Data Delivery by Energy-Constrained Mobile Agents on a Line

Jérémie Chalopin ${ }^{1}$, Riko Jacob ${ }^{2}$, Matúš Mihalák ${ }^{2}$, and Peter Widmayer ${ }^{2}$
${ }^{1}$ LIF, Aix-Marseille University \& CNRS, Marseille, France
${ }^{2}$ Institute of Theoretical Computer Science, ETH Zurich, Zürich, Switzerland

Abstract

We consider n mobile agents of limited energy that are placed on a straight line and that need to collectively deliver a single piece of data from a given source point s to a given target point t on the line. Agents can move only as far as their batteries allow. They can hand over the data when they meet. In this paper we show that deciding whether the agents can deliver the data is (weakly) NP-complete, and for instances where all input values are integers, we present a quasi-, pseudo-polynomial time algorithm that runs in time $O\left(\Delta^{2} \cdot n^{1+4 \log \Delta}\right)$, where Δ is the distance between s and t. This answers an open problem stated by Anaya et al. (DISC 2012).

Keywords: Mobile agents and robots; data aggregation and delivery; power-awareness; algorithms; complexity

1 Introduction

The production of inexpensive, simple-built, mobile robots has led to new research questions in how to employ and operate a swarm of such robots to achieve desired goals. One of the fundamental goals of robotics is the delivery of data from given sources to specified targets. An energy-efficient operation of mobile robots becomes crucial when batteries of the robots are limited.

In this paper we study how to efficiently operate robots (called agents in this paper) of limited batteries that need to collectively deliver one piece of data along a line from a single source to a single target. Formally, our setting is given by a source s and a target t placed along a line, and n autonomous mobile agents, where agent $i, i=1,2, \ldots, n$, has an initial position a_{i} and an initial range R_{i}, denoting the maximum length of a walk the agent can do. We ask whether the agents can deliver a message from source s to target t. The message is picked up by the first agent that reaches point s. An agent i with the message can pass on the message to agent j, if i and j meet at the same point on the line. The message is delivered if an agent with the message reaches target t. No agent $i=1, \ldots, n$ can travel more than its range R_{i}. We refer to this problem as DataDelivery.

Obviously, it makes no sense for an agent to carry the message more than once. Then, even though the agents can in principle move simultaneously at a
time, it is easy to observe that for the sake of completing the task only, ${ }^{3}$ the agents can move in turns: in the first turn, the agent picking up the message at s moves; then, the agent taking over from the first agent moves; then, the agent taking over from the second agent moves, and so on. In this view, a solution to DataDelivery can be given in form of a schedule that prescribes the subset of the agents that move and the order in which they move. We call a schedule which indeed delivers the message from s to t a feasible schedule.

Previously, this problem has been studied in edge-weighted graphs and with multiple sources [5]. Besides other results, it has been shown that the problem is NP-complete (for general graphs), and a $\min \left\{3,1+\max _{i, j} \frac{R_{i}}{R_{j}}\right\}$-resource augmented algorithm has been presented; here, a polynomial-time algorithm is called a γ-resource augmented, $\gamma>1$, if either the algorithm (correctly) answers that there is no feasible schedule, or it finds a feasible schedule for the modified (augmented) powers $R_{i}^{\prime}:=\gamma \cdot R_{i}$. The complexity of the problem for the case when the graph is a line has been left open (it has been raised as an open question by Anaya et al. [3], but not studied).

In this paper, we close the open problem in that we show that DataDelivERY is weakly NP-complete (even if all input values are integers), and at the same time, if all input values are integers, we present a quasi-, pseudo-polynomial time algorithm running in time $O\left(\Delta^{2} \cdot n^{1+4 \log \Delta}\right)$ and in time $O\left(\Delta^{2} \cdot n^{1+4 \log \left(R_{\max }+1\right)}\right)$, where Δ is the distance between s and t, and $R_{\text {max }}:=\max _{i} R_{i}$.

Related Work

There are very few papers studying explicitly the algorithmic question of data-aggregation-like problems by mobile agents with limited batteries. Besides the already mentioned paper by Chalopin et al. [5], the work of Anaya et al. [3] comes closest to our problem. Anaya et al. [3] study the convergecast problem: given a set of mobile agents in an edge-weighted graph, each agent possessing a certain piece of data, and having a uniform battery power B, the agents need to move, not more than what the battery allows, such that at some point at least one agent knows all data. Obviously, there are no fixed source and target nodes, which constitutes a difference to our problem. However, the main difference is that in [3], it is assumed that all agents have the same range. In this case, the problem is polynomial on a line, but is NP-hard if the graph is a tree.

Our problem has a flavour of the well studied problem of data aggregation in (wireless) sensor networks [8], where the general computational problem is to schedule the communication between (mostly) stationary sensor nodes so that all data collected by the individual sensors eventually arrive in a pre-specified aggregation node. While in data aggregation, the data is being sent over communication channels, in our setting, the agents physically deliver the data.

[^0]

Fig. 1. A solvable instance of DataDELIVERY on a line with agents $a_{1}, a_{2}, \ldots, a_{7}$ depicted by the small full disks, and annotated by their respective ranges $R_{1}, R_{2}, \ldots, R_{7}$.

Power-aware computation with mobile agents is a relatively new research area, and, consequently, there is little algorithm-theoretical research. As an exception, Heo and Varshney [7] study self-deployment of agents in this context.

A related and intensively studied research question is that of minimizing the total travelled distance by agents (which have unlimited battery) [1], [2], [4].

Further Terminology, Notation, and Model Refinement

We consider the positions of s, t and all n agents to be given by their distance from s on the line. For simplicity, we identify the source s and the target t with this distance, i.e., we set $s=0$ and we interpret $t>0$ as the distance of the target from s. The position of agent $i, i=1, \ldots, n$, is given by its distance a_{i} from s. Sometimes, we will refer to agent i by its position, i.e., we say agent a_{i} to denote agent i. Recall that R_{i} is the range of agent i, and let $R_{\max }=\max \left\{R_{i} \mid\right.$ $1 \leq i \leq n\}$. Figure 1 gives a (solvable) ${ }^{4}$ instance of DataDelivery on a line.

We will assume, without loss of generality, that all a_{i} are between s and t : if there is an agent a_{i} lying left of s, we can move it to s (and reduce its range correspondingly), and similary, we can move any agent a_{j} right of t to t (and reduce its range correspondingly). Obviously, the original instance has a solution if and only if the modified instance has one. In this adjusted problem instance, we may assume that $R_{i}<2 t$ for any agent i (as otherwise agent i with $R_{i} \geq 2 t$ can deliver the message on its own).

Furthermore, we can assume that there is no agent at s. If there should be such an agent a_{i}, we use $s^{\prime}=s+R_{i}$ as the new starting position. Now, any schedule from s to t can still be used (starting from the point in time when the packet passed position s^{\prime}) to deliver the data from s^{\prime} to t, the only agent no longer available is a_{i} who cannot be used beyond s^{\prime} anyway. Finally, we adjust all agents to the left of s^{\prime} as described above. If this leads to an agent being positioned at s^{\prime}, we repeat the process.

2 The Quasi-, Pseudo-Polynomial Time Algorithm

In this section we present a dynamic-programming based algorithm for finding a feasible schedule, if the ranges and the positions of the agents are integers. We restrict ourselves to a specific class of feasible schedules: we call a feasible schedule $\left(a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{j}}, \ldots\right)$ normalized, if

[^1]

Fig. 2. Agents $a_{1}, a_{2}, a_{3} \in A_{p}$ are p-crossing. The intervals $\left(s_{i}^{\prime}, t_{i}^{\prime}\right)$ are lower bounds on the growth of the intervals $\left(s_{i}, t_{i}\right): s_{i} \geq s_{i}^{\prime}$ and $t_{i} \geq t_{i}^{\prime}$.

1. The positions where agents exchange the message are integers.
2. Every agent $a_{i_{j}}$ walks with the message as far towards t as its range allows, with the exception when the agent reaches the initial position of the next agent in the feasible schedule, i.e., agent $a_{i_{j+1}}$.
3. The length of the schedule is minimal, i.e., we cannot remove any agent from the schedule and maintain its feasibility. This means, for example, that no agent $a_{i_{j}}$ can reach (by exhausting its range) the point at which $a_{i_{j+2}}$ picks up the data from $a_{i_{j+1}}$ (making $a_{i_{j+1}}$ obsolete).

It is easy to see that in our "integer setting", if there exists a feasible schedule, there always exists a normalized feasible schedule, and thus our restriction to these schedules is without loss of generality.

As every agent moves once to the left (to pick up the message - this move can be of zero length), and then once to the right, we have that in every normalized schedule every move of an agent to the right equals the advancement of the message done by this agent.

In the following we prove a structural lemma about normalized schedules, which will be a crucial ingredient in designing our algorithm. We will use the following notation. For an integer position p between s and t we say that an agent a (not necessarily from the schedule) is p-crossing if a lies at p or to the right of p, and at the same time the range of a allows the agent to walk left of p (to at least position $p-1$). By X_{p} we denote the set of all p-crossing agents. We denote by $A_{p} \subseteq X_{p}$ the agents of the schedule that are p-crossing, and that in the schedule never move left of p (i.e., they only move on the part of the line that is to the right of p). Thus, A_{p} are agents that could possibly help advancing the message in the part of the line to the left of p, but they do not (because they are used right of p).

Lemma 1. Let p be a position (an integer) such that $s<p<t$. Then $\left|A_{p}\right| \leq$ $2 \cdot \log t($ for $t \geq 2)$, and $\left|A_{p}\right| \leq 2 \cdot \log \left(R_{\max }+1\right)$.

Proof. Let $a_{1}, a_{2}, \ldots, a_{\ell}$ be the agents in A_{p} sorted in the order as they appear in delivering the message from s to t. Each agent a_{i} is responsible for advancing the message on a certain interval $I_{i}=\left[s_{i}, t_{i}\right]$ between p and t (recall that none of A_{p} moves left of p in the feasible schedule), where the order of the segments appearing on the line is identical to the order of the agents in which they move.

Recall that in a normalized schedule, agent a_{i} can stop before using all its range if it reaches the position of the next agent in the schedule. Let $t_{i}^{\prime} \geq t_{i}$ be the point which a_{i} reaches if it uses all its range (to walk from s_{i}). It follows that
every two intervals $I_{i}^{\prime}:=\left[s_{i}, t_{i}^{\prime}\right]$ and $I_{i+2}^{\prime}:=\left[s_{i+2}, t_{i+2}^{\prime}\right]$ are disjoint (otherwise we can remove agent a_{i+1} from the schedule; a contradiction that the schedule is minimal). Thus, $s_{i+2} \geq t_{i}^{\prime}+1$. Furthermore, the position of a_{i+2} is (strictly) to the right of t_{i}^{\prime} (as again we could remove agent a_{i+1} from the schedule).

Expressing t_{i}^{\prime} in the form $p+\Delta_{i}$, we show that Δ_{i} grows exponentially with i and thus there can be at most (roughly) $\log t$ many agents in A_{p} before t_{i}^{\prime} reaches t. Figure 2 illustrates the discussion of the proof. We start with t_{1}^{\prime} : Clearly, agent a_{1} can reach $p-1$ and thus, when reaching p, it can move at least to position $p+1: t_{1}^{\prime} \geq p+1$. We can continue with t_{3}^{\prime} : Since $s_{3} \geq t_{1}^{\prime}+1$, we get $s_{3} \geq p+2$; Furthermore, since agent a_{3} is strictly to the right of t_{1}^{\prime}, i.e., $a_{3} \geq t_{1}^{\prime}+1 \geq p+2$, and a_{3} can reach $p-1, a_{3}$ has at $t_{1}^{\prime}+1$ enough energy to move to the right to position $\left(t_{1}^{\prime}+1\right)+\left(\left(t_{1}^{\prime}+1\right)-(p-1)\right) \geq\left(t_{1}^{\prime}+1\right)+3=t_{1}^{\prime}+4$ (i.e., $\left.t_{3}^{\prime} \geq p+5\right)$. Similarly, $s_{5} \geq t_{3}^{\prime}+1$, agent a_{5} lies to the right of t_{3}^{\prime}, and agent a_{5} has at $t_{3}^{\prime}+1$ enough energy to walk to $\left(t_{3}^{\prime}+1\right)+7=t_{3}^{\prime}+8$. In a similar spirit (i.e., by an easy induction), it follows that $t_{2 i-1}^{\prime} \geq t_{2 i-3}^{\prime}+2^{i}, i=2,3, \ldots$. Thus, $t_{\ell}^{\prime} \geq t_{1}^{\prime}+2^{2}+2^{3}+\ldots+2^{\lceil\ell / 2\rceil} \geq(p+1)+\left(2^{\lceil\ell / 2\rceil+1}-4\right)=p+2^{\lceil\ell / 2\rceil+1}-3$. By setting $t_{\ell}^{\prime} \leq t$, we get $2^{\lceil\ell / 2\rceil+1} \leq t+3-p \leq t+2$, which implies $\ell / 2 \leq \log (t+2)-1$, which implies $\ell / 2 \leq \log t$ (for $t \geq 2$), i.e., $\ell \leq 2 \cdot \log t$ (the first claim of the lemma).

At the same time, since a_{ℓ} is at least $t_{\ell-2}^{\prime}+1$, and the agent has energy to reach $p-1$, it follows that $R_{\ell} \geq p+2^{\lceil\ell / 2\rceil}-2-(p-1)=2^{\lceil\ell / 2\rceil}-1$. Since the range of any agent is at most $R_{\max }$, we get $\ell \leq 2 \cdot \log \left(R_{\max }+1\right)$.

We now present our quasi-, pseudo-polynomial time algorithm. For simplicity of exposition, we will use the upper bound $\left|A_{p}\right| \leq 2 \log t$. We will further assume that $t \geq 2$ (to be able to apply Lemma 1): If $t=1$, finding a solution is trivial, we just try every agent and see whether it can deliver the message on its own.

The main idea of our dynamic-programming based algorithm is to scan the line backwards from t to s and to gradually build a feasible schedule from the last agent delivering the message to t to the first agent picking the message at s and at every intermediate step p to remember the set $A_{p} \subseteq X_{p}$ of p-crossing agents that were used so far to the right of p, and thus are not available to be used to the left of p.

Formally, we define a boolean table $T\left[p, A_{p}\right]$ for every (integer) point p between s and t (including s and t) and every set $A_{p} \subseteq X_{p}$ of cardinality $\left|A_{p}\right| \leq 2 \cdot \log t$. We interpret the table as $T\left[p, A_{p}\right]=$ true if and only if there is a feasible schedule which advances the message from p to t, and among all p-crossing agents X_{p} it uses only the agents in A_{p}.

We fill the table as follows. We initialize $T[t, \emptyset]=$ true. Then, for every $p=$ $t-1, t-2, t-3 \ldots, s$ we enumerate all sets $A_{p} \subseteq X_{p}$ of cardinality $\left|A_{p}\right| \leq 2 \cdot \log t$ and set $T\left[p, A_{p}\right]=$ true, if and only if

$$
\begin{equation*}
\exists p^{\prime}>p, \exists A_{p^{\prime}} \subseteq X_{p^{\prime}}, \exists \text { agent } a_{p} \in A_{p} \backslash A_{p^{\prime}} \text { such that: } \tag{1}
\end{equation*}
$$

a_{p} can bring the message from p to p^{\prime},
$A_{p}=\left\{a_{p}\right\} \cup\left(A_{p^{\prime}} \cap X_{p}\right)$,
$T\left[p^{\prime}, A_{p^{\prime}}\right]=$ true.

After filling the table, the algorithm checks, whether for some set A_{s} there exists an entry $T\left[s, A_{s}\right]=$ true, and if yes, it outputs a schedule of agents $a_{p_{1}}, a_{p_{2}}, a_{p_{3}}, \ldots, a_{p_{\ell}}$ that are, according to our dynamic program, recursively responsible for setting $T\left[p_{i}, A_{p_{i}}\right]$ to be true (this can be done by standard bookkeeping techniques); Otherwise, the algorithm decides that the agents cannot deliver the message from s to t.

Theorem 1. The presented algorithm solves any instance of DataDelivery in time $O\left(t^{2} \cdot n^{1+4 \log t}\right)$.

Proof. We will prove that there exists a solution to a given instance of DATADELIVERY if and only if the algorithm finds one.

If there is a solution to a given instance, i.e., a feasible schedule, then, by our observations, there also exists a normalized schedule $\left(a_{p_{1}}, a_{p_{2}}, \ldots, a_{p_{\ell}}\right)$ of agents indexed with points on the line where they pick up the message, i.e., where agent $a_{p_{i}}$ picks up the message at p_{i} and advances it to p_{i+1} (where we set $p_{\ell+1}:=t$, and where, naturally, $p_{1}=s$). Let S be the agents of this solution, i.e., $S=\left\{a_{p_{1}}, a_{p_{2}}, \ldots, a_{p_{\ell}}\right\}$. At any of these points $p_{i}, i=1,2, \ldots, \ell$, let $A_{p_{i}} \subseteq S \cap X_{p_{i}}$ be the set of agents from the solution S that are p_{i}-crossing. Furthermore, set $A_{\ell+1}=\emptyset$. Then, by Lemma 1, $\left|A_{p_{i}}\right| \leq 2 \cdot \log t$. Therefore, for every such set $A_{p_{i}}, i=1,2, \ldots, \ell+1$, there will be an entry $T\left[p_{i}, A_{p_{i}}\right]$ in our table. Furthermore, it follows that $A_{p_{i}}=\left\{a_{p_{i}}\right\} \cup\left(A_{p_{i+1}} \cap X_{p_{i}}\right), i=1, \ldots, \ell$. Therefore, according to the rules of our dynamic programming (Eqs. (1), (2), (3)), all entries $T\left[p_{i}, A_{p_{i}}\right], k=\ell, \ell-1, \ldots, 3,2,1$, will be set to true because of the previous entry $T\left[p_{i+1}, A_{p_{i+1}}\right]$. Thus, our algorithm finds a solution (e.g., the one just derived from the normalized feasible schedule).

Assume now that the algorithm finds a schedule $a_{p_{1}}, \ldots, a_{p_{\ell}}$ of agents, indexed by the points p_{i} at which the corresponding entry $T\left[p_{i}, A_{p_{i}}\right]$ was set to true. By the rules of filling the table, it follows that the agents can deliver the message from s to t. What remains is to argue that no two agents $a_{p_{i}}, a_{p_{i+\Delta}}$ from the returned schedule are the same agent. Assume, for the sake of contradiction, that this is the case, i.e., $a=a_{p_{i}}=a_{p_{i+\Delta}}$, and that Δ is the smallest such number. By Eq. (2), $a_{p_{i+\Delta}} \in A_{p_{i+\Delta}}$; At the same time, since $a \in X_{p_{i}}$ and because of Eq. (2), a appears in all sets $A_{p_{i+\Delta-1}}, A_{p_{i+\Delta-2}}, \ldots, A_{p_{i+1}}$, and especially in $A_{p_{i+1}}$. But this contradicts the fact that $a=a_{p_{i}} \in A_{p_{i}} \backslash A_{p_{i+1}}$.

The runtime of the algorithm follows from the size of the table T and the way we fill in the table: For every p, we enumerate at most $\sum_{i=1}^{2 \log t}\binom{n}{i} \leq O\left(n^{2 \log t}\right)$ many sets A_{p}. To fill in an entry $T\left[p, A_{p}\right]$ we try all possible values $p^{\prime}, A_{p^{\prime}}$ and a_{p}, and check whether conditions in Eqs. (1), (2), and (3) hold, which can be done in time linear in size of $A_{p}, A_{p^{\prime}}$, and X_{p} (if we store the elements of the sets sorted according to their position on the line). This results in total running time of $O\left(t^{2} \cdot n^{1+4 \log t}\right)$ (with small constants hidden in the big-oh notation).

Using the upper bound $\left|A_{p}\right| \leq 2 \cdot \log \left(R_{\max }+1\right)$, we can bound the running time of the algorithm by $O\left(t^{2} \cdot n^{1+4 \log \left(R_{\max }+1\right)}\right)$.

3 NP-Completeness

We first create an auxiliary NP-hard problem Weighted-4-Partition, which we then reduce to DataDelivery. Along the way, we use the NP-hard problem 4-Partition-From-4-SETS, which has been shown NP-complete in [6] as a step in proving the NP-hardness of 3-Partition.

4-PaRtition-FROM-4-SETS

Input: Four sets of positive integers $A^{\prime}=\left(a_{i}^{\prime}\right)_{1 \leq i \leq q}, B^{\prime}=\left(b_{i}^{\prime}\right)_{1 \leq i \leq q}, C^{\prime}=$ $\left(c_{i}^{\prime}\right)_{1 \leq i \leq q}, D^{\prime}=\left(d_{i}^{\prime}\right)_{1 \leq i \leq q}$, and an integer S^{\prime}.
Question: Does there exist three permutations $\pi_{A}, \pi_{B}, \pi_{C}$ of $[1, q]$ such that for every $i, a_{\pi_{A}(i)}^{\prime}+b_{\pi_{B}(i)}^{\prime}+c_{\pi_{C}(i)}^{\prime}+d_{i}^{\prime}=S^{\prime}$?
Weighted-4-Partition
Input: A set of positive integers $E=\left(e_{i}\right)_{1 \leq i \leq 4 q}$ and an integer S such that for every partition of E into 4 sets A, B, C, D, each of size $q, \sum_{a \in A} a+\sum_{b \in B} 2 b+$ $\sum_{c \in C} 4 c+\sum_{d \in D} 8 d \leq q S$.
Question: Does there exist a partition of E into q sets $E_{1}, E_{2}, \ldots, E_{q}$, each of size 4 , such that for every $1 \leq i \leq q$, if $E_{i}=\{a, b, c, d\}$ with $a \leq b \leq c \leq d$, $a+2 b+4 c+8 d=S$? We call such a partition a weighted partition.

Theorem 2. Weighted-4-Partition is NP-hard.
Proof. From an instance of 4-Partition-From-4-SETs, we construct an instance of Weighted-4-Partition as follows. Note that we can assume that $\sum_{x^{\prime} \in A^{\prime} \cup B^{\prime} \cup C^{\prime} \cup D^{\prime}} x^{\prime}=q S^{\prime}$, and that for every $x^{\prime} \in A^{\prime} \cup B^{\prime} \cup C^{\prime} \cup D^{\prime}, x^{\prime} \leq S^{\prime}$.

For each $i \in[1, q]$, let $a_{i}=8 a_{i}^{\prime}, b_{i}=4 b_{i}^{\prime}+32 S^{\prime}, c_{i}=2 c_{i}^{\prime}+128 S^{\prime}$ and $d_{i}=d_{i}^{\prime}+512 S^{\prime}$. Let $A=\left\{a_{i}\right\}_{1 \leq i \leq q}, B=\left\{b_{i}\right\}_{1 \leq i \leq q}, C=\left\{c_{i}\right\}_{1 \leq i \leq q}$ and $D=$ $\left\{d_{i}\right\}_{1 \leq i \leq q}$. Let $E=A \cup B \cup C \cup D$ and let $S=4680 S^{\prime}$. Note that $\forall a \in A, b \in$ $B, c \in C, d \in D, a<b<c<d$. Consequently, for any partition of E into 4 sets $A^{*}, B^{*}, C^{*}, D^{*}$ of size $q, \sum_{a \in A^{*}} a+\sum_{b \in B^{*}} 2 b+\sum_{c \in C^{*}} 4 c+\sum_{d \in D^{*}} 8 d \leq$ $\sum_{a \in A} a+\sum_{b \in B} 2 b+\sum_{c \in C} 4 c+\sum_{d \in D} 8 d=\sum_{a^{\prime} \in A^{\prime}} 8 a^{\prime}+\sum_{b^{\prime} \in B^{\prime}}\left(8 b^{\prime}+64 S^{\prime}\right)+$ $\sum_{c^{\prime} \in C^{\prime}}\left(8 c^{\prime}+512 S^{\prime}\right)+\sum_{d^{\prime} \in D^{\prime}}\left(8 d^{\prime}+4096 S^{\prime}\right)=8 \sum_{x^{\prime} \in A^{\prime} \cup B^{\prime} \cup C^{\prime} \cup D^{\prime}} x^{\prime}+4672 q S^{\prime}=$ $4680 q S^{\prime}=q S$.

Suppose that we are given a solution $\pi_{A}, \pi_{B}, \pi_{C}$ of 4-PARTITION-FROM-4SETS such that for every $i, a_{\pi_{A}(i)}^{\prime}+b_{\pi_{B}(i)}^{\prime}+c_{\pi_{C}(i)}^{\prime}+d_{i}^{\prime}=S^{\prime}$. Then for every i, $a_{\pi_{A}(i)}+2 b_{\pi_{B}(i)}+4 c_{\pi_{C}(i)}+8 d_{i}=8 a_{\pi_{A}(i)}^{\prime}+8 b_{\pi_{B}(i)}^{\prime}+64 S^{\prime}+8 c_{\pi_{B}(i)}^{\prime}+512 S^{\prime}+$ $8 d_{i}^{\prime}+4096 S^{\prime}=4672 S^{\prime}+8\left(a_{\pi_{A}(i)}^{\prime}+b_{\pi_{B}(i)}^{\prime}+c_{\pi_{B}(i)}^{\prime}+d_{i}^{\prime}\right)=4680 S^{\prime}=S$. Since $a_{\pi_{A}(i)} \leq 8 S^{\prime}<32 S^{\prime} \leq b_{\pi_{B}(i)} \leq 36 S^{\prime}<128 S^{\prime} \leq c_{\pi_{C}(i)} \leq 130 S^{\prime}<512 S^{\prime} \leq d_{i}$, we have found a solution to Weighted-4-Partition, i.e., a weighted partition.

Conversely, suppose that there exists a partition $E_{1}, E_{2}, \ldots E_{q}$ that is a solution of the instance (E, S) of Weighted-4-Partition. For every $1 \leq i \leq q$, let $E_{i}=\left\{w_{i}, x_{i}, y_{i}, z_{i}\right\}$ with $w_{i} \leq x_{i} \leq y_{i} \leq z_{i}$.

Suppose first that there exists $1 \leq i \leq q$ such that $E_{i} \cap D=\emptyset$. Then, $w_{i} \leq x_{i} \leq y_{i} \leq z_{i} \leq 130 S^{\prime}$, and thus $w_{i}+2 x_{i}+4 y_{i}+8 z_{i} \leq 15 \cdot 130 S^{\prime}=1930 S^{\prime}<$ $4680 S^{\prime}$, contradicting the fact that $E_{1}, E_{2}, \ldots E_{q}$ is a weighted partition of E. Consequently, for every $1 \leq i \leq q, z_{i} \in D$ and thus, $w_{i}, x_{i}, y_{i} \in A \cup B \cup C$.

Suppose now that there exists $1 \leq i \leq q$ such that $E_{i} \cap C=\emptyset$. Then, $w_{i} \leq x_{i} \leq y_{i} \leq 36 S^{\prime}$ and $z_{i} \leq 513 S^{\prime}$. Thus, $w_{i}+2 x_{i}+4 y_{i}+8 z_{i} \leq 7 \cdot 36 S^{\prime}+8$. $513 S^{\prime}=4356 S^{\prime}<4680 S^{\prime}$, a contradiction. Consequently, for every $1 \leq i \leq q$, $y_{i} \in C$ and thus, $w_{i}, x_{i} \in A \cup B$.

Suppose now that there exists $1 \leq i \leq q$ such that $E_{i} \cap B=\emptyset$. Then, $w_{i} \leq x_{i} \leq 8 S^{\prime}, y_{i} \leq 130 S^{\prime}$ and $z_{i} \leq 513 S^{\prime}$. Thus, $w_{i}+2 x_{i}+4 y_{i}+8 z_{i} \leq$ $3 \cdot 8 S^{\prime}+4 \cdot 130 S^{\prime}+8 \cdot 513 S^{\prime}=4648 S^{\prime}<4680 S^{\prime}$, a contradiction. Therefore, for every $1 \leq i \leq q, x_{i} \in B$ and thus, $w_{i} \in A$.

Consequently, each E_{i} contains one element of A, one element of B, one element of C and one element of D. Without loss of generality (by reordering the elements in D), assume that for every $1 \leq i \leq q, d_{i} \in E_{i}$. For every $1 \leq i \leq q$, let $\pi_{A}(i)=j$ iff $a_{j} \in E_{i}$, let $\pi_{B}(i)=j$ iff $b_{j} \in E_{i}$, and let $\pi_{C}(i)=j$ iff $c_{j} \in E_{i}$. Consequently, for every $i, a_{\pi_{A}(i)}+2 b_{\pi_{B}(i)}+4 c_{\pi_{C}(i)}+8 d_{i}=4680 S^{\prime}$, i.e., $8 a_{\pi_{A}(i)}^{\prime}+8 b_{\pi_{B}(i)}^{\prime}+64 S^{\prime}+8 c_{\pi_{B}(i)}^{\prime}+512 S^{\prime}+8 d_{i}^{\prime}+4096 S^{\prime}=4680 S^{\prime}$. Consequently, $4672 S^{\prime}+8\left(a_{\pi_{A}(i)}^{\prime}+b_{\pi_{B}(i)}^{\prime}+c_{\pi_{B}(i)}^{\prime}+d_{i}^{\prime}\right)=4680 S^{\prime}$ and thus $a_{\pi_{A}(i)}^{\prime}+b_{\pi_{B}(i)}^{\prime}+c_{\pi_{B}(i)}^{\prime}+$ $d_{i}^{\prime}=S^{\prime}$. Consequently, $\pi_{A}, \pi_{B}, \pi_{C}$ is a solution of the instance $\left(A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}, S^{\prime}\right)$ of 4-Partition-From-4-SETS.

Given an instance of Weighted-4-Partition (E, S) given by a set $E=$ $\left\{e_{1}, e_{2}, \ldots, e_{4 q}\right\}$ and by a target value S, we construct an instance of DATADELIVERY as follows. There will be two types of agents: $4 q$ "big" agents corresponding to the elements of E, and $q+1$ "small" agents.

Let $M=\max _{i}\left\{e_{i}\right\}$, and let $r=\max \left\{15 M-S, \frac{32^{q}-1}{31} S\right\}$. There is a small agent s_{i} starting at position $x_{i}=\frac{16^{i}-1}{15}(S+16 r)$ for $0 \leq i \leq q$. The range of each small agent is r. Note that $x_{0}=0$ and that $x_{i+1}=16\left(x_{i}+r\right)+S$. Note also that all the positions and ranges are integers. We set $s=0$, and $t=x_{q}+r$. For each $1 \leq j \leq 4 q$, there is a big agent b_{j} starting at position t with a range equal to $t+e_{j}$.

Note that every big agent b_{j} starts at t and its range enables it to reach any point between s and t. Moreover, if b_{j} collects the message at a point $l \in[s, t]$, the furthest point where it can deliver the message is $2 l+e_{j}$.

We claim that there exists a weighted partition of (E, S) if and only if the set of agents $A=\left\{s_{i}\right\}_{0 \leq i \leq q} \cup\left\{b_{j}\right\}_{1 \leq j \leq 4 q}$ can deliver the message from s to t. The first direction is straightforward, and shown in Lemma 2. The other direction is more complicated, and is shown after Lemma 2 in a series of claims.

Lemma 2. If there exists a weighted partition $E_{1}, E_{2}, \ldots, E_{q}$ of E, then there is a feasible schedule for DataDelivery from s to t.

Proof. Suppose that we are given 4 integers $a \leq b \leq c \leq d$ such that $a+2 b+$ $4 c+8 d=S$. Consider four agents $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ initially located on t with respective ranges $t+a, t+b, t+c, t+d$. We claim that if some message is on $x_{i}+r$ for $i<q$, then agents $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ can move the message to x_{i+1} when they are activated in the following order: $d^{\prime}, c^{\prime}, b^{\prime}, a^{\prime}$.

Since $x_{i}+r<x_{q}+r=t, d^{\prime}$ can move the message to $2\left(x_{i}+r\right)+d$. Since $2\left(x_{i}+\right.$ $r)+d<t, c^{\prime}$ can move the message to $4\left(x_{i}+r\right)+2 d+c$. Since $4\left(x_{i}+r\right)+2 d+c<t$,
b^{\prime} can move the message to $8\left(x_{i}+r\right)+4 d+2 c+b$. Since $8\left(x_{i}+r\right)+4 d+2 c+b<t$, a^{\prime} can move the message to $16\left(x_{i}+r\right)+8 d+4 c+2 b+a=16\left(x_{i}+r\right)+S=x_{i+1}$.

Recall that every small agent $s_{i}, 0 \leq i \leq q$, can move the message from from x_{i} to $x_{i}+r$. Thus, we can use alternatively an agent s_{i} and the agents corresponding to E_{i+1} to move the message from $s=x_{0}=0$ to $t=x_{q}+r$.

We now show the other direction. In the rest of the section, we assume that there exists a feasible schedule for the created instance of DataDelivery, and we show that there exists a weighted-partition of (E, S).

Up to rearranging the elements of E, assume that the big agents are activated in the order $b_{1}, b_{2}, \ldots, b_{4 q}$. For every $1 \leq i \leq q$, let $B_{i}=\left\{b_{4 i-3}, b_{4 i-2}, b_{4 i-1}\right.$, $\left.b_{4 i}\right\}$ and let $\delta_{i}=8 e_{4 i-3}+4 e_{4 i-2}+2 e_{4 i-1}+e_{4 i}-S$. Note that for every i, $-S \leq \delta_{i} \leq 15 M-S$.

Note that if we activate all agents from B_{i} consecutively (without activating a small agent in between) and if $b_{4 i-3}$ collects the message in $l \in[s, t], b_{4 i-3}$ can deliver the message to $2 l+e_{4 i-3}, b_{4 i-2}$ can deliver the message to $4 l+2 e_{4 i-3}+$ $e_{4 i-2}, b_{4 i-1}$ can deliver the message to $8 l+4 e_{4 i-3}+2 e_{4 i-2}+e_{4 i-3}$, and $b_{4 i}$ can deliver the message to $16 l+8 e_{4 i-3}+4 e_{4 i-2}+2 e_{4 i-1}+e_{4 i}=16 l+S+\delta_{i}$.

We denote by u_{i} the furthest point where, in the considered feasible schedule, $b_{4 i}$ can deliver the message. We denote by y_{i} the furthest point where s_{i} can deliver the message.

In the next two lemmas, we show that we can assume that for each $0 \leq i \leq q$, s_{i} is activated after $b_{4 i}$ and before $b_{4 i+1}$.

Lemma 3. For every $0 \leq i \leq q, y_{i} \leq x_{i}+r$. For every $1 \leq i \leq q, s_{i}$ cannot be activated before $b_{4 i}$, and $u_{i} \leq x_{i}+r$.

Proof. The first assertion of the lemma is trivial since s_{i} starts in x_{i} and its range is r.

We prove the second assertion by induction on i. Let $i \geq 0$ and assume that $y_{i} \leq x_{i}+r$ and that $u_{i} \leq x_{i}+r$ if $i \geq 1$. Suppose that s_{i+1} is activated before $b_{4 i+4}$.

Since $\max \left\{u_{i}, y_{i}\right\} \leq x_{i}+r$, and since $e_{4 i+1}, e_{4 i+2}, e_{4 i+3} \leq M, b_{4 i+1}$ cannot deliver the message further than $2\left(x_{i}+r\right)+M, b_{4 i+2}$ cannot deliver the message further than $4\left(x_{i}+r\right)+3 M$, and $b_{4 i+3}$ cannot deliver the message further than $8\left(x_{i}+r\right)+7 M$. Since s_{i+1} cannot collect the message before $x_{i+1}-r=16\left(x_{i}+\right.$ $r)+S-r=16 x_{i}+S+15 r$, it is enough to show that $7 r+S>7 M$ in order to prove that s_{i+1} cannot be activated before $b_{4 i+4}$. Since $r \geq 15 M-S$ and $S \leq 15 M, 7 r+S \geq 7 \cdot 15 M-6 S \geq 15 M>7 M$ and s_{i+1} cannot collect the message before $b_{4 i+4}$ has been activated.

Note that $b_{4 i+4}$ cannot deliver the message further than $u_{i+1}=16\left(x_{i}+r\right)+$ $15 M=x_{i+1}+15 M-S \leq x_{i+1}+r$.

Lemma 4. There exists a feasible schedule for DATADELIVERY from s to t such that for every $0 \leq i \leq q$, s_{i} is activated before $b_{4 i+1}$ and $y_{i} \geq x_{i}+r-\frac{2 S}{31}\left(32^{i}-1\right)$. For every $1 \leq i \leq q, u_{i} \geq x_{i}-\frac{S}{31}\left(32^{i}-1\right) \geq x_{i}-r$.

Proof. We prove the lemma by induction on i.
Note that since $x_{0}=s, y_{0}=x_{0}+r$ (no matter when s_{0} is activated). Suppose now that s_{0} is not activated first. If when s_{0} is activated, the message has already reached $x_{0}+r$, then it means that there exists a feasible schedule for DataDelivery from s to t for $A^{\prime}=A \backslash\left\{s_{0}\right\}$. Suppose now that when s_{0} is activated, the message has not reached $x_{0}+r$ and let i_{0} be the maximal index i such that b_{i} has been activated before s_{0}. In this case, it means that there exists a feasible schedule for DataDelivery from $x_{0}+r>s$ to t for $A^{\prime}=A \backslash\left\{s_{0}, b_{1}, b_{2}, \ldots, b_{i_{0}}\right\}$. In both cases, it means that there exists a feasible schedule for DataDelivery from $x_{0}+r>s$ to t for $A^{\prime}=A \backslash\left\{s_{0}\right\}$ and thus there exists a feasible schedule for DataDelivery from s to t for A where s_{0} is activated first.

Suppose now that s_{i} has been activated before $b_{4 i+1}$, and that $y_{i} \geq x_{i}+$ $r-\frac{2 S}{31}\left(32^{i}-1\right)$. Since s_{i+1} cannot be activated before $b_{4 i+4}$ (Lemma 3), we can assume that $b_{4 i+4}$ delivers the message to $u_{i+1} \geq 16 y_{i}+S_{S}+\delta_{i+1} \geq 16\left(x_{i}+\right.$ $r)-\frac{32 S}{31}\left(32^{i}-1\right)=x_{i+1}-S-\frac{32 S}{31}\left(32^{i}-1\right)=x_{i+1}-\frac{S}{31}\left(32^{i+1}-1\right)$. Since $r \geq \frac{S}{31}\left(32^{i+1}-1\right), u_{i+1} \geq x_{i+1}-r$.

Consequently, s_{i+1} can always be activated after $b_{4 i+4}$. If s_{i+1} is activated before $b_{4 i+5}$, either $u_{i+1} \geq x_{i+1}$ and $y_{i+1}=x_{i+1}+r \geq x_{i+1}+r-\frac{2 S}{31}\left(32^{i+1}-1\right)$, or $u_{i+1}<x_{i+1}$ and $y_{i+1}=2 u_{i+1}+r-x_{i+1} \geq x_{i+1}+r-\frac{2 S}{31}\left(32^{i+1}-1\right)$.

Suppose that we activate $b_{4 i+5}$ before s_{i+1}, then $b_{4 i+5}$ can deliver the message to a point $z \geq 2\left(x_{i+1}-r\right)+e_{4 i+5} \geq x_{i+1}+\left(x_{i+1}-2 r\right)=x_{i+1}+\left(16 x_{i}+\right.$ $14 r+S)>x_{i+1}+r$. That is, at this moment, s_{i+1} is useless. Consequently, there exists a feasible schedule for DataDelivery from z to t for $A^{\prime}=A \backslash$ $\left\{s_{0}, \ldots, s_{i}, s_{i+1}, b_{1}, \ldots, b_{4 i+4}, b_{4 i+5}\right\}$. This implies that there exists a schedule for DataDelivery from $2 u_{i+1}+r-x_{i+1} \geq u_{i+1}$ to t for $A^{\prime} \cup\left\{b_{4 i+5}\right\}$, and thus, there exists a schedule DataDelivery from u_{i+1} to t for $A^{\prime} \cup\left\{s_{i+1}, b_{4 i+5}\right\}$ where s_{i+1} is activated first.

From Lemmas 3 and 4, there exists a feasible schedule for DataDelivery from s to t where we activate alternatively a small agent and four big agents. Consequently, we can assume that for every $1 \leq i \leq q, u_{i}=16 y_{i-1}+S+\delta_{i}$ and that $y_{i}=2 u_{i}+r-x_{i}$ if $u_{i}<x_{i}$ and $y_{i}=x_{i}+r$ otherwise.

In the next lemma, we show that $\sum_{i=1}^{q} \delta_{i} \geq 0$ and that this inequality is strict if at least one small agent has to go back to collect the message.

Lemma 5. For any two indices $i<j$ such that $y_{i}=x_{i}+r, u_{l}<x_{l}$ for every $i+1 \leq l \leq j-1$ and $u_{j} \geq x_{j}$, we have $\sum_{l=i+1}^{j} \delta_{l} \geq 0$. Moreover, this inequality is strict if $j>i+1$.

Proof. If $j=i+1, u_{i+1}=16\left(x_{i}+r\right)+S+\delta_{i+1}=x_{i+1}+\delta_{i+1}$ and consequently, $\delta_{i+1} \geq 0$. In the following, we assume that $j>i+1$.

For every $i \leq l \leq j$, let $z_{l}=x_{l}+r-y_{l}$. Note that by Lemma $3, z_{l} \geq 0$. Moreover, $z_{i}=z_{j}=0$ and for every $i+1 \leq l \leq j-1, z_{l}>0$.

For every integer $i \leq l \leq j-1, u_{l+1}=16 y_{l}+S+\delta_{l+1}$. For $i \leq l \leq j-2$, $u_{l+1}<x_{l+1}$ and thus, $y_{l+1}=2 u_{l+1}+r-x_{l+1}=32 y_{l}+2 S+2 \delta_{l+1}+r-x_{l+1}$.

Consequently, $z_{l+1}=x_{l+1}+r-y_{l+1}=2 x_{l+1}-\left(32 y_{l}+2 \delta_{l+1}+2 S\right)=32\left(x_{l}+\right.$ $r)+2 S-\left(32 y_{l}+2 \delta_{l+1}+2 S\right)=32\left(x_{l}+r-y_{l}\right)-2 \delta_{l+1}=32 z_{l}-2 \delta_{l+1}$. Thus, for every $i+1 \leq l \leq j-1, z_{l}=-2 \sum_{t=i+1}^{l} 32^{l-t} \delta_{t}$.

Moreover, $u_{j}=16 y_{j-1}+S+\delta_{j}=16\left(x_{j-1}+r\right)-16 z_{j-1}+S+\delta_{j}=x_{j}-$ $16 z_{j-1}+\delta_{j}=x_{j}+\delta_{j}+32 \sum_{t=i+1}^{j-1} 32^{j-1-t} \delta_{t}=x_{j}+\sum_{t=i+1}^{j} 32^{j-t} \delta_{t}$.

Let $S_{1}=u_{j}-x_{j}$ and $S_{2}=\sum_{l=i+1}^{j-1}-\frac{z_{l}}{2}$, i.e., $S_{1}=\sum_{t=i+1}^{j} 32^{j-t} \delta_{t}$ and $S_{2}=\sum_{l=i+1}^{j-1}\left(\sum_{t=i+1}^{l} 32^{l-t} \delta_{t}\right)$. Since $u_{j} \geq x_{j}, S_{1} \geq 0$, and since for every $i+1 \leq$ $l \leq j-1, z_{l}>0$, it follows that $S_{2}<0$. Consequently, $S_{1}-31 S_{2}>0$. We claim that $\sum_{t=i+1}^{j} \delta_{t}=S_{1}-31 S_{2}$. We get

$$
\begin{aligned}
S_{1}-31 S_{2} & =S_{1}-31 \sum_{l=i+1}^{j-1} \sum_{t=i+1}^{l} 32^{l-t} \delta_{t}=S_{1}-31 \sum_{t=i+1}^{j-1} \sum_{l=t}^{j-1} 32^{l-t} \delta_{t} \\
& =S_{1}-31 \sum_{t=i+1}^{j-1} \frac{32^{j-t}-1}{31} \delta_{t}=\sum_{t=i+1}^{j} 32^{j-t} \delta_{t}-\sum_{t=i+1}^{j-1}\left(32^{j-t}-1\right) \delta_{t} \\
& =\sum_{t=i+1}^{j} \delta_{t}
\end{aligned}
$$

Consequently, $\sum_{t=i+1}^{j} \delta_{t}=S_{1}-31 S_{2}>0$.
Proposition 1. $\left(E_{1}, \ldots, E_{q}\right)$ is a weighted-partition of (E, S) where for each $1 \leq i \leq q, E_{i}=\left\{e_{4 i-3}, e_{4 i-2}, e_{4 i-1}, e_{4 i}\right\}$.

Proof. Since for every partition of E into 4 sets A, B, C, D of size $q, \sum_{a \in A} a+$ $\sum_{b \in B} 2 b+\sum_{c \in C} 4 c+\sum_{d \in D} 8 d \leq q S, \sum_{i=1}^{q} \delta_{i}=\sum_{i=1}^{q}\left(8 e_{4 i-3}+4 e_{4 i-2}+2 e_{4 i-1}+\right.$ $\left.e_{4 i}-S\right) \leq 0$.

Since we have a feasible schedule for DataDelivery from $s=0$ to $t=x_{q}+r$ where s_{q} is activated after $b_{4 q}, s_{q}$ delivers the message to $t=x_{q}+r$, and thus, $u_{q} \geq x_{q}$. By Lemma 5, $\sum_{i=1}^{q} \delta_{i} \geq 0$, and thus, $\sum_{i=1}^{q} \delta_{i}=0$.

Moreover, if there exists $1 \leq i<q$ such that $u_{i}<x_{i}$, then $y_{i}<x_{i}+r$ and from Lemma $5, \sum_{i=1}^{q} \delta_{i}>0$, which is impossible. Consequently, for each $1 \leq i \leq q$, $u_{i} \geq x_{i}$ and $y_{i}=x_{i}+r$. Since $u_{i}=16 y_{i-1}+S+\delta_{i}=16\left(x_{i-1}+r\right)+S+\delta_{i}=x_{i}+\delta_{i}$, it implies that for each $i, \delta_{i} \geq 0$.

Since $\sum_{i=1}^{q} \delta_{i}=0$, we get that $\delta_{i}=0$ for every $1 \leq i \leq q$, i.e., $8 e_{4 i-3}+$ $4 e_{4 i-2}+2 e_{4 i-1}+e_{4 i}=S$. Consequently $\left(E_{1}, E_{2}, \ldots, E_{q}\right)$ is a solution to the instance (E, S) of the Weighted-4-Partition problem.

This ends the proof of the NP-hardness of DataDelivery. Note that one can check quickly whether a given permutation $\sigma=\left(a_{1}, \ldots, a_{n^{\prime}}\right)$ of a subset A^{\prime} of the agents can solve an instance (A, s, t) of DataDelivery. Indeed, setting $t_{0}=s$, agent a_{i+1} can reach t_{i} if and only if $a_{i+1}-R_{i+1} \leq t_{i}$. Moreover, if a_{i+1} can reach t_{i}, the furthest point agent a_{i+1} can reach with the information is $a_{i+1}+R_{a_{i+1}}$ if $t_{i} \geq a_{i+1}$ and $2 t_{i}+R_{a_{i}}-a_{i}$ otherwise. Thus, one can iteratively compute the $t_{i} \mathrm{~s}$ until we find an index $t_{i} \geq t$, or until we find that $t_{i}<a_{i+1}-R_{i+1}$ or that
$t_{n^{\prime}}<t$. This can be done by performing $O(n)$ arithmetical operations and the values we handle are smaller than $2 t+R_{\max }$: this can be done in polynomial time and thus DataDelivery is in NP. Consequently, we get the following theorem.

Theorem 3. DataDelivery is NP-complete.

4 Conclusions and Open Problems

We have shown that DataDelivery on a line is NP-hard. This answers the open problem raised by Anaya et al. [3]. It actually is a surprising result, because everyone we talked to about the problem believed it to be polynomial. We accompanied the result with a quasi-, pseudo- polynomial time algorithm. It remains an open problem, whether a pseudo-polynomial time algorithm exists. It also is an interesting problem to provide good γ-resource augmented algorithms.
Acknowledgements. We are grateful for the valuable comments of the anonymous reviewers. Jérémie Chalopin acknowledges a partial support by ANR project MACARON (ANR-13-JS02-0002).

References

1. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM Journal on Computing 29(4), 1164-1188 (2000)
2. Alpern, S., Gal, S.: The theory of search games and rendezvous, vol. 55. Kluwer Academic Pub (2002)
3. Anaya, J., Chalopin, J., Czyzowicz, J., Labourel, A., Pelc, A., Vaxès, Y.: Collecting information by power-aware mobile agents. In: Proc. 26th International Symposium on Distributed Computing (DISC). Lecture Notes in Computer Science, vol. 7611, pp. 46-60 (2012)
4. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM Journal on Computing 26(1), 110-137 (1997)
5. Chalopin, J., Das, S., Mihalák, M., Penna, P., Widmayer, P.: Data delivery by energy-constrained mobile agents. In: Proc. 9th International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS). pp. 111-122 (2013)
6. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman \& Co., New York, NY, USA (1979)
7. Heo, N., Varshney, P.K.: Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, and CyberNetics (Part A) 35(1), 78-92 (2005)
8. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys \& Tutorials 8(4), 48-63 (2006)

[^0]: ${ }^{3}$ It is an interesting, more general, and thus an even more difficult algorihtmic question to also minimize the time needed for the delivery; for this objective, parallel simultaneous moving of the agents would be crucial.

[^1]:

