d1bi then (d1, b2, . . . , bq)-(c1, . . . , cr)-(a1, ds, . . . , d1) is a 3-boundaryof T1.
• If T1 has a hord d1bi, with 2 < i ≤ q, note that q > 2 and that there annot be a hord

b2a1 or b2dj , with 1 < j ≤ s (this would violate the planarity of Tdxay
, see Figure 21)So in this ase, (b2, d1, . . . , ds, a1)-(cr, . . . , c1)-(bq, . . . , b2) is a 3-boundary of T1.Finally, sine T1 is a W-triangulation with less edges than Td1ap

, Property 1 holds for T1with respet to at least one of the two mentionned 3-boundaries. Whihever 3-boundary weonsider, we obtain a partial strong 1-string representation (Σ1, R1,X1) of T1 with the sameproperties:
• X1 = Eo(T ) \ {d1b2},
• Σ1 ∪ R1 is ontained in a regoin τ1 homeomorphi to the disk,
• in the boundary of τ1 we suessively meet the ends of σ1

d1
, . . . , σ1

ds
, σ1

a1
, σ1

cr
, . . . , σ1

c1
, σ1

bq
, . . . , σ1

b2(in the lokwise or in the antilokwise sense).In Figure 22 we modify (Σ1, R1,X1), by extending the strings σ1
d1

and σ1
b2

∈ Σ1 and by addinga new string σap and a new fae region ρd1b2ap
. This leads to (Σ, R,X), a partial strong 1-string representation of Td1ap

that satis�es Property 2. Here we have X = Eo(Td1ap
) \ {d1ap},

R = R1 ∪ {ρd1b2ap
, and Σ = (Σ1 \ {σ

1
d1

, σ1
b2
}) ∪ {σd1

, σb2 , σap}, the strings σd1
and σb2 beingthe extensions of the strings σ1

d1
and σ1

b2
∈ Σ1.We hek that (Σ, R,X) is orret:

• Σ is a 1-string representation: It is lear that there is no two strings interseting morethan one.
• Σ is a 1-string representation of Td1ap

\ X: Indeed, E(Td1ap
) \ X = (E(T1) \ X1) ∪

{apd1, apb2}. 18



σ1
bq

σ2
b2

σ1
cr

σ1
c1

σ1
a1σ

1
ds

σ1
d1

ρd1b2ap

σap

τ1

Figure 22: Case 2.1: (Σ, R,X).
• (Σ, R) is �strong�: The only inner-fae of Td1ap

that is not an inner-fae of T1 is d1apb2.Sine the regions τ1 and ρd1apb2 are disjoint, all the fae-regions of R are disjoint.
• We see in Figure 22 that onditions (b), (), (d), (e), (f), and (g) of Property 2 aresatis�ed.

b1 = ap

c1 = bq

b1 = ap

c1 = bq

dz

aw

aw
ay

dx = dz

a1 = cr

Tdzaw

Figure 23: Case 2.2: Tdxay
6= Td1ap

, z = x and w = y + 1.Case 2.2: Tdxay
6= Td1ap

, z = x and w = y + 1 (see Figure 23). By Lemma 2, Tdzaw
is aW-triangulation. Sine Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw

ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.In Figure 24 we modify (Σ′, R′,X ′), by extending the string σ′

aw
∈ Σ′ and by adding anew string σay and a new fae region ρayawdx

. This leads to (Σ, R,X), a partial strong 1-string representation of Tdxay
that satis�es Property 2. Here we have X = Eo(Tdxay

)\{dxay},
R = R′ ∪ {ρayawdx

, and Σ = (Σ′ \ {σ′

aw
}) ∪ {σaw , σay}, the string σaw being the extension

σ1
aw

∈ Σ′.We hek that (Σ, R,X) is orret:
• Σ is a 1-string representation: It is lear that there is no two strings interseting morethan one.
• Σ is a 1-string representation of Tdxay

\ X: Indeed, E(Tdxay
) \ X = (E(Tdzaw

) \ X ′) ∪
{dzaw}. 19



σds

σa1

σcr

σc1

σb1

σdx
σaw

σbq

σb2

σap

σaw

σay

σc2

τ ′

ρayawdx

Figure 24: Case 2.2: (Σ, R,X).
• (Σ, R) is �strong�: The only inner-fae of Tdxay

that is not an inner-fae of Tdzaw
is

dxayaw. Sine the regions τ ′ and ρdxayaw
are disjoint, all the fae-regions of R aredisjoint.

• We see in Figure 24 that onditions (b), (), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

b1 = ap

dx

dx dz

ay = aw

ay = aw

a1 = cr

Tdzaw

Figure 25: Case 2.3: Tdxay
6= Td1ap

, z = x − 1 and w = y.Case 2.3: Tdxay
6= Td1ap

, z = x − 1 and w = y (see Figure 25). By Lemma 2, Tdzaw
is aW-triangulation. Sine Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw

ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.In Figure 26, we modify (Σ′, R′,X ′) by extending the string σ′

dx
∈ Σ′ and by adding anew fae region ρdxaydw

. This leads to (Σ, R,X), a partial strong 1-string representation of20



Tdxay
that satis�es Property 2. Here we have X = Eo(Tdxay

) \{dxay}, R = R′∪{ρdxaydw
, and

Σ = (Σ′ \ {σ′

dx
}) ∪ {σdx

}, the string σdx
being the extension σ1

dx
∈ Σ′.

σa1

σcr

σc1

σb1

σaw

σc2

σbq

σds

σdz

ρayawdx

σdx

σay

σap

σb2

τ ′

Figure 26: Case 2.3: (Σ, R,X).We hek that (Σ, R,X) is orret:
• Σ is a 1-string representation: Sine the edges dxdz and dxay are not in (E(Tdzaw

) \X ′)there is no two strings interseting more than one.
• Σ is a 1-string representation of Tdxay

\ X: Indeed, E(Tdxay
) \ X = (E(Tdzaw

) \ X ′) ∪
{dxdz, dxay}.

• (Σ, R) is �strong�: The only inner-fae of Tdxay
that is not an inner-fae of Tdzaw

is dxdzay.Sine the regions τ ′ and ρdxdzay
are disjoint, all the fae-regions of R are disjoint.

• We see in Figure 26 that onditions (b), (), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

aw

b1 = ap

a1 = cr

dx = dz

aw

e1
e2

Tdzaw

T1
ay

Figure 27: Case 2.4: Tdxay
6= Td1ap

, z = x and w > y + 1.21



Case 2.4: Tdxay
6= Td1ap

, z = x and w > y + 1 (see Figure 27). By Lemma 2, Tdzaw
is aW-triangulation. Sine Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw

ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.Let us denote e1, e2, . . . , et the neighbors of dx stritly inside the yle (dx, ay, . . . , aw),going �from right to left� (see Figure 27). Sine there is no hord aiaj we have t > 0.Furthermore by minimality of w we have ei 6= aj , for all 1 ≤ i ≤ t and y ≤ j ≤ w. Let T1 bethe subgraph of Tdxay

that lies inside the yle (ay, . . . , aw, e1, . . . , et, ay). By Lemma 2, T1 isa W-triangulation. Sine the W-triangulation Tdxay
has no separating 3-yle (dx, aw, ei) or

(dx, ei, ej), there exists no hord awei or eiej in T1. With the fat that t > 0, we know that
(et, ay)-(ay , . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sine T1 has less edges than
Tdxay

(dxay /∈ E(T1)), Property 1 holds for T1 with respet to the mentionned 3-boundary. Let
(Σ1, R1,X1) be the partial strong 1-string representations ontained in the region τ1 obtainedfor T1.In Figure 28, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

aw
∈ Σ′ and σ1

aw
∈ Σ1, how to extend the string σ1

ay
∈ Σ1 and the strings σ1

ei
∈ Σ1,for 1 ≤ i ≤ t, and how to draw the fae-regions ρayetdx

, ρe1awdx
, and ρeiei−1dx

, for 2 ≤
2 ≤ t, in order to obtain (Σ, R,X), a partial strong 1-string representation of Tdxay

thatsatis�es Property 2. Here we have Σ = (Σ′ \ {σ′

aw
}) ∪ (Σ1 \ ({σ1

ai
| i ∈ [y,w]} ∪ {σ1

ei
| i ∈

[1, t]})) ∪ {σai
| i ∈ [y,w]} ∪ {σei

| i ∈ [1, t]}, with σaw being the juntion of σ′

aw
and σ1

aw
,the strings σai

(resp. σei
) being the extensions of the strings σ1

ai
∈ Σ1 (resp. σ1

ei
∈ Σ1),

R = R′ ∪ R1 ∪ {ρe1awdx
, ρayetdx

} ∪ {ρdsetet−1
| i ∈ [2, t]} and X = Eo(T ) \ {dxay}.

σ′

cr

σ1
e1

σ′

ay

σ1
et

σ′

a1 σ′

ds
σ′

dx

σ1
awσ1

ay

σ1
ay

σ′

aw
σ′

aw+1

τ1

τ ′

Figure 28: Case 2.4: (Σ, R,X).We hek that (Σ, R,X) is orret:
• Σ is a 1-string representation: Sine the edges dxay, awe1, eiei+1, and dxei are not in

(E(Tdxay
) \ X ′) ∪ (E(T1) \ X1) there is no two strings interseting more than one.

• Σ is a 1-string representation of Tdxay
\ X with X = Eo(Tdxay

) \ {dxay}: Indeed,
E(Tdxay

)\X = (E(Tdzaw
)\X ′)∪(E(T1)\X1)∪{awe1, dxay}∪{eiei−1 | i ∈ [2, t]}∪{dxei |22



i ∈ [1, t]}.
• (Σ, R) is �strong�: The only inner-faes of Tdxay

that are not inner-faes in Tdzaw
or T1are dxayet, dxawe1, and the faes dxeiei−1, for 2 ≤ i ≤ t. Sine the regions τ ′, τ1, ρdxayet

,
ρdxawe1

, and ρdxeiei−1
, for 2 ≤ i ≤ t, are all disjoint, all the fae-regions of R are disjoint.

• We see in Figure 28 that onditions (b), (), (d), (e), (f), and (g) of Property 2 aresatis�ed.
c1 = bqc1 = bq

dz

aw

b1 = ap

dx

a1 = cr

dx dz

away

e1f2

Tdzaw

T1

f1 e2

Figure 29: Case 2.5: Tdxay
6= Td1ap

, z = x − 1 and w > y.Case 2.5: dxay 6= d1ap, z = x − 1 and w > y (see Figure 29). By Lemma 2, Tdzaw
is aW-triangulation. Sine Tdzaw

has less edges than Tdxay
(dxay /∈ E(Tdzaw

)), Property 2 holdsfor Tdzaw
. Let (Σ′, R′,X ′) be the partial strong 1-string representation of Tdzaw

ontained inthe region τ ′ with X ′ = Eo(Tdzaw
) \ {dzaw}.Let us denote e1, e2, . . . , et the neighbors of dz stritly inside the yle (dz , dx, ay, . . . , aw, dz),going �from right to left� (see Figure 29). By maximality of z, there is no edge dxaw, so t > 0.Let us denote f1, . . . , fu the neighbors of dx stritly inside the yle (dx, ay, . . . , aw, dz), going�from right to left� (see Figure 29). Note that f1 = et and that by minimality of w, there isno edge dzay, so u > 0.By minimality of w we have ei 6= aj (resp. fi 6= aj), for all 1 ≤ i ≤ t (resp. 1 ≤ i ≤ u) and

y ≤ j ≤ w. Let T1 be the subgraph of Tdxay
that lies inside the yle (ay, . . . , aw, e1, . . . , et, f2, . . . , fu, ay).By Lemma 2, T1 is a W-triangulation. Sine the W-triangulation Tdxay

has no separating3-yle (dz, aw, ei), (dz , ei, ej), (dx, fi, fj), or (dx, fi, ay), there exists no hord awei, eiej ,
fifj, or fiay in T1. With the fat that t > 0 and u > 0, we know that (f1, f2, . . . , fu, ay)-
(ay, . . . , aw)-(aw, e1, . . . , et) is a 3-boundary of T1. Finally, sine T1 has less edges than Tdxay(dxay /∈ E(T1)), Property 1 holds for T1 with respet to the mentionned 3-boundary. Let
(Σ1, R1,X1) be the partial strong 1-string representations ontained in the region τ1 obtainedfor T1.In Figure 30, starting from (Σ′, R′,X ′) and (Σ1, R1,X1), we show how to join the strings
σ′

aw
∈ Σ′ and σ1

aw
∈ Σ1, how to extend the string σ′

dx
∈ Σ′, σ1

ay
∈ Σ1 the strings σ1

ei
∈ Σ1,for 1 ≤ i ≤ t, and the strings σ1

fi
∈ Σ1, for 2 ≤ i ≤ u, and how to draw the fae-regions

ρdzawe1
, ρdzeiei−1

, for 2 ≤ i ≤ t, ρdzdxet
, ρdxfifi−1

, for 2 ≤ i ≤ u, and ρdxayfu
in order to obtain

(Σ, R,X), a partial strong 1-string representation of Tdxay
that satis�es Property 2. Here wehave Σ = (Σ′\{σ′

dx
, σ′

aw
})∪(Σ1\({σ1

ai
| i ∈ [y,w]}∪{σ1

ei
| i ∈ [1, t]}∪{σ1

ei
| i ∈ [2, u]}))∪{σai

|23



i ∈ [y,w]}∪{σei
| i ∈ [1, t]}∪{σei

| i ∈ [2, u]}, with σaw being the juntion of σ′

aw
and σ1

aw
, thestrings σai

(resp. σei
or σfi

) being the extensions of the strings σ1
ai

∈ Σ1 (resp. σ1
ei
or σ1

fi
∈ Σ1),

R = R′ ∪ R1 ∪ {ρdzawe1
, ρdzdxet

, ρdxayfu
} ∪ {ρdzeiei−1

| i ∈ [2, t]} ∪ {ρdxfifi−1
| i ∈ [2, u]}, and

X = Eo(T ) \ {dxay}.
σ1

e1

σ′

ay

σ1
et

σ′

aw

σ′

cr

σ′

a1
σ′

ds σ′

dx

σ1
fu

σ1
aw

σ1
ay

σ′

dz

σ′

aw+1

σ1
f2

τ1

τ ′

Figure 30: Case 2.5: (Σ, R,X).We hek that (Σ, R,X) is orret:
• Σ is a 1-string representation: Sine the edges dzei with 1 ≤ i ≤ t, dxdz, awe1, eiei−1with 2 ≤ i ≤ t, dxfi with 1 ≤ i ≤ u, dxay, fifi−1 with 3 ≤ i ≤ u, and fuay are not in

(E(Tdxay
) \ X ′) ∪ (E(T1) \ X1) there is no two strings interseting more than one.

• Σ is a 1-string representation of Tdxay
\ X with X = Eo(Tdxay

) \ {dxay}: Indeed,
E(Tdxay

) \ X = (E(Tdzaw
) \ X ′) ∪ (E(T1) \ X1) ∪ {dxay, dxdz, awe1, ayfu} ∪ {dzei |

i ∈ [1, t]} ∪ {dxfi | i ∈ [1, u]} ∪ {eiei−1 | i ∈ [2, t]} ∪ {fifi−1 | i ∈ [2, u]}.
• (Σ, R) is �strong�: The only inner-faes of Tdxay

that are not inner-faes in Tdzaw
or T1are dzawe1, dzeiei−1 for 2 ≤ i ≤ t, dzdxet dxfifi−1 for 2 ≤ i ≤ u, and dxayfu. Sine theregions τ ′, τ1, ρdzawe1

, ρdzeiei−1
for 2 ≤ i ≤ t, ρdzdxet

ρdxfifi−1
for 2 ≤ i ≤ u, and ρdxayfuare all disjoint, all the fae-regions of R are disjoint.

• We see in Figure 30 that onditions (b), (), (d), (e), (f), and (g) of Property 2 aresatis�ed.This ompletes the study of Case 2. So, Property 2 holds for any W-triangulation Tdxaysuh that |E(Tdxay
)| = m. This ompletes the proof of Lemma 4. 2This ompletes the proof of Theorem 4. 2
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