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Abstract

Simon [3] has proved that every morphism from a free semigroup to
a finite semigroup S admits a Ramseyan factorization forest of height at
most 9|S|. In this paper, we prove the same result of Simon with an
improved bound of 7|S|. We provide a simple algorithm for constructing
a factorization forest. In addition, we show that the algorithm cannot be
improved significantly. We give examples of semigroup morphism such
that any Ramseyan factorization forest for the morphism would require a
height not less than |S].

1 Introduction

Factorization forests are introduced by Imre Simon [3] to describe factorizations
of words over a given alphabet. Simon has proved that every morphism from a
free semigroup to a finite semigroup S admits a Ramseyan factorization forest
of height at most 9|S|. Later, Simon [4] gave a short proof of a weaker version
of the result.

The result can be used to prove Brown’s lemma [1] on locally finite semi-
groups in a constructive way. Simon [5] has also used this result to solve the
limitedness problem on distance automata.

In this paper, we prove the same result of Simon with an improved bound
of 7|S|. We provide a simple algorithm for constructing a factorization forest.
Our algorithm is a simplication of Simon’s.

In Section 2, we first give a presentation of the problem. Then we prove
the result in the next three sections. In Section 6, we show that the algorithm
cannot be improved significantly. We give examples of semigroup morphism
such that any Ramseyan factorization forest for the morphism would require a
height not less than |S|.
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2 Presentation of the problem

Given a set A, we write A" or F(A) to denote the free semigroup generated by
A. A factorization forest F' over an alphabet A can be defined by a function d
from A" into F(A™) such that for every x € A", d(x) = (21,2, ..., 7,) implies
that © = z12o - - - z,. We say that d(z) is a factorization of z.

With each word # € AT, we associate a rooted tree T'(z) such that the tree
nodes are labelled by words in A*. If |d(z)| = 1, T'(z) consists just of a root
labelled z. If d(z) = (21,22, ...,2,) where p > 2, the root of T'(z) is labelled
by z and has p children T'(z;) for 1 < i < p.

Given z € AT, We define the height h(z) to be the height of the tree T'(z).
Specifically, h(z) = 0 if |d(z)| = 1, and h(z) = 1 + max{h(z;) | 1 < i < p}
where d(z) = (21,22,...,2p) and p > 2. The height of a factorization forest F'
is defined by sup{h(z) | z € A*}.

Let f be a morphism from a free semigroup AT to a finite semigroup S. A
factorization forest F' is Ramseyan modulo f if for every z of degree p > 3,
d(z) = (x1,22,...,2,) implies that there exists an idempotent e such that
e = f(x) = f(x1) = f(a2) =--- = f(xp). We say that f admits a Ramseyan
factorization forest if it admits a factorization forest F' over A which is Ramseyan
modulo f and the only words such that d(z) = x are the elements of A.

In this paper, we assume that the readers are familiar with the local structure
theory of semigroup, which are covered in Chapter 2 (Green’s relations) of
Lallement [2].

3 The group case

We consider in this section a morphism f from a free semigroup A™ to a finite
group G. Let e be the identity of G. Since e is the only idempotent element
of G, the only nodes in a factorization tree with an outdegree greater than two
will have a label z such that f(x) =e.

Theorem 1 Every morphism f : At — G, where G is a finite group, admits a
Ramseyan factorization forest of height at most 3|G].

Proof. Given a word z, let Prefixlmages(z) = {f(u) | u € AT is a proper
prefix of z}. For all z,0 € A" and u,w € A* such that = uvw, we have
f(u) PrefixImages(v) C PrefixImages(x).

We will show by induction on |PrefixImages(z)| that we can find a tree for
x of height at most 3|PrefixImages(z)].

If |PrefixImages(z)| = 0, we have |z| = 1. Let d(x) = = which gives a
factorization tree of height 0.

Suppose |PrefixImages(z)| > 1. Let b € PrefixImages(z). Let x = a1a2-- - q,
where a; € A for 1 < i < p. Consider all prefixes of  that are mapped to b under
f. Let 1 <y <iy <--- <ip <pbe all the indices such that f(a;---a;;) = b.
Letu=ay---a;,v=as41- -apandy; =a;41---a;,, foreach 1 <j <k-1.
We also denote y; - - - yx—1 by y. Since G is a group, we havee = f(y1) = f(y2) =
= f(yr_1) = f(y). We construct a factorization tree (see Figure 1) for x by
defining d(z) = (uy,v), d(uy) = (u,y) and d(y) = (y1,...,yx_1). A degenerate
case occurs when k=1, y = ¢ and d(z) = (u,v).



Figure 1: How to build a tree for the group case

We will now show that for each leaf of the tree we have just built,
the size of PrefixImages has decreased. We know that PrefixImages(u) C
PrefixImages(z) and b € Prefixlmages(z) \ PrefixImages(u). Thus,
|PrefixImages(u)| < |PrefixImages(z)]. We also know that for each y;,
b PrefixImages(y;) = f(uy1 - --y;j—1) PrefixImages(y;) C PrefixImages(z). Since
G is a group and b € PrefixImages(z) \ b PrefixImages(y;), we conclude
that |PrefixImages(y;)| < |PrefixImages(z)|. With the same argument, we
can see that |PrefixImages(v)| < |PrefixImages(z)|. By the induction hy-
pothesis, there are factorization trees for u, v and each y; of height at most
3(|PrefixImages(x)| — 1) and consequently we can construct a tree for z of height
at most 3|PrefixImages(z)|.

Since |PrefixImages(z)| < |G|, we have found a way to build a factorization
forest of height at most 3|G|. O

4 The single D-class case

We consider in this section a morphism f from A¥* to a finite semigroup that
has only one single D-class. Note that the single D-class must be regular.

Theorem 2 Every morphism f : AT — S, where S is a finite semigroup which
has only one single D-class, admits a Ramseyan factorization forest of height at
most 5|S)|.

Proof. Let z = aias---a, where a; € A for 1 <4 < p. We define int(z) =
{(L¢as)s Rf(air)) | 1 < i < p—1}. Observe that int(v) C int(x) where v is a
factor of x.

Recall that all H-classes in a D-class are of the same size. Let ¢ be the size
of each H-class. We will show by induction on |int(z)| that we can find for each



Figure 2: How to build a tree for the single D-class case

word z a factorization tree of height at most 5¢|int(z)|.

If int(z) = 0, we have |z| = 1. Let d(z) = , which gives a factorization tree
of height 0.

Suppose |int(z)| > 1. Let (L, R) € int(z). Let 1 <iy <ip <--- <ip <p—1
be all the indices such that (Lf(aij),Rf(ain)) = (L,R). Let u = ay---aj,
V= Q41 ap and y; = ag;41 -+ - a4;,, for each 1 <j <k —1. We also denote
y1---Yg—1 by y. By the local structure theory of semigroup, we know that y
and each y; belong to the same H-class H = RN L, which is a subgroup of S.
We construct a factorization tree (see Figure 2) for z by defining d(x) = (uy, v)
and d(uy) = (u,y). By using the technique from the previous section for the
group case, we construct a factorization tree of height at most 3|H| = 3¢ with
root y and leaves y1,...,yr—1. It is a degenerate case when k£ = 1 and y = e.
In that case, the construction tree for z is defined by d(z) = (u,v).

Since u, v, and all the y;’s are factors of z, we know that int(u) C int(z),
int(v) C int(z) and int(y;) C int(z), for 1 < j < k — 1. Moreover, by the way
u, v and the y;’s are defined, we know that (L, R) belongs to int(z) but not to
int(u), int(v) or any of the int(y;)’s. Then, by the induction hypothesis, there
are factorization trees for u, v and each y;’s of height at most 5¢(|int(z)| — 1)
and consequently, we can construct a factorization tree for x of height at most
2 4+ 3¢ + 5q(Jint(z)| — 1) < 5¢lint(x)|.

Since |int(x)]| is less than or equal to the number of different #-classes in S
and ¢ is the size of any H-class, the height of the factorization tree for z is at
most 5|5]. |



Figure 3: How to build a tree for the general case

5 The general case

We consider in this section a morphism f from AT to a finite semigroup. The fol-
lowing basic knowledge about semigroup is very important in the understanding
of the algorithm: if 2 = wvw then Dj(,) > Dy ).

Theorem 3 FEvery morphism f : AT — S, from a free semigroup to a finite
one, admits a Ramseyan factorization forest of height at most 7|S)|.

Proof. Given a word x, we consider the position of Dy, in the partial ordering
of the D-classes. We will show by an induction on the D-classes partial ordering
that we can construct a factorization tree of height at most 7 ZDZ‘DDf(m) |D].

Firstly suppose that Dy(,) is one of the maximal D-class for the partial
ordering <p. We can apply the technique from the previous section for a single
D-class. Thus, there exists a factorization tree for 2 of height at most 5D (,)|,
which is less than 7|Dy(,)| = 7ZDZ’DDf(m] |D].

Now, for the inductive case, we suppose that Dy (,) is not a maximal D-class.
We need another induction on the length of . If || = 1, we put d(z) = z which
gives a factorization tree of height 0.

Suppose |z| > 1. We say that a word w € A" is primitive if w € A, or w and
y belong to different D-classes where w = ya and a € A. We decompose = into
primitive strings yi,ys,...,yr such that x = y1ys - - - ypv where D,y = Dy,
for 1 < j < k and Dy,) >p Dy(,). Clearly, k > 1. A degenerate case of
the decomposition is when v does not exist. That is, x is decomposed into
primitive strings y1,ys,...,y, such that = y1y2---yr where D,y = Dy (y)
for 1 < j < k. Note that the decomposition of x is unique.

Consider the general case of the decomposition of z. (The degenerate case is
easier.) We factorize z (see Figure 3) according to the decomposition such that
d(z) = (y,v) and y is factorized into yi,ys, ...,y using the same technique
given in the previous section for a single D-class. The height of the subtree
rooted at y with leaves y1,¥2,...,yx (see Figure 3) is at most 5Dy, |-

For each primitive string y; where 1 < j < k, we factorize it (see Figure 4)
into y; and a where y; = yia and a € A. That is, d(y;) = (y},a). There is no



Figure 4: How to build a tree for a primitive string

need to factorize y; if y; € A.
By the induction hypothesis, there exist factorization trees for each y} and
v of height at most 7ZD>DDf(m) |D|. The total height for the factorization of

x is at most 2 + 5[ D] + 7ZD>DDHI) |D| < 7ZD2va(m) |D].
Consequently, for each word = we can construct a factorization tree of height
at most 7ZDZDDHI) |D| < 7S] |

6 Lower Bounds

We have shown that for each morphism f from a free semigroup A% to a finite
semigroup S, there exists a Ramseyan factorization forest of height at most
7|S| which is linear in |S|. In this section, we prove that the result cannot
be significantly improved. For each of the three steps of the algorithm, we
show that there are examples of semigroup morphism such that any Ramseyan
factorization forest for the morphism would require a height not less than |S|.

6.1 The group case

Let f be a morphism from AT to a finite semigroup. We define a new kind
of Ramseyan factorization forest (which we call Ramseyan group factorization)
as a function d from A' to F(A") such that d(z) = (z1,%2,..., 7)) implies
flz;) = e for 2 < i < k — 1 where e is an idempotent. As in the former
definition, the only words x such that d(z) = # must be the elements of A.

One can see that the usual Ramseyan factorization tree is just a special
case of the Ramseyan group factorization tree. On the other hand, given a
Ramseyan group factorization tree of height h, one can easily convert it to a
usual Ramseyan factorization tree of height at most 3h. Thus, the two variants
of Ramseyan factorization forests are linearly related in height.

Given £ € AT, we define h(z) to be the minimum height of a Ramseyan
group factorization tree for z.

Lemma 1 For all z € A", for all u,v € A*, h(z) < h(uzv).

Proof. Given a group factorization tree for uzv, we can prune the tree to obtain
a group factorization tree for . The pruning is done by first eliminating symbols
from u and v at the leaves level. More pruning may be triggered at the higher
levels in order to maintain the properties required for a group factorization tree.
The resulting tree has height not exceeding that of the given tree for uzv. O



Let G be a group {a1,...,qa,} of size n, where a; = e is the identity. Let
A ={a1,...,a,} and f be a morphism from A" to G such that f(a;) = a; for
1 < i < n. We want to show that there exists z,, € AT such that the height of
any group factorization tree for z, is at least n.

Let = byby---b;, where b; € A for 1 < i < k. Consider the sequence of
prefix images 3; = f(b1ba -+ -b;), for 1 < i < k. We define 8 = 31 - - - B to be the
prefix images string of . Suppose we are given with the prefix images string
but not the original string x. Since G is a group, we can compute z as follows:
by = fﬁl(ﬁl) and b; = fﬁl(ﬂ;llﬂi) for 2 <i<k.

Instead of constructing z, such that the height of any Ramseyan group
factorization tree for z, is at least n, we will construct the prefix images string
0, of z, from which z, can be recovered uniquely.

Let 8 and v be two prefix images strings of the same length k. We say that
B and v are structurally similar if for all 1 <i,j <k, g; = B; iff v; = ;.

Lemma 2 Let z,y € AT such that the prefiz images strings of x and y are
structurally similar. Then h(z) = h(y).

Proof. Let k = |z] = |y|. Let x = by ---bx. Suppose we are given a group
factorization tree for x. Let d(z) = (21,22, ...,zp) where p > 2. Then f(z:) =
f(zizs) = f(viwaws) = -+ = f(z122 - 2p1). Let d(y) = (y1,¥2,...,yp) such
that |y;| = || for 1 <4 < p. Since the prefix images strings of z and y are struc-
turally similar, we have f(y1) = f(y1y2) = f(yiyeys) = - = f(y1y2 - yp—1)-
Thus, d(y) is well-defined. Furthermore, z; and y; are again structurally similar
for 1 < i < p. Therefore, given a group factorization tree for z, we can construct
a similar group factorization tree for y that is structurally the same, and vice
versa. u

To comstruct d§,, we construct inductively & € {aq,...,a;}T for i =
1,2,...,n such that the height of any group factorization tree for z; € A™, which
prefix images string is ¢;, is at least i. We define §; = aja;y. It is immediate
to see that any group factorization tree for z; has height one. Suppose we have
defined d; € {a1,...,a;}". Let 1 < j <i. By substituting every occurrence of
@; by @;t1 in d;, we obtain a string 87 € ({a1,...,a;}\{a;}U{ait1})" which is
structurally similar to §;. Next, we define 6;11 = 6;6}67 - -6} € {a1,...,aip1}T.
We want to show that any group factorization tree for z;;1 has height at least
i+ 1. Let d(2i41) = (%1, 22,...,2p) where p > 2.

Firstly suppose a;41 = f(z1) = f(z122) = -+ = f(x122---2p_1). Since
none of the prefix images of z; is a;41, we deduce that d; is a prefix of the prefix
images string for z; where f(x1) = a;11. Thus, z; is a prefix of z;. Since z;
requires a tree of height at least i for factorization, by Lemma 1 any factorization
tree for x; also requires a height of at least i. Hence, the total height of this
tree for z; 4, is at least ¢ + 1.

Next suppose a; = f(z1) = f(z122) = = f(z122---xp—1) where 1 < j <
i. Recall that 67 € ({ay,...,ait1} \ {a;})T is a string that does not consist of
the symbol Q. Let k£ = |(51‘ Then ‘5i+1‘ = k(Z + ].) Since 5i+1 = (51(511(512 s (5:,
the substring 5? is located within d;4; in positions between kj + 1 and k(j + 1).
There must exist x,, where 1 < m < p such that 5{ is ‘covered’ by x,, in the
sense that |z1x9 - - @pm—1| < kj+1 < k(j+1) < |z122 - - - 2|. Since G is a group,
there is a substring of the prefix images string of x,,, that is structurally similar



to 5?, which is also structurally similar to §; since the ‘structurally similarity’
relation is transitive. By Lemma 1 and Lemma 2, we conclude that h(x,,) > i.
Again, the total height of this alternate group factorization tree is at least i + 1.

In Section 3, we prove that every morphism from AT to a group G admits
a Ramseyan factorization forest of height at most 3|G|. A close look at the
algorithm shows that one can obtain a Ramseyan group factorization forest of
height at most |G|. Thus, the existence of z,, shows that the algorithm is indeed
tight.

Theorem 4 Consider any morphism f : At — G, where G is a finite group.
Let F' be a Ramseyan factorization forest for f. Then the height of F is at least
G-

Proof. It has been shown that there exists a string z such that the height of any
Ramseyan group factorization tree is at least |G|. Since Ramseyan factorization
is a special case of Ramseyan group factorization, we conclude that the height
of any Ramseyan factorization tree is also at least |G|. m

6.2 The case of rectangular bands

In Section 4, we describe a factorization algorithm for the case of a single D-
class. The algorithm is done recursively and relies on the results of Section 3
for factorization in the group case. If every subgroup (equivalently, H-class) is
trivial, the algorithm given in Section 4 will produce a factorization forest of
height at most 3|S|. In the following, we give a family of examples of single
D-class semigroups with trivial 7-classes (which are called rectangular bands)
that require factorization forests of height at least |S].

Given two nonempty sets I and .J, we define an associative multiplication
on the set I x J as follows:

vi,i' € 1,Yj,j' € J, (i, ) (@', ') = (i,

A semigroup S is called a rectangular band if there exist I and J such that S
is isomorphic to I x J with the previous multiplication.

Let f be a morphism from AT to a rectangular band. We define a Ram-
seyan rectangular factorization forest as a function d from A* to F(A™T)
such that d(z) = (x1,2a,...,2,) implies |int(d(z))| = 1 where int(d(z)) =
int(z1,72,...,79) = {(Lf@,)s Rf@ir)) 1 1 <4 < g — 1} As in the former
definitions, the only words x such that d(z) = x must be the elements of
A. Observe that every element of a rectangular band is an idempotent and
f(z2) = f(xg) = -+ = f(xg—1). Thus, Ramseyan factorization forest is a spe-
cial case of Ramseyan rectangular factorization forest, which in turn is a special
case of Ramseyan group factorization forest. Given a Ramseyan rectangular fac-
torization forest of height h, we can construct a Ramseyan factorization forest
of height at most 3h. Therefore, the three variants of Ramseyan factorization
forests are linearly related in height.

Given z € A", we define h(z) to be the minimum height of a Ramseyan
rectangular factorization tree for z.

Lemma 3 For all x € A, for all u,v € A*, h(z) < h(uzv).



Proof. The proof is exactly the same as in the former case for Ramseyan group
factorization forest. |

Let A = {a;; | i € I,j € J} and f be the morphism from A" to the
rectangular band I x J such that for each (i,7) € I x J, f(as;) = (i,7). Given
a word T = a;,j, - - a;,j,, we define int(z) = {betw,(k) | 1 <k <p— 1} where
betw, (k) = (jr,ix+1). We want to show that there exists a word such that the
height of any rectangular factorization tree for this word will be at least the size
of the semigroup |S| which is |I| x |J|.

As for the group case, we will construct recursively a word =z such that
lint(zy)] = k and h(zy) > k. For k = 1, pick any specific ordered pair (i', j')
from S. Let 1 = ayj ayy which will need a tree of height 1 and |int(z1)| =
G = 1.

Suppose k£ > 1. We will construct z; from the structure of z;_ ;. Pick a
specific ordered pair (j",i") € S \ int(zr_1). For each (j,i) € int(xx_1), we
construct a word y;; by replacing the letters of ;1 such that f(y;;) = (i',7")
and for each 1 < p < |zp_1| — 1, betw,, (p) = (j",i") if betw,,_,(p) = (4,7)
and betw, (p) = betw,, ,(p) otherwise. It is easy to see that int(y;) =
{(4",i")} Uint(zr_1) \ {(4,7)} and the minimal height of a Ramseyan rect-
angular factorization tree for each y;; is at least £ — 1. We define z;, to be the
concatenation of xy_; and all the y;;’s that have been defined previously. Note
that f(zy) = (¢, j') and int(zy) = int(xzx_1)U{(",i")}. Similar to the proof for
the group case, we can show that the minimal height of a Ramseyan rectangular
factorization tree for xj, is at least k. Thus, there exists a word which Ramseyan
rectangular factorization tree requires a height at least |S|. Remark: A close
look at the algorithm given in Section 4 shows that every morphism from A7 to
a rectangular band semigroup S admits a Ramseyan rectangular factorization
forest of height |S|. Next, since Ramseyan factorization forest is a special case
of Ramseyan rectangular factorization forest, we obtain the next theorem.

Theorem 5 Consider any morphism f : AT — S, where S is a rectangular
band. Let F' be a Ramseyan factorization forest for f. Then the height of F is
at least |S)|.

6.3 D-trivial semigroups

In Section 5, we describe a factorization algorithm for the general case. The
algorithm is done recursively and relies on the results of Section 4 for factor-
ization for the single D-class case. If every D-class is trivial, the algorithm
given in Section 5 will produce a factorization forest of height at most 3|S|. In
the following, we give a family of examples of D-trivial semigroups that require
factorization forests of height more than |S].

For each n, let S,, be the semigroup {a, ..., a,} with the following associa-
tive operation: a;oy = aj; = max{s,j3- We can easily see that D,, = {a;} and
ifi <j, Dj <p D;. Let A, ={ai,...,a,}. Let f: Al — S,, be the morphism
such that for each 1 <i < mn, f(a;) = a;. For each word = € A}, we can easily
see that f(z) = «a;,, where i,,, = max{i | a; is a letter of z}. Let z; be the word
aja; and z;41 = (w;a;41)? for 1 <i <n — 1. That is, 7, = ((a2az)?-- - a,)>.

Lemma 4 The minimal height of a Ramseyan factorization tree for x, isn+1,
where n > 2.



Proof. Consider an arbitrary factorization tree for z,, where n > 2. We want
to argue that every internal node is factorized into two nodes. Consequently,
the minimal height of a factorization tree is [lg|z,|] = [1g(2" ™! —2)] =n + 1.
Suppose on the contrary that there is a node labelled by w such that d(w) =
(w1, wa,ws, ..., wpy) where p > 3. Since the out-degree is more than two, we
have f(w1) = f(ws) = f(ws) = --- = f(wp), which we also denote by ay,. Thus,
ay appears as a symbol in wi, wy and ws. However, by the way x,, is defined,
within three occurrences of ay there must exist agyi. That is, agy1 exists in
either wy, wy or ws. Hence, either f(wy) # ag, f(wa) # ai or f(ws) # ag,
which is a contradiction. a

For the general case, one may wonder if it is possible to show that for any
morphism from A% to a finite semigroup S, any Ramseyan factorization forest
must have height at least the size of S. The following family of examples proves
the negative.

For each n, let S, be the D-trivial semigroup {f, a1, ..., «,} with the follow-
ing associative operation: 8 = 8, a8 = B, foy; = B, aja; = a; and oo = 5
where i # j. Let A, = {a1,...,a,} and f be a morphism from A} to S, such
that f(a;) = a; for 1 <i <mn.

Lemma 5 There is a Ramseyan factorization forest for f of height 4.

Proof. Let z € A}. We define d(z) = (x,y) and d(z) = (v1,22,...,1,)
such that y consists of the same symbol from A, and for 1 < k < q, o =

Ak, Ak, - - Ak, Ak, Where 1 < ky # ko < n. Thus, f(z1) = f(z2) = - = f(z,y) =
B. Moreover, d(zy) = (x},ar,) and d(z},) = (ak,,@k,,--.,ak ). Note that the
factorization tree may have a height smaller than 4 for degenerate cases. O
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