
Data Delivery by Energy-Constrained
Mobile Agents on a Line

Jérémie Chalopin1, Riko Jacob2, Matúš Mihalák2, and Peter Widmayer2

1 LIF, Aix-Marseille University & CNRS, Marseille, France
2 Institute of Theoretical Computer Science, ETH Zurich, Zürich, Switzerland

Abstract. We consider nmobile agents of limited energy that are placed
on a straight line and that need to collectively deliver a single piece of
data from a given source point s to a given target point t on the line.
Agents can move only as far as their batteries allow. They can hand
over the data when they meet. In this paper we show that deciding
whether the agents can deliver the data is (weakly) NP-complete, and
for instances where all input values are integers, we present a quasi-,
pseudo-polynomial time algorithm that runs in time O(∆2 · n1+4 log∆),
where ∆ is the distance between s and t. This answers an open problem
stated by Anaya et al. (DISC 2012).

Keywords: Mobile agents and robots; data aggregation and delivery;
power-awareness; algorithms; complexity

1 Introduction

The production of inexpensive, simple-built, mobile robots has led to new re-
search questions in how to employ and operate a swarm of such robots to achieve
desired goals. One of the fundamental goals of robotics is the delivery of data
from given sources to specified targets. An energy-efficient operation of mobile
robots becomes crucial when batteries of the robots are limited.

In this paper we study how to efficiently operate robots (called agents in
this paper) of limited batteries that need to collectively deliver one piece of data
along a line from a single source to a single target. Formally, our setting is given
by a source s and a target t placed along a line, and n autonomous mobile agents,
where agent i, i = 1, 2, . . . , n, has an initial position ai and an initial range Ri,
denoting the maximum length of a walk the agent can do. We ask whether the
agents can deliver a message from source s to target t. The message is picked up
by the first agent that reaches point s. An agent i with the message can pass on
the message to agent j, if i and j meet at the same point on the line. The message
is delivered if an agent with the message reaches target t. No agent i = 1, . . . , n
can travel more than its range Ri. We refer to this problem as DataDelivery.

Obviously, it makes no sense for an agent to carry the message more than
once. Then, even though the agents can in principle move simultaneously at a

time, it is easy to observe that for the sake of completing the task only,3 the
agents can move in turns: in the first turn, the agent picking up the message at
s moves; then, the agent taking over from the first agent moves; then, the agent
taking over from the second agent moves, and so on. In this view, a solution to
DataDelivery can be given in form of a schedule that prescribes the subset
of the agents that move and the order in which they move. We call a schedule
which indeed delivers the message from s to t a feasible schedule.

Previously, this problem has been studied in edge-weighted graphs and with
multiple sources [5]. Besides other results, it has been shown that the prob-
lem is NP-complete (for general graphs), and a min{3, 1 + maxi,j

Ri
Rj
}-resource

augmented algorithm has been presented; here, a polynomial-time algorithm is
called a γ-resource augmented, γ > 1, if either the algorithm (correctly) answers
that there is no feasible schedule, or it finds a feasible schedule for the modi-
fied (augmented) powers R′i := γ · Ri. The complexity of the problem for the
case when the graph is a line has been left open (it has been raised as an open
question by Anaya et al. [3], but not studied).

In this paper, we close the open problem in that we show that DataDeliv-
ery is weakly NP-complete (even if all input values are integers), and at the same
time, if all input values are integers, we present a quasi-, pseudo-polynomial time
algorithm running in timeO

(
∆2 · n1+4 log∆

)
and in timeO

(
∆2 · n1+4 log(Rmax+1)

)
,

where ∆ is the distance between s and t, and Rmax := maxiRi.

Related Work

There are very few papers studying explicitly the algorithmic question of data-
aggregation-like problems by mobile agents with limited batteries. Besides the
already mentioned paper by Chalopin et al. [5], the work of Anaya et al. [3] comes
closest to our problem. Anaya et al. [3] study the convergecast problem: given a
set of mobile agents in an edge-weighted graph, each agent possessing a certain
piece of data, and having a uniform battery power B, the agents need to move,
not more than what the battery allows, such that at some point at least one
agent knows all data. Obviously, there are no fixed source and target nodes,
which constitutes a difference to our problem. However, the main difference is
that in [3], it is assumed that all agents have the same range. In this case, the
problem is polynomial on a line, but is NP-hard if the graph is a tree.

Our problem has a flavour of the well studied problem of data aggregation
in (wireless) sensor networks [8], where the general computational problem is to
schedule the communication between (mostly) stationary sensor nodes so that
all data collected by the individual sensors eventually arrive in a pre-specified
aggregation node. While in data aggregation, the data is being sent over com-
munication channels, in our setting, the agents physically deliver the data.

3 It is an interesting, more general, and thus an even more difficult algorihtmic ques-
tion to also minimize the time needed for the delivery; for this objective, parallel
simultaneous moving of the agents would be crucial.

s t2 4 6 8 10 12 14 16

R1 = 3 R2 = 2 R3 = 3

R4 = 5

R5 = 16

R6 = 10

R7 = 20

18 20

Fig. 1. A solvable instance of DataDelivery on a line with agents a1, a2, . . . , a7 de-
picted by the small full disks, and annotated by their respective ranges R1, R2, . . . , R7.

Power-aware computation with mobile agents is a relatively new research
area, and, consequently, there is little algorithm-theoretical research. As an ex-
ception, Heo and Varshney [7] study self-deployment of agents in this context.

A related and intensively studied research question is that of minimizing the
total travelled distance by agents (which have unlimited battery) [1], [2], [4].

Further Terminology, Notation, and Model Refinement

We consider the positions of s, t and all n agents to be given by their distance
from s on the line. For simplicity, we identify the source s and the target t with
this distance, i.e., we set s = 0 and we interpret t > 0 as the distance of the
target from s. The position of agent i, i = 1, . . . , n, is given by its distance ai
from s. Sometimes, we will refer to agent i by its position, i.e., we say agent ai to
denote agent i. Recall that Ri is the range of agent i, and let Rmax = max{Ri |
1 ≤ i ≤ n}. Figure 1 gives a (solvable)4 instance of DataDelivery on a line.

We will assume, without loss of generality, that all ai are between s and t:
if there is an agent ai lying left of s, we can move it to s (and reduce its range
correspondingly), and similary, we can move any agent aj right of t to t (and
reduce its range correspondingly). Obviously, the original instance has a solution
if and only if the modified instance has one. In this adjusted problem instance,
we may assume that Ri < 2t for any agent i (as otherwise agent i with Ri ≥ 2t
can deliver the message on its own).

Furthermore, we can assume that there is no agent at s. If there should be
such an agent ai, we use s′ = s + Ri as the new starting position. Now, any
schedule from s to t can still be used (starting from the point in time when the
packet passed position s′) to deliver the data from s′ to t, the only agent no
longer available is ai who cannot be used beyond s′ anyway. Finally, we adjust
all agents to the left of s′ as described above. If this leads to an agent being
positioned at s′, we repeat the process.

2 The Quasi-, Pseudo-Polynomial Time Algorithm

In this section we present a dynamic-programming based algorithm for finding
a feasible schedule, if the ranges and the positions of the agents are integers.
We restrict ourselves to a specific class of feasible schedules: we call a feasible
schedule (ai1 , ai2 , . . . , aij , . . .) normalized, if

4 Asolutionistheschedule(a5,a1,a7,a2,a4,a3,a6).

s p ta1a2 a3

t′
1

t′
2

t′
3

Fig. 2. Agents a1, a2, a3 ∈ Ap are p-crossing. The intervals (s′i, t
′
i) are lower bounds on

the growth of the intervals (si, ti): si ≥ s′i and ti ≥ t′i.

1. The positions where agents exchange the message are integers.
2. Every agent aij walks with the message as far towards t as its range allows,

with the exception when the agent reaches the initial position of the next
agent in the feasible schedule, i.e., agent aij+1

.
3. The length of the schedule is minimal, i.e., we cannot remove any agent from

the schedule and maintain its feasibility. This means, for example, that no
agent aij can reach (by exhausting its range) the point at which aij+2 picks
up the data from aij+1 (making aij+1 obsolete).

It is easy to see that in our “integer setting”, if there exists a feasible schedule,
there always exists a normalized feasible schedule, and thus our restriction to
these schedules is without loss of generality.

As every agent moves once to the left (to pick up the message – this move can
be of zero length), and then once to the right, we have that in every normalized
schedule every move of an agent to the right equals the advancement of the
message done by this agent.

In the following we prove a structural lemma about normalized schedules,
which will be a crucial ingredient in designing our algorithm. We will use the
following notation. For an integer position p between s and t we say that an
agent a (not necessarily from the schedule) is p-crossing if a lies at p or to the
right of p, and at the same time the range of a allows the agent to walk left of
p (to at least position p − 1). By Xp we denote the set of all p-crossing agents.
We denote by Ap ⊆ Xp the agents of the schedule that are p-crossing, and that
in the schedule never move left of p (i.e., they only move on the part of the line
that is to the right of p). Thus, Ap are agents that could possibly help advancing
the message in the part of the line to the left of p, but they do not (because they
are used right of p).

Lemma 1. Let p be a position (an integer) such that s < p < t. Then |Ap| ≤
2 · log t (for t ≥ 2), and |Ap| ≤ 2 · log(Rmax + 1).

Proof. Let a1, a2, . . . , a` be the agents in Ap sorted in the order as they appear
in delivering the message from s to t. Each agent ai is responsible for advancing
the message on a certain interval Ii = [si, ti] between p and t (recall that none
of Ap moves left of p in the feasible schedule), where the order of the segments
appearing on the line is identical to the order of the agents in which they move.

Recall that in a normalized schedule, agent ai can stop before using all its
range if it reaches the position of the next agent in the schedule. Let t′i ≥ ti be
the point which ai reaches if it uses all its range (to walk from si). It follows that

every two intervals I ′i := [si, t
′
i] and I ′i+2 := [si+2, t

′
i+2] are disjoint (otherwise

we can remove agent ai+1 from the schedule; a contradiction that the schedule
is minimal). Thus, si+2 ≥ t′i + 1. Furthermore, the position of ai+2 is (strictly)
to the right of t′i (as again we could remove agent ai+1 from the schedule).

Expressing t′i in the form p+∆i, we show that ∆i grows exponentially with
i and thus there can be at most (roughly) log t many agents in Ap before t′i
reaches t. Figure 2 illustrates the discussion of the proof. We start with t′1:
Clearly, agent a1 can reach p−1 and thus, when reaching p, it can move at least
to position p + 1: t′1 ≥ p + 1. We can continue with t′3: Since s3 ≥ t′1 + 1, we
get s3 ≥ p + 2; Furthermore, since agent a3 is strictly to the right of t′1, i.e.,
a3 ≥ t′1 + 1 ≥ p + 2, and a3 can reach p − 1, a3 has at t′1 + 1 enough energy to
move to the right to position (t′1 +1)+((t′1 + 1)− (p− 1)) ≥ (t′1 +1)+3 = t′1 +4
(i.e., t′3 ≥ p+ 5). Similarly, s5 ≥ t′3 + 1, agent a5 lies to the right of t′3, and agent
a5 has at t′3 + 1 enough energy to walk to (t′3 + 1) + 7 = t′3 + 8. In a similar spirit
(i.e., by an easy induction), it follows that t′2i−1 ≥ t′2i−3 + 2i, i = 2, 3, Thus,

t′` ≥ t′1+22+23+. . .+2d`/2e ≥ (p+1)+(2d`/2e+1−4) = p+2d`/2e+1−3. By setting
t′` ≤ t, we get 2d`/2e+1 ≤ t + 3 − p ≤ t + 2, which implies `/2 ≤ log(t + 2) − 1,
which implies `/2 ≤ log t (for t ≥ 2), i.e., ` ≤ 2 · log t (the first claim of the
lemma).

At the same time, since a` is at least t′`−2 + 1, and the agent has energy to

reach p− 1, it follows that R` ≥ p+ 2d`/2e − 2− (p− 1) = 2d`/2e − 1. Since the
range of any agent is at most Rmax, we get ` ≤ 2 · log(Rmax + 1). ut

We now present our quasi-, pseudo-polynomial time algorithm. For simplicity
of exposition, we will use the upper bound |Ap| ≤ 2 log t. We will further assume
that t ≥ 2 (to be able to apply Lemma 1): If t = 1, finding a solution is trivial,
we just try every agent and see whether it can deliver the message on its own.

The main idea of our dynamic-programming based algorithm is to scan the
line backwards from t to s and to gradually build a feasible schedule from the
last agent delivering the message to t to the first agent picking the message at
s and at every intermediate step p to remember the set Ap ⊆ Xp of p-crossing
agents that were used so far to the right of p, and thus are not available to be
used to the left of p.

Formally, we define a boolean table T [p,Ap] for every (integer) point p
between s and t (including s and t) and every set Ap ⊆ Xp of cardinality
|Ap| ≤ 2 · log t. We interpret the table as T [p,Ap] = true if and only if there
is a feasible schedule which advances the message from p to t, and among all
p-crossing agents Xp it uses only the agents in Ap.

We fill the table as follows. We initialize T [t, ∅] = true. Then, for every p =
t−1, t−2, t−3 . . . , s we enumerate all sets Ap ⊆ Xp of cardinality |Ap| ≤ 2 · log t
and set T [p,Ap] = true, if and only if

∃p′ > p, ∃Ap′ ⊆ Xp′ , ∃ agent ap ∈ Ap \Ap′ such that:

ap can bring the message from p to p′, (1)

Ap = {ap} ∪ (Ap′ ∩Xp), (2)

T [p′, Ap′] = true. (3)

After filling the table, the algorithm checks, whether for some set As there
exists an entry T [s,As] = true, and if yes, it outputs a schedule of agents
ap1 , ap2 , ap3 , . . . , ap` that are, according to our dynamic program, recursively
responsible for setting T [pi, Api] to be true (this can be done by standard book-
keeping techniques); Otherwise, the algorithm decides that the agents cannot
deliver the message from s to t.

Theorem 1. The presented algorithm solves any instance of DataDelivery
in time O

(
t2 · n1+4 log t

)
.

Proof. We will prove that there exists a solution to a given instance of DataDe-
livery if and only if the algorithm finds one.

If there is a solution to a given instance, i.e., a feasible schedule, then, by
our observations, there also exists a normalized schedule (ap1 , ap2 , . . . , ap`) of
agents indexed with points on the line where they pick up the message, i.e.,
where agent api picks up the message at pi and advances it to pi+1 (where
we set p`+1 := t, and where, naturally, p1 = s). Let S be the agents of this
solution, i.e., S = {ap1 , ap2 , . . . , ap`}. At any of these points pi, i = 1, 2, . . . , `,
let Api ⊆ S ∩Xpi be the set of agents from the solution S that are pi-crossing.
Furthermore, set A`+1 = ∅. Then, by Lemma 1, |Api | ≤ 2 · log t. Therefore, for
every such set Api , i = 1, 2, . . . , `+1, there will be an entry T [pi, Api] in our table.
Furthermore, it follows that Api = {api}∪ (Api+1 ∩Xpi), i = 1, . . . , `. Therefore,
according to the rules of our dynamic programming (Eqs. (1), (2), (3)), all entries
T [pi, Api], k = `, `−1, . . . , 3, 2, 1, will be set to true because of the previous entry
T [pi+1, Api+1

]. Thus, our algorithm finds a solution (e.g., the one just derived
from the normalized feasible schedule).

Assume now that the algorithm finds a schedule ap1 , . . . , ap` of agents, in-
dexed by the points pi at which the corresponding entry T [pi, Api] was set to
true. By the rules of filling the table, it follows that the agents can deliver the
message from s to t. What remains is to argue that no two agents api , api+∆ from
the returned schedule are the same agent. Assume, for the sake of contradiction,
that this is the case, i.e., a = api = api+∆ , and that ∆ is the smallest such num-
ber. By Eq. (2), api+∆ ∈ Api+∆ ; At the same time, since a ∈ Xpi and because
of Eq. (2), a appears in all sets Api+∆−1

, Api+∆−2
, . . . , Api+1

, and especially in
Api+1

. But this contradicts the fact that a = api ∈ Api \Api+1
.

The runtime of the algorithm follows from the size of the table T and the way
we fill in the table: For every p, we enumerate at most

∑2 log t
i=1

(
n
i

)
≤ O(n2 log t)

many sets Ap. To fill in an entry T [p,Ap] we try all possible values p′, Ap′ and
ap, and check whether conditions in Eqs. (1), (2), and (3) hold, which can be
done in time linear in size of Ap, Ap′ , and Xp (if we store the elements of the sets
sorted according to their position on the line). This results in total running time
of O

(
t2 · n1+4 log t

)
(with small constants hidden in the big-oh notation). ut

Using the upper bound |Ap| ≤ 2 · log(Rmax + 1), we can bound the running
time of the algorithm by O

(
t2 · n1+4 log(Rmax+1)

)
.

3 NP-Completeness

We first create an auxiliary NP-hard problem Weighted-4-Partition, which
we then reduce to DataDelivery. Along the way, we use the NP-hard problem
4-Partition-from-4-sets, which has been shown NP-complete in [6] as a step
in proving the NP-hardness of 3-Partition.

4-Partition-from-4-sets

Input: Four sets of positive integers A′ = (a′i)1≤i≤q, B
′ = (b′i)1≤i≤q, C

′ =
(c′i)1≤i≤q, D

′ = (d′i)1≤i≤q, and an integer S′.
Question: Does there exist three permutations πA, πB , πC of [1, q] such that for
every i, a′πA(i) + b′πB(i) + c′πC(i) + d′i = S′?

Weighted-4-Partition

Input: A set of positive integers E = (ei)1≤i≤4q and an integer S such that for
every partition of E into 4 sets A,B,C,D, each of size q,

∑
a∈A a+

∑
b∈B 2b+∑

c∈C 4c+
∑
d∈D 8d ≤ qS.

Question: Does there exist a partition of E into q sets E1, E2, . . . , Eq, each of
size 4, such that for every 1 ≤ i ≤ q, if Ei = {a, b, c, d} with a ≤ b ≤ c ≤ d,
a+ 2b+ 4c+ 8d = S? We call such a partition a weighted partition.

Theorem 2. Weighted-4-Partition is NP-hard.

Proof. From an instance of 4-Partition-from-4-sets, we construct an in-
stance of Weighted-4-Partition as follows. Note that we can assume that∑
x′∈A′∪B′∪C′∪D′ x

′ = qS′, and that for every x′ ∈ A′ ∪B′ ∪ C ′ ∪D′, x′ ≤ S′.
For each i ∈ [1, q], let ai = 8a′i, bi = 4b′i + 32S′, ci = 2c′i + 128S′ and

di = d′i + 512S′. Let A = {ai}1≤i≤q, B = {bi}1≤i≤q, C = {ci}1≤i≤q and D =
{di}1≤i≤q. Let E = A ∪ B ∪ C ∪D and let S = 4680S′. Note that ∀a ∈ A, b ∈
B, c ∈ C, d ∈ D, a < b < c < d. Consequently, for any partition of E into 4
sets A∗, B∗, C∗, D∗ of size q,

∑
a∈A∗ a +

∑
b∈B∗ 2b +

∑
c∈C∗ 4c +

∑
d∈D∗ 8d ≤∑

a∈A a+
∑
b∈B 2b+

∑
c∈C 4c+

∑
d∈D 8d =

∑
a′∈A′ 8a

′ +
∑
b′∈B′(8b

′ + 64S′) +∑
c′∈C′(8c

′+512S′)+
∑
d′∈D′(8d

′+4096S′) = 8
∑
x′∈A′∪B′∪C′∪D′ x

′+4672qS′ =
4680qS′ = qS.

Suppose that we are given a solution πA, πB , πC of 4-Partition-from-4-
sets such that for every i, a′πA(i) + b′πB(i) + c′πC(i) + d′i = S′. Then for every i,

aπA(i) + 2bπB(i) + 4cπC(i) + 8di = 8a′πA(i) + 8b′πB(i) + 64S′ + 8c′πB(i) + 512S′ +

8d′i + 4096S′ = 4672S′ + 8(a′πA(i) + b′πB(i) + c′πB(i) + d′i) = 4680S′ = S. Since

aπA(i) ≤ 8S′ < 32S′ ≤ bπB(i) ≤ 36S′ < 128S′ ≤ cπC(i) ≤ 130S′ < 512S′ ≤ di, we
have found a solution to Weighted-4-Partition, i.e., a weighted partition.

Conversely, suppose that there exists a partition E1, E2, . . . Eq that is a so-
lution of the instance (E,S) of Weighted-4-Partition. For every 1 ≤ i ≤ q,
let Ei = {wi, xi, yi, zi} with wi ≤ xi ≤ yi ≤ zi.

Suppose first that there exists 1 ≤ i ≤ q such that Ei ∩ D = ∅. Then,
wi ≤ xi ≤ yi ≤ zi ≤ 130S′, and thus wi+2xi+4yi+8zi ≤ 15 ·130S′ = 1930S′ <
4680S′, contradicting the fact that E1, E2, . . . Eq is a weighted partition of E.
Consequently, for every 1 ≤ i ≤ q, zi ∈ D and thus, wi, xi, yi ∈ A ∪B ∪ C.

Suppose now that there exists 1 ≤ i ≤ q such that Ei ∩ C = ∅. Then,
wi ≤ xi ≤ yi ≤ 36S′ and zi ≤ 513S′. Thus, wi + 2xi + 4yi + 8zi ≤ 7 · 36S′ + 8 ·
513S′ = 4356S′ < 4680S′, a contradiction. Consequently, for every 1 ≤ i ≤ q,
yi ∈ C and thus, wi, xi ∈ A ∪B.

Suppose now that there exists 1 ≤ i ≤ q such that Ei ∩ B = ∅. Then,
wi ≤ xi ≤ 8S′, yi ≤ 130S′ and zi ≤ 513S′. Thus, wi + 2xi + 4yi + 8zi ≤
3 · 8S′ + 4 · 130S′ + 8 · 513S′ = 4648S′ < 4680S′, a contradiction. Therefore, for
every 1 ≤ i ≤ q, xi ∈ B and thus, wi ∈ A.

Consequently, each Ei contains one element of A, one element of B, one
element of C and one element of D. Without loss of generality (by reordering the
elements in D), assume that for every 1 ≤ i ≤ q, di ∈ Ei. For every 1 ≤ i ≤ q,
let πA(i) = j iff aj ∈ Ei, let πB(i) = j iff bj ∈ Ei, and let πC(i) = j iff
cj ∈ Ei. Consequently, for every i, aπA(i) + 2bπB(i) + 4cπC(i) + 8di = 4680S′, i.e.,
8a′πA(i) +8b′πB(i) +64S′+8c′πB(i) +512S′+8d′i+4096S′ = 4680S′. Consequently,

4672S′+8(a′πA(i)+b
′
πB(i)+c

′
πB(i)+d

′
i) = 4680S′ and thus a′πA(i)+b

′
πB(i)+c

′
πB(i)+

d′i = S′. Consequently, πA, πB , πC is a solution of the instance (A′, B′, C ′, D′, S′)
of 4-Partition-from-4-sets. ut

Given an instance of Weighted-4-Partition (E,S) given by a set E =
{e1, e2, . . . , e4q} and by a target value S, we construct an instance of DataDe-
livery as follows. There will be two types of agents: 4q “big” agents correspond-
ing to the elements of E, and q + 1 “small” agents.

Let M = maxi{ei}, and let r = max{15M − S, 32
q−1
31 S}. There is a small

agent si starting at position xi = 16i−1
15 (S + 16r) for 0 ≤ i ≤ q. The range of

each small agent is r. Note that x0 = 0 and that xi+1 = 16(xi + r) + S. Note
also that all the positions and ranges are integers. We set s = 0, and t = xq + r.
For each 1 ≤ j ≤ 4q, there is a big agent bj starting at position t with a range
equal to t+ ej .

Note that every big agent bj starts at t and its range enables it to reach any
point between s and t. Moreover, if bj collects the message at a point l ∈ [s, t],
the furthest point where it can deliver the message is 2l + ej .

We claim that there exists a weighted partition of (E,S) if and only if the set
of agents A = {si}0≤i≤q ∪ {bj}1≤j≤4q can deliver the message from s to t. The
first direction is straightforward, and shown in Lemma 2. The other direction is
more complicated, and is shown after Lemma 2 in a series of claims.

Lemma 2. If there exists a weighted partition E1, E2, . . . , Eq of E, then there
is a feasible schedule for DataDelivery from s to t.

Proof. Suppose that we are given 4 integers a ≤ b ≤ c ≤ d such that a + 2b +
4c+8d = S. Consider four agents a′, b′, c′, d′ initially located on t with respective
ranges t+a, t+b, t+c, t+d. We claim that if some message is on xi+r for i < q,
then agents a′, b′, c′, d′ can move the message to xi+1 when they are activated in
the following order: d′, c′, b′, a′.

Since xi+r < xq+r = t, d′ can move the message to 2(xi+r)+d. Since 2(xi+
r)+d < t, c′ can move the message to 4(xi+r)+2d+c. Since 4(xi+r)+2d+c < t,

b′ can move the message to 8(xi+r)+4d+2c+b. Since 8(xi+r)+4d+2c+b < t,
a′ can move the message to 16(xi+ r)+8d+4c+2b+a = 16(xi+ r)+S = xi+1.

Recall that every small agent si, 0 ≤ i ≤ q, can move the message from
from xi to xi + r. Thus, we can use alternatively an agent si and the agents
corresponding to Ei+1 to move the message from s = x0 = 0 to t = xq + r. ut

We now show the other direction. In the rest of the section, we assume that
there exists a feasible schedule for the created instance of DataDelivery, and
we show that there exists a weighted-partition of (E,S).

Up to rearranging the elements of E, assume that the big agents are activated
in the order b1, b2, . . . , b4q. For every 1 ≤ i ≤ q, let Bi = {b4i−3, b4i−2, b4i−1,
b4i} and let δi = 8e4i−3 + 4e4i−2 + 2e4i−1 + e4i − S. Note that for every i,
−S ≤ δi ≤ 15M − S.

Note that if we activate all agents from Bi consecutively (without activating
a small agent in between) and if b4i−3 collects the message in l ∈ [s, t], b4i−3 can
deliver the message to 2l+ e4i−3, b4i−2 can deliver the message to 4l+ 2e4i−3 +
e4i−2, b4i−1 can deliver the message to 8l+ 4e4i−3 + 2e4i−2 + e4i−3, and b4i can
deliver the message to 16l + 8e4i−3 + 4e4i−2 + 2e4i−1 + e4i = 16l + S + δi.

We denote by ui the furthest point where, in the considered feasible schedule,
b4i can deliver the message. We denote by yi the furthest point where si can
deliver the message.

In the next two lemmas, we show that we can assume that for each 0 ≤ i ≤ q,
si is activated after b4i and before b4i+1.

Lemma 3. For every 0 ≤ i ≤ q, yi ≤ xi + r. For every 1 ≤ i ≤ q, si cannot be
activated before b4i, and ui ≤ xi + r.

Proof. The first assertion of the lemma is trivial since si starts in xi and its
range is r.

We prove the second assertion by induction on i. Let i ≥ 0 and assume that
yi ≤ xi + r and that ui ≤ xi + r if i ≥ 1. Suppose that si+1 is activated before
b4i+4.

Since max{ui, yi} ≤ xi + r, and since e4i+1, e4i+2, e4i+3 ≤ M , b4i+1 cannot
deliver the message further than 2(xi+r)+M , b4i+2 cannot deliver the message
further than 4(xi + r) + 3M , and b4i+3 cannot deliver the message further than
8(xi + r) + 7M . Since si+1 cannot collect the message before xi+1− r = 16(xi +
r) + S − r = 16xi + S + 15r, it is enough to show that 7r + S > 7M in order
to prove that si+1 cannot be activated before b4i+4. Since r ≥ 15M − S and
S ≤ 15M , 7r + S ≥ 7 · 15M − 6S ≥ 15M > 7M and si+1 cannot collect the
message before b4i+4 has been activated.

Note that b4i+4 cannot deliver the message further than ui+1 = 16(xi + r) +
15M = xi+1 + 15M − S ≤ xi+1 + r. ut

Lemma 4. There exists a feasible schedule for DataDelivery from s to t such
that for every 0 ≤ i ≤ q, si is activated before b4i+1 and yi ≥ xi+r− 2S

31 (32i−1).

For every 1 ≤ i ≤ q, ui ≥ xi − S
31 (32i − 1) ≥ xi − r.

Proof. We prove the lemma by induction on i.
Note that since x0 = s, y0 = x0 + r (no matter when s0 is activated).

Suppose now that s0 is not activated first. If when s0 is activated, the message
has already reached x0 + r, then it means that there exists a feasible schedule
for DataDelivery from s to t for A′ = A \ {s0}. Suppose now that when s0
is activated, the message has not reached x0 + r and let i0 be the maximal
index i such that bi has been activated before s0. In this case, it means that
there exists a feasible schedule for DataDelivery from x0 + r > s to t for
A′ = A \ {s0, b1, b2, . . . , bi0}. In both cases, it means that there exists a feasible
schedule for DataDelivery from x0 + r > s to t for A′ = A \ {s0} and thus
there exists a feasible schedule for DataDelivery from s to t for A where s0 is
activated first.

Suppose now that si has been activated before b4i+1, and that yi ≥ xi +
r− 2S

31 (32i − 1). Since si+1 cannot be activated before b4i+4 (Lemma 3), we can
assume that b4i+4 delivers the message to ui+1 ≥ 16yi + S + δi+1 ≥ 16(xi +
r) − 32S

31 (32i − 1) = xi+1 − S − 32S
31 (32i − 1) = xi+1 − S

31 (32i+1 − 1). Since

r ≥ S
31 (32i+1 − 1), ui+1 ≥ xi+1 − r.

Consequently, si+1 can always be activated after b4i+4. If si+1 is activated
before b4i+5, either ui+1 ≥ xi+1 and yi+1 = xi+1 + r ≥ xi+1 + r− 2S

31 (32i+1− 1),

or ui+1 < xi+1 and yi+1 = 2ui+1 + r − xi+1 ≥ xi+1 + r − 2S
31 (32i+1 − 1).

Suppose that we activate b4i+5 before si+1, then b4i+5 can deliver the message
to a point z ≥ 2(xi+1 − r) + e4i+5 ≥ xi+1 + (xi+1 − 2r) = xi+1 + (16xi +
14r + S) > xi+1 + r. That is, at this moment, si+1 is useless. Consequently,
there exists a feasible schedule for DataDelivery from z to t for A′ = A \
{s0, . . . , si, si+1, b1, . . . , b4i+4, b4i+5}. This implies that there exists a schedule
for DataDelivery from 2ui+1 + r−xi+1 ≥ ui+1 to t for A′∪{b4i+5}, and thus,
there exists a schedule DataDelivery from ui+1 to t for A′∪{si+1, b4i+5} where
si+1 is activated first. ut

From Lemmas 3 and 4, there exists a feasible schedule for DataDelivery
from s to t where we activate alternatively a small agent and four big agents.
Consequently, we can assume that for every 1 ≤ i ≤ q, ui = 16yi−1 + S + δi and
that yi = 2ui + r − xi if ui < xi and yi = xi + r otherwise.

In the next lemma, we show that
∑q
i=1 δi ≥ 0 and that this inequality is

strict if at least one small agent has to go back to collect the message.

Lemma 5. For any two indices i < j such that yi = xi + r, ul < xl for every
i+ 1 ≤ l ≤ j − 1 and uj ≥ xj, we have

∑j
l=i+1 δl ≥ 0. Moreover, this inequality

is strict if j > i+ 1.

Proof. If j = i+ 1, ui+1 = 16(xi + r) +S+ δi+1 = xi+1 + δi+1 and consequently,
δi+1 ≥ 0. In the following, we assume that j > i+ 1.

For every i ≤ l ≤ j, let zl = xl + r − yl. Note that by Lemma 3, zl ≥ 0.
Moreover, zi = zj = 0 and for every i+ 1 ≤ l ≤ j − 1, zl > 0.

For every integer i ≤ l ≤ j − 1, ul+1 = 16yl + S + δl+1. For i ≤ l ≤ j − 2,
ul+1 < xl+1 and thus, yl+1 = 2ul+1 + r − xl+1 = 32yl + 2S + 2δl+1 + r − xl+1.

Consequently, zl+1 = xl+1 + r − yl+1 = 2xl+1 − (32yl + 2δl+1 + 2S) = 32(xl +
r) + 2S − (32yl + 2δl+1 + 2S) = 32(xl + r− yl)− 2δl+1 = 32zl − 2δl+1. Thus, for

every i+ 1 ≤ l ≤ j − 1, zl = −2
∑l
t=i+1 32l−tδt.

Moreover, uj = 16yj−1 + S + δj = 16(xj−1 + r) − 16zj−1 + S + δj = xj −
16zj−1 + δj = xj + δj + 32

∑j−1
t=i+1 32j−1−tδt = xj +

∑j
t=i+1 32j−tδt.

Let S1 = uj − xj and S2 =
∑j−1
l=i+1−

zl
2 , i.e., S1 =

∑j
t=i+1 32j−tδt and

S2 =
∑j−1
l=i+1(

∑l
t=i+1 32l−tδt). Since uj ≥ xj , S1 ≥ 0, and since for every i+1 ≤

l ≤ j − 1, zl > 0, it follows that S2 < 0. Consequently, S1 − 31S2 > 0. We claim
that

∑j
t=i+1 δt = S1 − 31S2. We get

S1 − 31S2 = S1 − 31

j−1∑
l=i+1

l∑
t=i+1

32l−tδt = S1 − 31

j−1∑
t=i+1

j−1∑
l=t

32l−tδt

= S1 − 31

j−1∑
t=i+1

32j−t − 1

31
δt =

j∑
t=i+1

32j−tδt −
j−1∑
t=i+1

(32j−t − 1)δt

=

j∑
t=i+1

δt.

Consequently,
∑j
t=i+1 δt = S1 − 31S2 > 0. ut

Proposition 1. (E1, . . . , Eq) is a weighted-partition of (E,S) where for each
1 ≤ i ≤ q, Ei = {e4i−3, e4i−2, e4i−1, e4i}.

Proof. Since for every partition of E into 4 sets A,B,C,D of size q,
∑
a∈A a +∑

b∈B 2b+
∑
c∈C 4c+

∑
d∈D 8d ≤ qS,

∑q
i=1 δi =

∑q
i=1(8e4i−3+4e4i−2+2e4i−1+

e4i − S) ≤ 0.
Since we have a feasible schedule for DataDelivery from s = 0 to t = xq+r

where sq is activated after b4q, sq delivers the message to t = xq + r, and thus,
uq ≥ xq. By Lemma 5,

∑q
i=1 δi ≥ 0, and thus,

∑q
i=1 δi = 0.

Moreover, if there exists 1 ≤ i < q such that ui < xi, then yi < xi+r and from
Lemma 5,

∑q
i=1 δi > 0, which is impossible. Consequently, for each 1 ≤ i ≤ q,

ui ≥ xi and yi = xi+r. Since ui = 16yi−1+S+δi = 16(xi−1+r)+S+δi = xi+δi,
it implies that for each i, δi ≥ 0.

Since
∑q
i=1 δi = 0, we get that δi = 0 for every 1 ≤ i ≤ q, i.e., 8e4i−3 +

4e4i−2 + 2e4i−1 + e4i = S. Consequently (E1, E2, . . . , Eq) is a solution to the
instance (E,S) of the Weighted-4-Partition problem. ut

This ends the proof of the NP-hardness of DataDelivery. Note that one can
check quickly whether a given permutation σ = (a1, . . . , an′) of a subset A′ of the
agents can solve an instance (A, s, t) of DataDelivery. Indeed, setting t0 = s,
agent ai+1 can reach ti if and only if ai+1−Ri+1 ≤ ti. Moreover, if ai+1 can reach
ti, the furthest point agent ai+1 can reach with the information is ai+1 +Rai+1

if ti ≥ ai+1 and 2ti +Rai − ai otherwise. Thus, one can iteratively compute the
tis until we find an index ti ≥ t, or until we find that ti < ai+1 − Ri+1 or that

tn′ < t. This can be done by performing O(n) arithmetical operations and the
values we handle are smaller than 2t+Rmax: this can be done in polynomial time
and thus DataDelivery is in NP. Consequently, we get the following theorem.

Theorem 3. DataDelivery is NP-complete.

4 Conclusions and Open Problems

We have shown that DataDelivery on a line is NP-hard. This answers the
open problem raised by Anaya et al. [3]. It actually is a surprising result, be-
cause everyone we talked to about the problem believed it to be polynomial. We
accompanied the result with a quasi-, pseudo- polynomial time algorithm. It re-
mains an open problem, whether a pseudo-polynomial time algorithm exists. It
also is an interesting problem to provide good γ-resource augmented algorithms.

Acknowledgements. We are grateful for the valuable comments of the anony-
mous reviewers. Jérémie Chalopin acknowledges a partial support by ANR project
MACARON (anr-13-js02-0002).

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on
Computing 29(4), 1164–1188 (2000)

2. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Kluwer
Academic Pub (2002)

3. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting
information by power-aware mobile agents. In: Proc. 26th International Symposium
on Distributed Computing (DISC). Lecture Notes in Computer Science, vol. 7611,
pp. 46–60 (2012)

4. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain.
SIAM Journal on Computing 26(1), 110–137 (1997)

5. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by
energy-constrained mobile agents. In: Proc. 9th International Symposium on Al-
gorithms and Experiments for Sensor Systems, Wireless Networks and Distributed
Robotics (ALGOSENSORS). pp. 111–122 (2013)

6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1979)

7. Heo, N., Varshney, P.K.: Energy-efficient deployment of intelligent mobile sensor
networks. IEEE Transactions on Systems, Man, and CyberNetics (Part A) 35(1),
78–92 (2005)

8. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks:
a survey. IEEE Communications Surveys & Tutorials 8(4), 48–63 (2006)

