
Distrib. Comput. (2010) 23:177–196
DOI 10.1007/s00446-010-0115-3

On the power of synchronization between two adjacent processes

Jérémie Chalopin · Yves Métivier

Received: 23 March 2009 / Accepted: 1 July 2010 / Published online: 24 July 2010
© Springer-Verlag 2010

Abstract We study the power of local computations on
labelled edges (which allow two adjacent vertices to syn-
chronize and to modify their states simultaneaously in func-
tion of their previous states) through the classical election
problem. We characterize the graphs for which this problem
has a solution. As corollaries we characterize graphs which
admit an election algorithm for two seminal models: Ang-
luin’s model and asynchronous systems where processes
communicate with synchronous message passing (i.e., there
is a synchronization between the process sending the mes-
sage and the one receiving it).

1 Introduction

Various models of local computations on labelled graphs pro-
vide an elementary and convenient framework to define, to
study and to teach basic algorithmic problems of distributed
computing. In these models we have at our disposal only
bare synchronization primitives and the corresponding local
computations steps. It turns out that for many basic algorith-
mic problems arising in distributed computing such simple
models are sufficient, and they allow either to formulate an

This work was supported by grant No ANR-06-SETI-015-03 awarded
by Agence Nationale de la Recherche.

J. Chalopin
LIF, CNRS & Aix Marseille Université, 39 rue Joliot-Curie,
13453 Marseille, France
e-mail: jeremie.chalopin@lif.univ-mrs.fr

Y. Métivier (B)
Université de Bordeaux, LaBRI UMR CNRS 5800,
351 cours de la Libération, 33405 Talence, France
e-mail: metivier@labri.fr

algorithm solving the problem or to show formally that the
problem is not solvable in the given context.

The relative simplicity of the local graph computation
models facilitates the conception of algorithms and suitable
combinatorial structures which subsequently can be trans-
lated and applied in a more realistic but also more involved
setting. Such models give us an insight which is difficult
to obtain in more elaborate models. Local graph computa-
tions often allow to delimit precisely the borderline between
positive and negative results in distributed computing. It is
clear that the possibility of solving a particular problem for a
given class of networks depends on the power of the synchro-
nization primitives and on the initial knowledge available to
the computational agents. Better comprehension of all these
factors enhances our understanding of basic distributed algo-
rithmic problems.

As it is well established in the domain of distributed com-
puting, some algorithmic problems like election, naming, ter-
mination detection, network topology recognition constitute
basic building blocks for many other algorithms. In this work,
characterizations of graphs in which election or naming are
possible are obtained under two different models: local com-
putations on (open) labelled edges.

As corollaries of our results, we obtain (for the first time to
our knowledge) the characterization of graphs in which elec-
tion is possible under two well-known models that are more
realistic. More specifically, we show that the well known
Angluin’s model1 of distributed computations of processors
communicating via named channels can be reduced to our
model of local computations on labelled edges. From this,
we obtain a characterization of graphs where leader election
can be solved in Angluin’s model.

1 Inspired by Milne and Milner’s Model for distributed systems [22].

123

178 J. Chalopin, Y. Métivier

In an asynchronous system where processes communi-
cate with synchronous message passing, each send event and
the corresponding receive event happen simultaneaously (see
[27, p. 47]). In other words, the sender and the receiver have
to synchronize in order to be able to communicate. It has been
defined by Hoare in [18]. As it is explained in [14, p. 40],
examples of synchronous message passing are also given
by Ada Rendezvous, Remote Procedure Calls and Remote
Method Invocation. We show that this model can be reduced
to the model of local computations on open labelled edges
we study in this paper. From this, we also obtain a character-
ization of graphs where leader election can be solved in this
model.

We also believe that local computations on edges enable
a unified presentation of models like those presented above
and recent models like population protocols [4] we discuss in
Sect. 10. Furthermore, it seems to be much simpler and easier
for manipulating and analyzing, and it enables comparisons
of their power.

1.1 Our models

We consider networks of processors with arbitrary topology.
A network is represented as a simple connected, undirected
graph G = (V (G), E(G)). As usual the vertices represent
processors and edges direct communication links. The state
of each processor (resp. each link) is represented by the label
λ(v) of the corresponding vertex v (resp. by the label λ(e) of
the corresponding edge e). An elementary computation step
will be represented by relabelling rules of the form given
schematically in Fig. 1. If in a graph G there is a vertex
labelled X linked to a neighbour labelled Z by an edge
labelled Y then applying the rule R of Fig. 1, we replace
X by a new label X ′, Y by a new label Y ′ and Z by
a new label Z ′; sometimes R will be denoted by: R =
((X, Y, Z), (X ′, Y ′, Z ′)). The labels of all the other verti-
ces are irrelevant for such a computation step and remain
unchanged. The vertices of G changing the labels will be
called active (and filled with black in figures). The computa-
tions using uniquely this type of relabelling rules are called
in our paper local computations on labelled edges.

We consider also a variant of this model presented in
Fig. 2. In this case the label of a vertex which appears in the
rule does not change. The neighbour vertex used to match
the rule is called passive (and marked as unfilled in figures).

Fig. 1 Graphical form of a relabelling rule R on labelled edges
where X ′ = f1(X, Y, Z), Y ′ = f2(X, Y, Z) = f2(Z , Y, X), Z ′ =
f3(Z , Y, X), f1, f2 and f3 are transition functions on triple of states;
sometimes R is also denoted by R = ((X, Y, Z), (X ′, Y ′, Z ′))

Fig. 2 Graphical form of a relabelling rule R on open labelled edges
where X ′ = f1(X, Y, Z), Y ′ = f2(X, Y, Z) = f2(Z , Y, X), and f1,
and f2 are transition functions on triple of states; sometimes R is also
denoted by R = ((X, Y, Z), (X ′, Y ′, Z))

Computations using this type of relabelling rules are called
local computations on open labelled edges.

In both cases, all the other vertices of G not participating
in such elementary relabelling step are called idle.

Thus a distributed algorithm in our model is simply given
by some (possibly infinite but always recursive) set of rules
of the type presented in Fig. 1 (resp. Fig. 2). A run of the
algorithm consists in applying the relabelling rules specified
by the algorithm until no rule is applicable, which terminates
the execution. The relabelling rules are applied asynchro-
nously and in any order, which means that given the initial
labelling usually many different runs are possible. The dis-
tributed aspect comes from the fact that two consecutive non-
overlapping steps may be applied in any order and in
particular in parallel. The formal definitions of the model
follow in Sect. 3.

Remark 1 Labels (states) are attached to vertices and edges.
They make it possible to encode many different situations.
If the network is anonymous then all vertices have the same
label; vertices having unique identities, a distinguished vertex
or any intermediate situation (partially anonymous) are other
examples of labels attached to vertices; marks that encode a
spanning tree is an example of labels attached to edges.

Remark 2 A rule of the type described in Fig. 1 enables to
break the symmetry between two adjacent vertices.

1.2 Election and naming

In this paper, we focus on two classical problems of distrib-
uted computing that are election and naming. The election
problem is one of the paradigms of the theory of distrib-
uted computing. A distributed algorithm solves the election
problem if it always terminates and in the final configuration
exactly one process is marked as elected and all the other
processes are labelled non-elected. Moreover, it is supposed
that once a process becomes elected or non-elected then it
remains in such a state until the end of the algorithm. Elec-
tion algorithms constitute a building block of many other
distributed algorithms. The elected vertex acts as coordina-
tor, initiator, and more generally performs some special role
(cf. [26, p. 262]). If processes have initially unique identi-
fiers, it is always possible to solve this problem by electing
the process with the smallest identifier. Nevertheless, if we
consider anonymous networks where processes do not have
identifiers and execute the same algorithm, it is not always
possible to solve the election problem. One aim of this paper

123

On the power of synchronization between two adjacent processes 179

is to present a characterization of networks where this prob-
lem can be solved in our models.

The aim of a naming algorithm is to arrive at a final con-
figuration where all processors have unique identities. Again
this is an essential prerequisite to many other distributed algo-
rithms which work correctly only under the assumption that
all processors can be unambiguously identified. The enu-
meration problem is a variant of the naming problem. The
aim of a distributed enumeration algorithm is to attribute
to each network vertex a unique integer in such a way that
this yields a bijection between the set V (G) of vertices and
{1, 2, . . . , |V (G)|}.

In our setting, a distributed algorithm terminates if the net-
work is in such a state that no relabelling rule can be applied,
but it does not mean that the processes are aware that the com-
putation has terminated. We say that we can solve a problem
with termination detection on a graph G if there exists a dis-
tributed algorithm A that solves the problem on G such that in
the final state, at least one vertex is aware that no relabelling
rule can be applied in the graph.

1.3 Overview of our results

We recall that at each step of computation, labels are modi-
fied on exactly two endvertices linked by an edge and on this
edge of the given graph, according to certain rules depending
only on the label of this edge and on the labels of the two
endvertices. Under this hypothesis, we give a complete char-
acterization of labelled graphs for which there exists an elec-
tion algorithm. More precisely, we prove that, given a simple
labelled graph G (without self-loop or multiple edges) there
exists an election algorithm for G if and only if G is mini-
mal for the covering relation. First we consider multigraphs:
graphs having possibly multiple edges without self-loop. For
this class of graphs, a labelled graph H is a covering of a
labelled graph K if there exists a label-preserving surjective
homomorphism ϕ from H onto K such that, for every vertex
v, the restriction of ϕ to the set of edges incident to v is a
bijection between this set of edges and the set of edges inci-
dent to ϕ(v). We then apply our result to characterize graphs
which admit an election algorithm in Angluin’s model.

Examples of minimal graphs includes trees, rings with a
prime number of vertices or complete graphs. It shows that
there exists many graphs where election can be solved in the
models considered in this paper, while it is not possible in the
model where processes communicate by asynchronous mes-
sage passing. Indeed, thanks to the characterization given by
Yamashita and Kameda [28,29] for asynchronous message
passing systems where election can be solved, we know that
in their model, election cannot be solved in rings or complete
graphs and that there are some trees that does not admit an
election algorithm. Moreover, the view-based techniques of
Yamashita and Kameda cannot be adapted easily to obtain a

characterization for local computations on labelled edges, or
for Angluin’s model. In fact, the views do not allow to capture
easily the non-determinism of the execution that necessarily
exists in our model, or Angluin’s model.

The necessary condition we use is a slight generalization
from Angluin’s impossibility result [3] based on cover-
ings. We also establish constructively the sufficiency of this
condition. We use techniques inspired by the work of
Mazurkiewicz [20] in a model described below (Sect. 1.4)
these techniques have been already used to improve some
results in an asynchronous message passing system [8] and
seem complementary to techniques based on views.

We also consider the complexity of our algorithm: we
show that both the number of steps of any execution of the
algorithm and the size of the memory used by each process
are polynomial (in the size of the graph), while Yamashita and
Kameda’s algorithm needs each process to have a memory
of exponential size and to exchange messages of exponential
size.

In the second part of this paper, we consider local compu-
tations on open labelled edges: at each step of computation
labels are modified on exactly one edge and one endvertex
of this edge of the given graph, according to certain rules
depending on the label of this edge and the labels of its end-
vertices only.

We prove that this model is equivalent to the model studied
in the first part by using a simulation algorithm. This result
is not obvious: for example, using the first model, it is easy
to give a name to each edge of a given graph such that for
a given vertex v, all the edges incident to v have a different
name; if we do not use the simulation algorithm this result is
not trivial in the context of the second model.

As a consequence of this equivalence, we obtain a char-
acterization of labelled graphs which admit an election algo-
rithm in an asynchronous network with synchronous message
passing (atomic receive/send).

In the last section we discuss the importance of the edge
labels.

1.4 Related works: comparison and comments

The election problem was already studied in a great variety
of models. The proposed algorithms depend on the type of
the basic computation steps, they work correctly only for a
particular type of network topology (tree, grid, torus, ring
with a known prime number of vertices etc.) or under the
assumption that some initial extra knowledge is available to
processors.

Various local computation models studied in the litera-
ture are characterized by the relabelling rules that they use.
Figure 4 presents schematically such rules and their hierar-
chy in terms of the computational power. Characterizations
of graphs where naming and election can be solved exist for

123

180 J. Chalopin, Y. Métivier

each of these models, except for the models (3) and (4) that
are studied in this paper.

Yamashita and Kameda [28] consider the model where, in
each step, one of the vertices, depending on its current label,
either changes its state, or sends/receives a message via one of
its ports. Given a graph G they ask that there exists an election
algorithm for every port numbering δ of G (a port numbering
gives local names to incident edges). They proved that there
exists an election algorithm for G if and only if the symme-
tricity of G is equal to 1, where the symmetricity depends on
the number of vertices having the same view. The view from
a vertex v of a graph G with a port numbering δ is an infinite
labelled tree rooted in v obtained by considering all labelled
walks in (G, δ) starting from v. This asynchronous message
passing model is strictly less powerful than the model (6) in
Fig. 4 but its computational power is not comparable with
the computational power of the models (1), (2), (3), (4), (5)

in Fig. 4. In [29], Yamashita and Kameda study the impor-
tance of the port labelling for the election problem in this
message passing model. From the results of Boldi et al. [5],
one can obtain different characterizations for the different
models considered in [29], based on fibrations and coverings
of directed graphs. In [8], Chalopin and Métivier present a
new algorithm in this model. This algorithm is totally asyn-
chronous and it needs a polynomial number of messages of
polynomial size whereas previous election algorithms in the
asynchronous message passing model (like [29]) are pseudo-
synchronous and use messages of exponential size.

Mazurkiewicz [20] considers the asynchronous computa-
tion model where in one computation step labels are modi-
fied on a subgraph consisting of a node and its neighbours,
according to rules depending on this subgraph only. This is
the model (7) of Fig. 4. Mazurkiewicz’s characterization of
the graphs where enumeration/election are possible is based
on the notion of unambiguous graphs and may be formulated
equivalently using coverings of simple graphs [16, p. 256].
He gives a nice and simple enumeration algorithm for the
graphs that are minimal for the covering relation, i.e., which
can cover only themselves.

The characterization presented in this paper for local
computations on labelled edges is not equivalent to the char-
acterization of Mazurkiewicz. If we consider the ring with
4 vertices, denoted R4, then it is minimal for the covering
relation as defined in [16] (based on neighbours) but it is
not minimal for the generalization given in this paper (based
on incident edges). Indeed, for the generalization, R4 covers
the graph H defined by 2 vertices having a double edge (see
Fig. 3).

Thus there exists an election algorithm for R4 in the model
of Mazurkiewicz and there does not exist an election algo-
rithm for R4 in the model studied in this paper.

Boldi et al. [5] consider a model where the network is
a directed multigraph G. They consider models where the

Fig. 3 The graph R4 covers the graph H

Fig. 4 A hierarchy of local computations models described by the dif-
ferent kinds of relabeling rules they use. The model hierarchy is dis-
played as follows. We write (i) → (j) for two models (i) and (j)
if (j) can simulate (i) but not vice versa. This means that (j) has a
greater computational power than (i); this relation is transitive. We
write (i) ≡ (j) if (i) and (j) have the same computational power. The
computational power of model (5) is incomparable with the power of
models (2), (3) and (4). A mark on an edge means that edges are labelled
(and labels can be changed). We recall the presentation convention:
a vertex filled with black can change its state while an unfilled vertex
cannot change its state

arcs can be labelled or not, and synchronous or interleaved
activation models (in this paper we are interested in the inter-
leaved model). When a processor is activated, it changes its
state depending on its previous state and on the states of its
ingoing neighbours; the outgoing neighbours do not partici-
pate in such an elementary computation step. From this work,
we can easily deduce characterizations of the graphs where
election is possible for the models (5) and (6) of Fig. 4.

From results obtained in this paper and [5] we deduce that
the model (6) has a strictly greater power than the models (3)

and (4). It turns out that for all these three models, election
and naming over a given graph G are equivalent. We should
note that the model (4) was also examined by Mazurkiewicz
[21] who gives a characterization based on equivalence rela-
tions over graph vertices and edges. Let us note by the way
that although the model (1) and the model (3) seem to be
very close, the graphs for which the naming problem and
the election problem can be solved are very different for
both models. The intuitive reason is that if we allow to label
the edges as in (3) then each processor can subsequently
consistently identify the neighbours. On the other hand, in
the model (1) where edges are not labelled, a vertex can
never know if it synchronizes with the same neighbour as
previously or with another one.

123

On the power of synchronization between two adjacent processes 181

In [9], the model (1) of Fig. 4 is studied: in one com-
putation step a vertex modifies its state accoding to its
state and the state of one of its neighbours. In this model,
the graphs admitting a naming algorithm are submersion-
minimal graphs. (A graph G is a submersion of a graph H via
a homomorphism γ if for each v ∈ V (G), γ is surjective on
the neighbourhood NG(v), that is γ (NG(v)) = NH (γ (v))).
In this model, the election and the enumeration problem are
not equivalent. The characterization of graphs admitting an
election algorithm is also given but it is more involved.

In [6], the model (2) of Fig. 4 is studied: in one computa-
tion step, two neighbours modify simultaneously their labels
according only to their states (the edges are not labelled). In
this model, the graphs admitting both naming and election
algorithms are pseudo-covering-minimal graphs. (A graph G
is a pseudo-covering of H if there exists a homomorphism ϕ

from G onto H and a partial graph G ′ of G such that G ′ is a
covering of H via the restriction of ϕ to G ′.)

The study of local computations uses various locally con-
strained graph homomorphisms. Some properties and a com-
plexity classification may be found in [10,12,13].

1.5 Summary

Section 2 reviews basic notions of graphs and labelled graphs.
Section 3 presents local computations on labelled edges.
Section 4 is devoted to the problems of election and enu-
meration. Coverings are presented and impossibility results
are given. In Sect. 5, an enumeration algorithm using local
computation on labelled edges is described: it enables to
characterize the graphs for which there exists an election
algorithm; we prove it and we give an analysis. Section 6
presents and studies Angluin’s model. Section 7 proves the
equivalence between local computations on labelled edges
and local computations on open labelled edges. Section 8
characterizes graphs which admit an election algorithm in
a synchronous message passing system. Sections 9 and 10
compare the power of the different models presented in this
paper. Section 11 is the conclusion.

This paper is an improved version of the extended abstract
[7].

2 Basic notions and notation

2.1 Graphs

The notation used here is essentially standard [25]. We con-
sider finite, undirected, connected graphs without self-loop
having possibly multiple edges. If G = (V (G), E(G), Ends)
is a graph, then V (G) denotes the set of vertices, E(G)

denotes the set of edges and Ends denotes a map assigning to
every edge a set of two vertices: its ends. Two vertices u and

v are said to be adjacent or neighbours if there exists an edge
e such that Ends(e) = {u, v}. In this paper, graphs may have
several edges between the same two vertices; such edges are
called multiple edges. A simple graph G = (V (G), E(G))

is a graph with no self-loop nor multiple edges: E(G) can be
seen as a set of pairs of different vertices of G.

Let e be an edge, if the vertex v belongs to Ends(e) then
we say that e is incident to v and v is an endvertex of e. The
set of all the edges of G incident with v is denoted by IG(v).

The set of neighbours of v in G, denoted by NG(v), is the set
of all vertices of G adjacent to v. For a vertex v, we denote
by BG(v) the ball of radius 1 with center v, that is the graph
with vertices NG(v) ∪ {v} and edges IG(v).

The degree of a vertex v in a graph G, denoted by degG(v),
is the number of edges incident with v, it is equal to the car-
dinality of IG(v).

A homomorphism between G and H is a mapping
γ : V (G) ∪ E(G) → V (H) ∪ E(H) such that if u, v are
vertices of G and e is an edge such that {u, v} = Ends(e)
then {γ (u), γ (v)} = Ends(γ (e)). Since we deal only with
graphs without self-loop, we have γ (u) &= γ (v) whenever
{u, v} is an edge of G. Note also that γ (IG(u)) ⊆ IH (γ (u)).

We say that the homomorphism γ is an isomorphism if
γ is bijective. We write G (G ′ whenever G and G ′ are
isomorphic. A class of graphs will be any set of graphs con-
taining all graphs isomorphic to some of its elements. The
class of all graphs will be denoted by G. Given a graph G, a
graph H whose vertices and edges are all in G is a subgraph
of G. For an edge e of G, we denote by AG(e) the single
edge subgraph (Ends(e), {e}). An occurrence of G in G ′ is
an isomorphism γ between G and a subgraph H of G ′.

For any set S, |S| denotes the cardinality of S. For any inte-
ger q, we denote by [1, q] the set of integers {1, 2, . . . , q}.

2.2 Labelled Graphs

Throughout the paper we will consider graphs where vertices
and edges are labelled with labels from a recursive set L . A
graph labelled over L will be denoted by (G, λ), where G is
a graph and λ : V (G)∪ E(G) → L is the labelling function.
The graph G is called the underlying graph and the mapping
λ is a labelling of G. The class of labelled graphs over some
fixed alphabet L will be denoted by GL . Note that since L is
recursive, GL is also recursive.

Let (G, λ) and (G ′, λ′) be two labelled graphs. Then
(G, λ) is a subgraph of (G ′, λ′), denoted by (G, λ) ⊆
(G ′, λ′), if G is a subgraph of G ′ and λ is the restriction
of the labelling λ′ to V (G) ∪ E(G).

A mapping γ : V (G) → V (G ′) is a homomorphism from
(G, λ) to (G ′, λ′) if γ is a graph homomorphism from G to G ′

which preserves the labelling, i.e., such that λ′(γ (x)) = λ(x)

holds for every x ∈ V (G) ∪ E(G).

123

182 J. Chalopin, Y. Métivier

An occurrence of (G, λ) in (G ′, λ′) is an isomorphism γ

between (G, λ) and a subgraph (H, η) of (G ′, λ′). It shall be
denoted by γ : (G, λ) ↪→ (G ′, λ′).

Labelled graphs will be designated by bold letters like G,

H, . . . If G is a labelled graph, then G denotes the underlying
graph.

Remark 3 The labellingλ of vertices may encode some prop-
erties of the network or an initial knowledge. For example,
if the network is anonymous, all the vertices have the same
label (i.e., ∀u, u′ ∈ V (G), λ(u) = λ(u′)). If the processes
have unique identities, then for all u, u′ ∈ V (G) if u &= u′

then λ(u) &= λ(u′). If there exists a distinguished process,
then there exists u ∈ V (G) such that for each u′ ∈ V (G)

distinct from u, λ(u) &= λ(u′). It may also encode partial
identities of processes. Same properties for edges may be
encoded by λ. For example, labels of edges may encode a
spanning-tree. The degree of a vertex or the size of the graph
are examples of initial knowledge.

3 Local computations on (open) labelled edges and
distributed algorithms

In this section we give definitions of local computations on
(open) labelled edges, their interpretation as distributed algo-
rithms and an example of distributed algorithms encoded by
such local computations. Our terminology is inspired by def-
initions of [3].

3.1 Local computations on labelled edges

Let us recall that informally local computations on labelled
edges are applied to labelled graphs and they modify, at each
step, the labels of an edge and the labels of its endvertices
according to a rule depending on the labels of the edge and
its endvertices.

Let R be a set of relabelling rules as defined in Fig. 1
of Introduction. Let G1 and G2 be two labelled graphs. We
say that G1 yields G2 in one step, written G1 R G2, if
and only if there exists an edge e = {v1, v2} of G1, a rule
R = ((X, Y, Z), (X ′, Y ′, Z ′)) of R such that:

– in G1, X is the label of v1, Y is the label of e, and Z is
the label of v2;

– G2 is obtained from G1 by replacing the label X of v1 by
X ′, the label Y of e by Y ′, and the label Z of v2 by Z ′.

As usual, R∗ denotes the reflexive and transitive closure
of R . Local computations on labelled edges on graphs are
computations on graphs corresponding to relabelling rela-
tions obtained by this way; they are also called locally gen-
erated relabelling relations on labelled edges.

A sequence (Gi)0≤i≤n is called a R-relabelling sequence
(or relabelling sequence, when R is clear from the context)
if Gi R Gi+1 for every 0 ≤ i < n (with n being the length
of the sequence). A relabelling sequence of length 1 is a rel-
abelling step.

Let R be a relabelling system; by definition R has the
termination property if there is no infinite R-relabelling
sequence.

Notation Let R be a relabelling relation. Let G and G′

be two labelled graphs; G R G′ will be denoted also by
G ,⇒

R
G′.

A complete formal presentation of all notions attached to
graph relabelling systems may be found in [16] (Sect. 3).

Remark 4 We only consider recursive set of relabelling rules
such that the set of irreducible graphs is recursive. The pur-
pose of all assumptions about recursiveness done throughout
the paper is to have “reasonable” objects w.r.t. their compu-
tational power.

3.2 Local computations on open labelled edges

In this paper, we consider also the following model of com-
putation: at each step of computation labels are modified on
exactly one edge and one endvertex of this edge of the given
graph, according to certain rules depending on the label of
this edge and the labels of its endvertices only; it is presented
in Fig. 2. As in the previous subsection, we define graph rel-
abelling systems on open labelled edges and locally gener-
ated relabelling relations on open labelled edges. Such local
computations are called local computations on open labelled
edges.

3.3 Distributed algorithms

The notion of relabelling sequence defined above obviously
corresponds to a notion of sequential computation. Clearly,
a locally generated relabelling relation allows parallel relab-
ellings too, since non-overlapping edges may be relabelled
independently. Thus we can define a distributed way of com-
puting by saying that two consecutive relabelling steps with
disjoint supports may be applied in any order (or concur-
rently). More generally, any two relabelling sequences such
that one can be obtained from the other by exchanging suc-
cessive concurrent steps, lead to the same result.

Hence, our notion of relabelling sequence associated to a
locally generated relabelling relation may be regarded as a
serialization [19] of a distributed computation. This model is
asynchronous, in the sense that several relabelling steps may
be done at the same time but we do not require that all of them
have to be performed. In the sequel we will essentially handle

123

On the power of synchronization between two adjacent processes 183

Fig. 5 The rewriting system Election- tree

Fig. 6 An example of a run of Election- tree

sequential relabelling sequences, but the reader should keep
in mind that such sequences may be done in parallel.

Finally in the model of local computations, R is regarded
as a distributed algorithm and we will denote this algorithm
by R . We give below an example of distributed algorithm
encoded by local computations that solves leader election on
trees when each vertex initially knows its degree.

Example 5 The rewriting system described in Fig. 5, denoted
Election- Tree, elects in any tree such that initially each
vertex is labelled by its degree. An execution of this algo-
rithm is presented in Fig. 6.

4 Election, enumeration and local computations
on labelled edges

In this section, we define the problem of election, that consists
in distinguishing a vertex from the others, and the problem
of enumeration, that consists in giving a unique number to
each one of the vertices of the graph.

We present coverings and we recall an impossibility result
about the election problem (and the enumeration problem).

4.1 Definitions

A distributed election algorithm on a labelled graph G is
a graph relabelling system on labelled edges such that the
result of any computation is a labelling of the vertices veri-
fying: exactly one vertex has the label elected and all other
vertices have the label non-elected. The labels elected and
non-elected are terminal, i.e., when they appear on a vertex
they remain until the end of the computation.

Fig. 7 The graphs G and G ′ are minimal if we only consider simple
graphs. The graph G ′ is minimal while the graph G is not minimal if
we consider graphs with multiple edges

A distributed enumeration algorithm on a labelled graph
G is a graph relabelling system on labelled edges such that
the result of any computation is a labelling of the vertices that
is a bijection from V (G) to {1, 2, . . . , |V (G)|}. It is easy to
see that if we have an enumeration algorithm on a graph G
where vertices can detect whether the algorithm has termi-
nated, we have an election algorithm on G by electing the
vertex labelled by 1.

4.2 Coverings

We say that a graph G is a covering of a graph H via γ if
γ is a surjective homomorphism from G onto H such that
for every vertex v of V (G) the restriction of γ to IG(v) is a
bijection onto IH (γ (v)). The covering is proper if G and H
are not isomorphic.

The notion of covering extends to labelled graphs in an
obvious way. The labelled graph (H, λ′) is covered by (G, λ)

via γ , if G is a covering of graph H via γ and γ is label-
preserving.

Remark 6 We use a different definition for coverings than
Angluin’s one. In fact, if we consider only simple graphs
these two definitions are equivalent. For Angluin, (H, λ′) is
covered by (G, λ) via γ , if γ is a homomorphism from (G, λ)

to (H, λ′) such that for every vertex v of V (G) the restriction
of γ to NG(v) is a bijection onto NH (γ (v)). Given a simple
graph G, for each vertex v ∈ V (G), there is a natural bijec-
tion between IG(v) and NG(v) and therefore it is easy to see
the equivalence.

We work with graphs that can have multiple edges and in
this case the two definitions are not equivalent. Consider the
graphs G and H from Fig. 7, if we consider the morphism

123

184 J. Chalopin, Y. Métivier

ϕ defined from G to H by the letters a, b,α,β, we easily see
that G is a covering of H . But if we use Angluin’s definition
of covering, G is not a covering of H since for each u ∈ G,
|NG(u)| = 2, whereas for each v ∈ H , |NH (v)| = 1.

A labelled graph G is called minimal if every covering
from G to some H is a bijection. Complete graphs are exam-
ples of minimal graphs. The graphs G ′ and H from Fig. 7
are minimal graphs, whereas G is a proper covering of H
and therefore G is not minimal. Moreover, G is not a proper
covering of any simple graph.

Remark 7 From a complexity point of view it has been
shown [10] that deciding if a given graph G is minimal is
co-NP-complete.

We have the following basic property of coverings (see
[24]):

Lemma 8 ([24]) For every covering γ from G to H there
exists an integer q such that |γ −1(x)| = q, for all x ∈
V (H) ∪ E(H).

The integer q in the previous lemma is called the number
of sheets of the covering. We also refer to γ as a q-sheeted
covering.

From Lemma 8, we deduce that for any graph G such that
|V (G)| and |E(G)| are coprimes, G is minimal. Examples of
such graphs are trees, k-trees, graphs with a prime number of
vertices (or edges). If the number of distinct labels appearing
on the vertices of G is coprime with the size of G, again, we
can deduce that G is minimal.

The following lemma shows that two edges that have the
same image by a covering cannot have a common end vertex.

Lemma 9 Let G be a covering of H via γ and let e1, e2 ∈
E(G) be such that e1 &= e2. If γ (e1) = γ (e2) then AG(e1)∩
AG(e2) = ∅, i.e., Ends(e1)∩ Ends(e2) = ∅.

4.3 Local computations and coverings

We now present the fundamental lemma connecting cover-
ings and locally generated relabelling relations on labelled
edges due to Angluin [3]. It states that, whenever G is a
covering of H, every relabelling step in H can be lifted to
a relabelling sequence in G, which is compatible with the
covering relation.

Lemma 10 (Lifting Lemma [3]) Let R be a locally gener-
ated relabelling relation on labelled edges and let G be a
covering of H via γ . If H R∗ H′ then there exists G′ such
that G R∗ G′ and G′ is a covering of H′ via γ .

Proof It suffices to show the claim for the case H R H′.
Suppose that the relabelling step changes labels in AH (e),
for some edge e ∈ E(H). We may apply this relabelling

step to each of the disjoint labelled single edge graphs of
γ −1(AH (e)), since they are isomorphic to AH (e). This yields
G′ which satisfies the claim.

This is depicted in the following commutative diagram:

G −−−−→
R∗ G′

γ

"
"γ

H −−−−→
R∗ H′

4.4 Impossibility result

We prove that there exists no enumeration algorithm and no
election algorithm on a graph G if the graph is not minimal.
To show this result, we use the same method as in the Lifting
Lemma [3]. If we assume there exists an enumeration (or an
election) algorithm we deduce that there exists a run which
either does not terminate or it terminates and there are two
vertices having the same number (or two elected vertices).
In any case we obtain a contradiction, and:

Proposition 11 Let G be a labelled graph which is not min-
imal, there is no enumeration (election) algorithm for G.

5 An enumeration algorithm for minimal graphs based
on local computations on labelled edges

In this section, we describe an algorithm M using local
computations on labelled edges that solves the enumeration
problem on a minimal labelled graph G. This algorithm is
related and uses some ideas developed in [20]. Each vertex
v attempts to get its own number between 1 and |V (G)|. A
vertex chooses a number and broadcasts it with its label and
its labelled neighbourhood all over the network. If a vertex
u discovers the existence of another vertex v with the same
number, then it compares its local view, i.e., the labels and
numbers of its neighbours, with the local view of v. If the
label of u or the local view of u is “weaker” (for an order
defined below), then u chooses another number and broad-
casts it again with its local view. At the end of the computa-
tion, every vertex will have a unique number if the graph is
minimal.

5.1 Labels

5.1.1 Labels for edges

For each edge e ∈ E(G) a number p(e) will be associated
to e such that at the end of the run for each endvertex v of e
if e, e′ ∈ IG(v) and e &= e′ then p(e) &= p(e′). The label of

123

On the power of synchronization between two adjacent processes 185

an edge e is the pair (λ(e), p(e)) and the initial labelling is
(λ(e), 0).

Remark 12 The label p(e) for an edge e simulates a port
numbering.

5.1.2 Labels for vertices

For each vertex v ∈ V (G), the label of v is of the form
(λ(v), n(v), N (v), M(v)) where:

– n(v) ∈ N is the number of the vertex v computed by the
algorithm;

– N (v) ∈ Pfin(N × L × N)2 is the local view of v, and it is
a tuple defined by:

N (v) = {(p(e), λ(e), n(v′)) | e ∈ IG(v),

Ends(e) = {v, v′} and p(e) &= 0};

– M(v) ⊆ N × L × Pfin(N × L × N) is the mailbox of v

and contains the whole information received by v at any
step of the computation; for each element (n0,)0, N0) of
M(v) there exists a vertex u and a step i such that at step
i , n(u) = n0, N (u) = N0 and λ(u) =)0.

The initial labelling of any vertex v is (λ(v), 0,∅,∅).

5.2 An order on local views

The fundamental property of the algorithm is based on a
total order on local views, as defined in [20], such that the
local view of any vertex cannot decrease during the compu-
tation. We assume for the rest of this paper that the set of
labels L is totally ordered by <L . We consider the lexico-
graphic order on N × L × N, i.e., (p,), n) < (p′,)′, n′) if
p < p′ or (p = p′ and) <) ′) or (p = p′ and) =)′ and
n < n′). Then we define the order ≺ on Pfin(N × L × N)

by: N1 ≺ N2 if the maximum of the symmetric difference
N1 3 N2 = (N1 \ N2) ∪ (N2 \ N1) belongs to N2.

If N (u) ≺ N (v), then we say that the local view N (v)

of v is stronger than the one of u and that N (u) is weaker
than N (v). Using the total order <L over L , the order ≺ is
extended to an order over L × Pfin(N × L × N): (), N) ≺
()′, N ′) if) <L)′ or if) =)′ and N ≺ N ′. In the sequel,
the reflexive closure of ≺ will be denoted by 4 .

5.3 Relabeling rules

We describe here the relabelling rules that define the
enumeration algorithm.

2 For any set S, Pfin(S) denotes the set of finite subsets of S.

The first rule M1 enables two adjacent vertices to update
their mailboxes if they are not equal.

The second rule M2 does not involve any synchronization
with a neighbour vertex. It enables a vertex v to change its
identity if the current identity number n(v) is 0 or if the
mailbox of v contains a message from a vertex with the same
identity but with a stronger label or a stronger local view.

The third rule M3 allows to change the current identity for a
vertex v having a neighbour v′ with exactly the same current
label (all four components should be identical). This relabel-
ling step can be applied only if the rule M2 cannot be applied
by v or v′.

The fourth rule is applied on an edge e = {v, v′} if e has not
yet a number, i.e., p(e) = 0. We will prove that the choosen
number is such that it is different from numbers of the other
incident edges to v or v′. Then we update local views and
mailboxes of v and v′. This rule is applied on the edge e if
rules M1,M2 and M3 cannot be applied on e, v or v′.

The fifth rule is applied on an edge e = {v, v′} if it is neces-
sary to update local views ofv orv′, i.e., (p(e), λ(e), n(v′)) /∈
N (v) or (p(e), λ(e), n(v)) /∈ N (v′). This rule cannot be
applied if one of the preceeding rules can be applied.

123

186 J. Chalopin, Y. Métivier

5.4 Main properties and proof of M

Let G be a simple labelled graph. In the following i is an
integer denoting a computation step. Let (λ(v), ni (v), Ni (v),

Mi (v)) be the label of the vertex v after the i th step of the
computation and let (λ(e), pi (e)) be the label of the edge e
after the i th step.

A careful examination of the relabelling rules shows:

Lemma 13 For all edges e, e′ ∈ E(G), for any vertex v ∈
V (G), and at each step i ,

1. pi (e) &= 0 ,⇒ pi+1(e) = pi (e),
2. ∃(p,)e, n)∈ Ni (v) ⇐⇒ ∃e ∈ IG(v) such that pi (e) =

p > 0 and λ(e)=)e,
3. (pi (e) &= 0 and pi (e′) &= 0 and Ends(e)∩End(e′) &= ∅)

,⇒ pi (e) &= pi (e′),
4. ni (v) &= 0 ,⇒ (ni (v), λ(v), Ni (v)) ∈ Mi (v),
5. ∀(p,)e, n) ∈ Ni (v) : n &= 0, p &= 0 and ∃(n,)′, N ′) ∈

Mi (v),
6. !(p,)e, ni (v)) ∈ Ni (v),
7. ∀(p,)e, n), (p′,)′

e, n′) ∈ Ni (v), p &= p′.

We now prove an increasing lemma that enables to prove the
termination of the algorithm.

Lemma 14 For each vertex v and each step i:

– ni (v) ≤ ni+1(v),

– Ni (v) 4 Ni+1(v),

– Mi (v) ⊆ Mi+1(v).

Proof The property is obviously true for the vertices that are
not involved in the rule applied at step i . Furthermore, it is
easy to see that for each vertex v, we always have Mi (v) ⊆
Mi+1(v).

For each vertex v and each step i such that ni (v) &=
ni+1(v), ni+1(v) = 1 + max{n1; (n1,)1, N1) ∈ Mi (v)} and
either ni (v) = 0 < ni+1(v) or (ni (v), λ(v), Ni (v)) ∈ Mi (v)

as shown in Lemma 13 and therefore ni (v) < ni+1(v).
For each vertex v such that Ni (v) &= Ni+1(v), either a

new element has been added to Ni (v) and therefore Ni (v) 4
Ni+1(v), or Ni+1(v) = Ni (v) \ {(p,)e, m)} ∪{ (p,)e, m′)}
where m′ = ni+1(v

′) whereas m = ni0(v
′) for a step i0 ≤ i ;

therefore m′ > m and consequently, Ni (v) 4 Ni+1(v).

Furthermore, one of the inequalities is strict for at least
one vertex, since each time a rule is applied, there exists at
least one vertex whose label is modified.

Lemma 15 For every v ∈ V (G) and for every step i if
(m,), N) ∈ Mi (v) then there exists a vertex w ∈ V (G)

such that ni (w) = m.

Proof First we note that (m,), N) is added at step i to⋃

v∈V (G)

Mi (v) only if there exists a vertex v such that ni (v) =
m, λ(v) =) and Ni (v) = N .

Let v be a vertex, let i be a step of computation and let
(m,), N) be an element of Mi (v); we denote by U the set
{(u, j) ∈ V (G) × N | j ≤ i, n j (u) = m}.

Let U ′ be the set defined by U ′ = {(u, j) ∈ U |
∀(u′, j ′) ∈ U, (λ(u′), N j ′(u′)) ≺ (λ(u), N j (u)) or (λ(u′),
N j ′(u′)) = (λ(u), N j (u)) and j ′ ≤ j}.

By hypothesis, (m,), N) ∈ Mi (v), thus U et U ′ are two
nonempty sets. Furthermore,there exists i0 such that for all
(u, j) ∈ U ′, j = i0.

If i0 < i then there exists exactly one element (u, i0) ∈ U ′

(at each step the number of at most one vertex is modified).
Thus the number ni0(u) = m has been modified at step i0+1.
This is not possible because at this step the vertex u had no
neighbour with the same name m, thus the rule M3 has not
been applied, and as (λ(u), Ni0(u)) is maximal the rule M2
has not been applied on u at the step i0. Finally, i0 = i and
there exists a vertex w such that ni (w) = m.

Lemma 16 For every vertex v ∈ V (G) and every step i
such that ni (v) &= 0, given (m′,)′, N ′) ∈ Mi (v), for every
1 ≤ m ≤ m′, there exists (m,), N) ∈ Mi (v).

Proof We show this claim by induction on i. For i = 0
the property is true. We assume that the property holds for
i ≥ 0. This property remains true at step i + 1 for every
vertex w ∈ V (G) not modified by this step. Let v be a vertex
whose label is modified at step i + 1.

If the rule M1 is applied at step i +1 on v and on a neigh-
bour of v, then Mi+1(v) = Mi (v)∪ Mi (v

′) and the property
is still verified at step i + 1 because it is true for v and v′ at
step i .

If the rule M2 or the rule M3 is applied on v at step
i + 1, then Mi+1(v) = Mi (v) ∪ {1 + max{m | (m,), N) ∈
Mi (v)}, λ(v), Ni (v))}, finally for each m ∈ Mi+1(v), the
property remains true.

If the rule M4 or the rule M5 is applied on v at step i +1,
for all (m,), N) ∈ Mi+1(v), there exists (m,), N ′) ∈ Mi (v)

and the property remains true.

Lemma 17 Any run ρ of the enumeration algorithm on a
connected labelled graph G = (G, λ) terminates.

123

On the power of synchronization between two adjacent processes 187

Proof From Lemmas 15 and 16, the numbers that can have
the different vertices are between 0 and |V (G)| and once an
edge get a number, its label never changes. Consequently,
N (v) and M(v) can also take only a finite number of values
and therefore, it follows from Lemma 14 that the algorithm
terminates.

If v is a vertex of G and e is an edge of G then the label
of v after a run ρ of the enumeration algorithm is denoted by
(λ(v), cρ(v)) with cρ(v) = (nρ(v), Nρ(v), Mρ(v)) and the
label of e is denoted by (λ(e), pρ(e)).

Lemma 18 Any run ρ of the enumeration algorithm on a
connected labelled graph G = (G, λ) terminates and yields
a final labelling (λ, cρ) verifying the following conditions for
all vertices v, v′ of G:

1. Let m be the maximal number in the final labelling, m =
max

v∈V (G)
nρ(v). Then for every 1 ≤ k ≤ m, there is some

v ∈ V (G) with nρ(v) = k.
2. Mρ(v) = Mρ(v′).
3. (nρ(v), λ(v), Nρ(v)) ∈ Mρ(v′).
4. If nρ(v) = nρ(v′) then (λ(v) = λ(v′) and Nρ(v) =

Nρ(v′)).
5. for any edges e, e′ ∈ IG(v), pρ(e) > 0, pρ(e′) > 0 and

pρ(e) &= pρ(e′).
6. (p,), n) ∈ Nρ(v) if and only if there exists an edge e

incident to v such that pρ(e) = p and λ(e) =). Fur-
thermore, if Ends{e} = {v,w}, then nρ(w) = n and
(p,), nρ(v)) ∈ Nρ(w).

Proof 1. By Lemmas 15 and 16 applied to the final
labelling.

2. Otherwise, the rule M1 could be applied.
3. A direct corollary of the previous property using Lemma

13.
4. Otherwise the rule M2 could be applied to v or v′.
5. Otherwise, the rule M4 could be applied and they are

different by Lemma 13.
6. From Lemma 13 and otherwise M3, M4 or M5 could

be applied.

Proposition 19 Given a graph labelled G and an execution
ρ the enumeration algorithm on G, a labelled graph H is
associated to the final labelling such that G is a covering
of H.

Proof Let m be the maximal number in the final labelling
and consider the graph H such that V (H) = [1, m] and
E(H) = {(p, {nρ(v), nρ(v′)}) | ∃e ∈ E(G), Ends(e) =
{v, v′}, pρ(e) = p} where for each (p, {n, n′}) ∈
E(H), Ends((p, {n, n′})) = {n, n′}).

Consider the homomorphism ϕ : G → H such that for
each v ∈ V (G),ϕ(v) = nρ(v) and for each e ∈ E(G) such
that Ends(e) = {v, v′}, ϕ(e) = (pρ(e), {nρ(v), nρ(v′)}). For
every v, v′ ∈ V (G), if n(v) = n(v′) then λ(v) = λ(v′),
we can therefore define λ(ϕ(v)) = λ(v). Moreover, if
an edge e is such that Ends(e) = {v, v′}, it means that
(pρ(e), λ(e), nρ(v′), λ(v′))∈ N (v) and (pρ(e), λ(e), nρ(v),

λ(v)) ∈ N (v′): we can therefore define λ(ϕ(e)) = λ(e).
For every vertex v ∈ V (G) and for every edges e, e′ ∈

IG(v), if e &= e′, we know that pρ(e) &= pρ(e′) and con-
sequently, ϕ(e) &= ϕ(e′): ϕ is an injection from IG(v) into
IH (ϕ(v)).

For every vertex v ∈ V (G), for every edge f ∈ IH (ϕ(v)),
there exists v′, v′′ ∈ V (G) and e ∈ E(G) such that
Ends(e) = {v′, v′′} and ϕ(e) = f . Since Ends(f) =
{ϕ(v′),ϕ(v′′)}, we can assume that ϕ(v′) = ϕ(v) and there-
fore N (v) = N (v′) and (pρ(e), λ(e), nρ(v′′), λ(v′′)) ∈
N (v). Consequently, there exists e′ ∈ IG(v) such that
ϕ(e) = ϕ(e′) and therefore ϕ is a surjection from IG(v)

into IH (ϕ(v)).
Consequently, ϕ is a surjective homomorphism from G

into H such that for each vertex v ∈ V (G), its restriction to
IG(v) is a bijection to IH (φ(v)): G is a covering of H via ϕ.

Given a minimal graph G, if G is a covering of a graph
H, G (H. Consequently, for every run ρ of the enumera-
tion algorithm, the graph associated to the final labelling is
isomorphic to G and the set of numbers the vertices have
is exactly {1, . . . , |V (G)|}. Moreover, it has been shown
in Lemma 11 that for every graph G that is not minimal,
there exists no algorithm to solve the enumeration problem
on G.

The termination detection of the algorithm is possible on
a minimal graph G. Indeed, once a vertex gets the number
|V (G)|, from Lemmas 15 and 16, it knows that all the ver-
tices have a different number and therefore it can detect the
termination. Finally:

Theorem 20 For every labelled graph G, the following
properties are equivalent:

1. there exists an enumeration algorithm for G based on
local computations on labelled edges,

2. there exists an election algorithm and an enumeration
algorithm with termination detection for G based on
local computation on labelled edges,

3. G is minimal for the covering relation.

Remark 21 Let G be a minimal graph for the covering rela-
tion, a vertex can detect that each vertex has a unique name
if it knows the size of the graph (it does not need to know
exactly G). It means that for each n, there exists a unique
election (or naming) algorithm for the class of minimal grp-
ahs of size n.

123

188 J. Chalopin, Y. Métivier

5.5 Analysis of M

In this subsection, we study two aspects of the complexity
of M : the maximal length of sequences of any run for a
given graph and the maximum local memory requirement
at any vertex. First we give an upper bound for the length
of sequences for any run of M on a graph G of size n and
maximal vertex degree ,. We show that any execution of
our algorithm takes a polynomial number of steps, and that
when executing our algorithm, each process needs a memory
of polynomial size (in the size of the graph).

Proposition 22 Let G be a labelled graph of size n and max-
imal vertex degree ,. For any run of M on G O(,n3) rules
are applied.

Proof Let G a labelled graph of size n and a run ρ on M
n G. From Lemmas 15 and 16, we deduce that rules M2
et M3 cannot be applied more that n(n−1)

2 times. Between
two steps where rules M2 or M3 are applied, rules M4 and
M5 are applied at most , times (once for each neighbour of
the relabelled vertex). Thus rules M4 and M5 are applied
O(,n2) times.

Each time a vertex v modifies its number or its local view,
a triple of the form (n0,), N) is put in M(v). For each triple,
the rule M1 is applied at most n times.

The result follows.

Now we study the maximal local memory requirement,
i.e., the size of the label added to a vertex. We assume that λ

(the labelling of G) is such that the initial label on any vertex
) needs O(log |V (G)|) memory bits.

Remark 23 We can note that the mailbox of each vertex con-
tains a lot of useless information. Indeed, if some (m,), N)

belongs to the mailbox M(v) of a vertex v, one can remove
from M(v) all the elements (m,)′, N ′) ∈ M(v) such that
()′, N ′) ≺ (), N). We can thus replace the mailbox M(v) of
v by {(m,), N) ∈ M(v) | ∀(m,)′, N ′) ∈ M(v), ()′, N ′) 4
(), N)}. In this way, the mailbox of each vertex contains at
most |V (G)| elements of the form (m,), N). In the sequel
we assume that the mailboxes verify this property.

Proposition 24 Let G be a labelled graph of size n and max-
imal degree vertex ,. Any run of M needs O(,n log n)

memory bits on each vertex.

Proof Let G be a labelled graph of size n with m edges and
maximal vertex degree ,. The label of each edge is modi-
fied exactly once: it is a number upper bounded by m. The
local view of any vertex is at most , triples (p,)e, n0) of
O(log n) memory bits. Thus for any vertex v, the memory
requirement for N (v) is O(, log n).

Each vertex needs in its mailbox the following set
{(n0,), N) ∈ M(v) | ∀(n0,)

′, N ′) ∈ M(v), ()′, N ′) 4

(), N)}. Thus, in the mailbox of each vertex, there is at most n
triples (n0,), N) and the memory requirement is O(, log n)

memory bits. Finally, the memory requirement for the mail-
box of each vertex is O(,n log n) memory bits.

Remark 25 The algorithm of Mazurkiewicz [20] is also an
algorithm that is executed in a polynomial number of steps,
and where each process needs a memory of polynomial
size [17].

On the contrary, the algorithms of Yamashita and
Kameda [28], and of Boldi et al. [5] run in a linear number
of rounds, but each process needs an exponential memory.

6 Application to Angluin’s model

6.1 Angluin’s model

The model of Angluin [3] is defined in the following way.
The communication model is a point-to-point communica-
tion network which is represented as a simple connected
undirected graph where vertices represent processes and two
vertices are linked by an edge if the corresponding processes
have a direct communication link. Processes communicate by
message passing and each process can distinguish its neigh-
bours, i.e., the different links incident to it. Since each process
knows from which channel it receives a message or it sends
a message, one suppose that the network is represented by a
simple graph with a port numbering function (see Fig. 8).

Definition 26 Given a simple labelled graph G, a port num-
bering function δ is a set of local functions {δu | u ∈ V (G)}
such that for each vertex u ∈ V (G), δu is a bijection between
IG(u) and [1, degG(u)].

There is no global time (the network is asynchronous).
A basic computation step is a pairwise exchange of mes-
sages by the two processes at the two ends of some edge. This
exchange allows the two processes to change their internal
states and does not affect any other process.

To break the symmetry between two adjacent processes
a non-deterministic “coin toss” may be used. Let A be the
set of messages, the behaviour of a process of degree d is

Fig. 8 A graph G with a port numbering

123

On the power of synchronization between two adjacent processes 189

Fig. 9 Graphical form of a rule of Angluin’s model, where X ′ =
f (X, Z , i, 0), Z ′ = f (Z , X, j, 1), i and j are the corresponding port
numbers and f is the transition function

Fig. 10 A relabelling rule on an edge with port-numbering

Fig. 11 A relabelling rule on a labelled edge

defined by a pair (Q, M) such that Q is nonempty (possibly
infinite) set of states and M is a map called a communication
function from Q × [1, d] to subsets of A × A × Q.

Asynchrony is modelled by considering sets of sequences
corresponding to different interleavings of the basic steps.

Thus a basic computation step has the form given in Fig. 9.
The port numbers of the edges incident to a node may

be used by the process located at that node to memorize the
labels (states) associated to the corresponding incident edges.
This fact implies that relabelling on edges with port number-
ing can simulate local computations on labelled edges, i.e.,
rules having the form given in Fig. 10 simulates rules hav-
ing the form given in Fig. 11 with α(i) = α(j) = Y and
α′(i) = α′(j) = Y ′.

Finally:

Lemma 27 Local computations as they are defined in
Angluin’s model can simulate local computations on labelled
edges.

6.2 Election in Angluin’s model

Given a labelled graph G, as in [29], we ask in Angluin’s
model that there exists an election algorithm for every port
numbering δ of G.

First, the notion of port numbering may be extended to
graphs having multiple edges.

Definition 28 Let G be a labelled graph having possibly
multiple edges. A port numbering δ is a set of functions
{δu | u ∈ V (G)} such that for any vertex u, δu is a bijection
between IG(u) and [1, degG(u)].
The definition of coverings can be extended in a natural way
to graphs with a port numbering:

Definition 29 A labelled graph G with a port numbering δ is
a covering of a labelled graph H with a port numbering δ′ via
γ if G is a covering of H via γ and if for any edge e ∈ E(G)

and for any vertex u ∈ Ends{e}, δu(e) = δγ (u)(γ (e)).

Lemma 30 For any labelled graphs G and H such that G is
a covering of H via γ , for any port numbering δ′ of H there
exists a port numbering δ such that (G, δ) is a covering of
(H, δ′).

Proof It suffices to consider the port numbering induced on
G by γ −1.

Finally:

Corollary 31 A labelled graph G is minimal if and only if
for any port numbering δ, (G, δ) is minimal.

From Lemma 27 we obtain:

Lemma 32 For any minimal labelled graph it exists an elec-
tion algorithm in Angluin’s model.

Conversely, the original impossibility result of Angluin [3]
states that it is impossible to solve leader election in a non-
minimal graph. Even if Angluin’s proof does not use exactly
the same coverings (she only considers simple graphs), Prop-
osition 11 remains true in Angluin’s model. Indeed, with the
proof schemata of Proposition 11 we prove that if a labelled
graph G with the port numbering δ is a covering of a labelled
graph H with the port numbering δ′, then in Angluin’s model
for any algorithm A there exists a run of A on (G, δ) obtained
from a run on (H, δ′). Thus for any graph G that is not mini-
mal there exists a port numbering δ of G such that there is no
election algorithm and no enumeration algorithm for (G, δ)

in Angluin’s model. This fact and Lemma 32 prove:

Theorem 33 For any simple labelled graph G there exists
an enumeration or an election algorithm for G in Angluin’s
model if and only if G is minimal.

Remark 34 As for local computations on labelled edges, the
graph G is given, thus each vertex knows the size of the graph.

7 Local computations on labelled edges and local
computations on open labelled edges are equivalent

In this part, we prove that an algorithm described by local
computations on labelled edges, i.e., of the form:

where X ′ = f1(X, Y, Z), Y ′ = f2(X, Y, Z) = f2(Z , Y, X),

Z ′ = f3(Z , Y, X), f1, f2 and f3 are transition functions on
triple of states can be simulated by an algorithm described by
local computations on open labelled edges, i.e., of the form:

where X ′ = f1(X, Y, Z) and Y ′ = f2(X, Y, Z).

123

190 J. Chalopin, Y. Métivier

The converse is obvious. The proof of this property is not
so simple. For example, let us consider the problem consist-
ing of naming the edges such that each vertex does not have
two incident edges with the same name. It is easy to find a
simple algorithm using local computations on labelled edges
that solves this problem, by using a rule like M4 of the enu-
meration algorithm for example, whereas it does not seem so
easy to find an algorithm using local computations on open
labelled edges that solves the same problem.

First we define formally the notion of simulation.

Definition 35 Let R1 and R2 be two algorithms working on
label sets L1 and L2. The algorithm R2 simulates the algo-
rithm R1 if there exist two mappings ι from L1 to L2 and π

from L2 to L1 such that for each labelled graph G = (G, λ):

– if each run of R1 on G terminates then each run of R2
on (G, ι ◦ λ) terminates, and

– if for each irreducible labelled graph (G, λ′
2) obtained

from (G, ι◦λ) with respect to R2 there exists an irreduc-
ible graph (G, λ′

1) obtained from (G, λ) with respect to
R1 such that π ◦ λ′

2 = λ′
1.

7.1 The main ideas for the simulation

We give a way to simulate a distributed algorithm R
described by local computations on labelled edges by a dis-
tributed algorithm S(R) described by local computations on
open labelled edges. A distributed algorithm R using local
computations on labelled edges, can be described by a rela-
belling system {ri = (λi , λ

′
i)}i≥0 of relabelling rules where

each λi and λ′
i are two labellings of a graph A = ({v1, v2}, f)

such that Ends(f) = {v1, v2}.
For each relabelling rule ri in R, we define below five rel-

abelling rules and we will show later that the algorithm S(R)

described by these new relabelling rules is a simulation of R
that uses local computations on open labelled edges.

A vertex can have the status free, ask or acc; if it is ask,
it means it wants to simulate a relabelling step of R with
one of its neighbours; if it is acc, it means it has accepted
to simulate a relabelling step of R and it is waiting for an
acknowledgement from its neighbour involved in this step
simulation. An edge can be free if it is not involved in a rel-
abelling step simulation, otherwise, it can be in an ask state
which means that one of its endvertices wants to simulate a
relabelling step of R with the other, or in a acc state, which
means that an endvertex has accepted to simulate a relabel-
ling step of R with the other one, or in an ack state, which
means that the endvertex that wanted to simulate the step has
been informed that the other one has accepted.

A vertex v can be in an ask state because it wants to sim-
ulate a relabelling step with one of its neighbours v′, but this
vertex v′ can have simulated a relabelling step with another

neighbour and therefore its label has changed: in this case, a
rule enables an ask node to get its former label back.

Notation In the sequel, the rule r defined by:

will be also denoted by r = (X, Y, Z , X ′, Y ′, Z ′).

7.2 Labels for the simulation

We assume that the label ⊥ is not used by R.

7.2.1 Vertices

Each vertex v has the label (λ(v), status(v)) where:

– λ(v) is the label of v in R;
– status(v) ∈ {free, ask, acc} is the status of v, it depends

on the state of the simulation.

The initial label of each vertex v is (λ(v), free).

7.2.2 Edges

Each edge e has the label (λ(e), status(e), r(e)) where:

– λ(e) is the label of e in R,

– status(e) ∈ {free, ask, acc, ack} is the status of e and
corresponds to the different states of the simulation,

– r(e) = ()1,)e,)2,)
′
1,)

′
e,)

′
2) is the relabelling rule that

S(R) tries to simulate over e; if the status of e is free,
then r(e) = r⊥ = (⊥,⊥,⊥,⊥,⊥,⊥).

Initially, each edge e is labelled (λ(e), free, r⊥).

7.3 Relabelling rules for the simulation

In this part we give relabelling rules which enable the simula-
tion of local computations on labelled edges by local compu-
tations on open labelled edges. We recall that in relabelling
rules below, vertices filled with black (resp. unfilled verti-
ces) is only a notation to underline that they are active (resp.
passive) and it has no influence on the relabelling.

We follow the informal description given below. If the sta-
tus of the endvertices of an edge is free and if a rule r of R
may be applied on this edge then the status of an endvertex
of this edge and the status the edge itself become ask. We
memorize in the state of the edge the relabelling rule S(R)

tries to simulate. The first rule encodes this situation.

123

On the power of synchronization between two adjacent processes 191

If a vertex v has a neighbour v′ which has applied the rule
S1(r), if the status of v is free and if the label λ(v) has not
been modified then v may apply the following rule: the status
of v and of e become acc and the labels λ(v) and λ(e) are
modified.

The two next rules correspond to the end of the application
of the simulated rule.

The last rule enables a vertex v to become free if the vertex
v′ which has enabled the status ask for the vertex v has been
relabelled with another vertex and v′ cannot be changed any
more.

7.4 Proof of the simulation

Let L1 be a label set. Let R be an algorithm described with
local computations on labelled edges (its label set is L1). Let
G = (G, λ) be a labelled graph on L1. Let S be the labelling
transformation defined by S(G) = (G, λ′) where:

– if v is a vertex of G labelled λ(v) : λ′(v) = (λ(v), free);
– if e is an edge of G labelled λ(e) :λ′(e)=(λ(e), free, r⊥).

Let C be the inverse transformation of S, i.e., C is such that
C(S(G)) = G. Let S(R) be local computations on open
labelled edges obtained from R by the transformations of
the previous subsection.

Lemma 36 Let R be a labelled edge locally generated rela-
belling relation. Let G be a labelled graph. Let (Gi)0≤i≤n be
a relabelling sequence obtained from G0 = G with respect to
R . There exists a relabelling sequence (G′

i)0≤i≤n′ obtained
from G′

0 = S(G0) with respect to S(R) such that C(G′
n′) =

Gn . Furthermore Gn is irreducible if and only if G′
n is

irreducible.

Proof It suffices to show the claim for n = 1, i.e., if
G0 ,⇒

R
G1 then there exists G′

1 such that S(G0)
∗,⇒

S(R)
G′

1

and C(G′
1) = G1.

If G0 ,⇒
R

G1 then there exists a rule r ∈ R such that

G0 ,⇒
r

G1; let e be the edge over which r is applied.

Clearly, the sequence S1(r), S2(r), S3(r) and S4(r) can
be applied on e in S(G0):

G′
0 ,⇒

S1(r)
I1 ,⇒

S2(r)
I2 ,⇒

S3(r)
I3 ,⇒

S4(r)
G′

1.

Thus we obtain the labelled graph G′
1 verifying C(G′

1) = G1.

The last part of the lemma is obvious.

Let G = (V, E) be a graph; let E ′ be a subset of E; the
subgraph induced by E ′ is the graph G ′ = (V ′, E ′) where
V ′ = {v ∈ V |v ∈ Ends(e′), e′ ∈ E ′}.
Proposition 37 Let R be a labelled edge locally gener-
ated relabelling relation. Let G be a labelled graph. Let
(G′

i)0≤i≤n be a relabelling sequence obtained from G′
0 =

S(G) with respect to S(R). For any i (0 ≤ i ≤ n) there
exists a labelled graph K that can be obtained from G′

i with
respect to S(R) such that C(K) can be obtained from G with
respect to R, i.e., G′

i
∗,⇒

S(R)
K and G ∗,⇒

R
C(K).

Proof By induction on i. It is obvious for i = 0.

Let Fi be the subgraph of G′
i induced by edges having a

status different from free. We prove that by applying rules
of S(R) on edges of Fi one can obtain a labelled graph K
verifying properties of the proposition.

First, we prove that the graphs G′
i and Fi verify the fol-

lowing decomposition and properties.

1. A vertex of G′
i which does not belong to Fi has the status

free.
2. The graph Fi is an union of disjoint trees: Fi =

∪1≤ j≤kT j ; each tree T j contains either exactly one ver-
tex with the status free or exactly one edge with the status
acc.

(a) If T j contains a vertex, denoted by v, with the sta-
tus free then the only relabelling rule that can be
applied on G′

i and which intersects T j must be
applied on an edge incident to the vertex v.

i. If we apply a relabelling rule on an edge
labelled free incident to v, this edge is out-
side of T j and the rule is of the form S1(r) for

123

192 J. Chalopin, Y. Métivier

some rule r. Let G′′ be the graph we obtain
from G′

i .

ii. If we apply a rule inside T j . Let v1, v2,. . ., vm

be the neighbours of v in T j . let T())
j be

the tree defined by considering the connected
component of T j we obtain by the deletion
of the edge {v, v)} and which contains v),

1 ≤) ≤ m. Each edge {v, v)} has either the
status ask or the status ack;
A. if the edge {v, v)} has the status ask then

v) has the status ask; in this case the sta-
tus of the edge will change either by the
application of a rule of the form S2(r) or
by the application of a rule of the form
S5(r). In both cases, r is encoded in the
label of the edge.

– If we apply a rule of the form S2(r) then
let G′′ be the labelled graph we obtain
from G′

i .

– If we apply a rule of the form S5(r) then
let G′′ be the graph we obtain from G′

i .

B. If {v, v)} has the status ack then v) has
the status acc, in this case the only rule
that may be applied on this edge has the
form S4(r), where r is the rule encoded
in the label of the edge. Let G′′ be the
labelled graph we obtain by the applica-
tion of S4(r) on {v, vl}.

(b) If T j contains one edge, denoted by e, with the
status acc then an endvertex of e, denoted by v1,

has the status ask and the other one, denoted by
v2, has the status acc. The only relabelling rule
that can be applied on G′

i and which intersects T j
must be applied on the edge e; the application of
this rule, having the form S3(r) (for some r) over
the edge e, creates a tree having exactly one vertex
with the status free. Let G′′ be the labelled graph
we obtain by applying the rule S3(r) on e.

If Gi+1 = G′′ then Gi+1 verifies the decomposition and
the properties given above.

If Gi+1 is obtained by applying a rule of the form S1(r)

outside of Fi then Gi+1 also verifies the same decomposition
and properties. Finally we have proved:

Property 1 If the decomposition and the properties given
above hold at step i then it holds too at step i + 1.

Furthermore:

Property 2 Let v be a vertex with the status free which
does not belong to Fi+1. By definition, the edges which are
incident to v have the status free. If v does not belong to

Fi then no rule incident to v has been applied at step i. If v

belongs to Fi then a rule has been applied to an edge incident
to v, this edge obtains the status free thus its endvertices also
obtain the status free.

To achieve the proof of the proposition, by a simple induc-
tion we verify the following assumptions (we consider once
more time the decomposition and the properties described
above):

1. if rules of S(R) are applied to edges of T j (1 ≤ j ≤ k)

then we obtain a graph K such that G ∗,⇒
R

C(K);
2. if a tree T j contains one vertex with the status free ,

denoted by v, then let T′
j be the tree we obtain by replac-

ing the status of some edges incident to v in T j by free
and the status of the corresponding endvertex by free;
for all combinations, if rules of S(R) are applied to edges
of T′

j (1 ≤ j ≤ k) then we obtain a graph K such that

G ∗,⇒
R

C(K).

From the decompositions given in the proof of the previous
proposition, we deduce the 3 following corollaries:

Corollary 38 Let R be a labelled edge locally generated
relabelling relation. Let G = (G, λ) be a labelled graph. Let
(G′

i)0≤i≤n be a relabelling sequence obtained from G′
0 =

S(G) with respect to S(R). If a rule having the form S1(r),

for some r, is applied on the edge {v1, v2} at step k of the
relabelling sequence where the label of v1 becomes ask and
if the status of {v1, v2} becomes free for the first time at the
step k′ (k′ > k) then at least one of the first component of the
labels of v1 or of v2 or of {v1, v2} has been changed since
the step k. This change comes from the application of a
sequence of relabelling rules of the form S2(r ′), S3(r ′) and
S4(r ′) for some rule r ′ applied either on the edge {v1, v2} (in
this case r = r ′) or on an edge incident to the vertex v2.

Corollary 39 Let R be a labelled edge locally generated
relabelling relation. Let G = (G, λ) be a labelled graph. Let
(G′

i)0≤i≤n be a relabelling sequence obtained from G′
0 =

S(G) with respect to S(R). The labelled graph G′
n is irre-

ducible modulo S(R) if and only if each vertex and each
edge of G′

n has the status free and C(G′
n) is irreducible

modulo R .

Corollary 40 Let R be a labelled edge locally generated
relabelling relation. If R has the termination property then
S(R) has the termination property.

Proof By contradiction. If there exists a non bounded rela-
belling sequence with respect to S(R) then necessary rules
of the form S2(r) are applied a non bounded number of times
and from Corollary 38 and by Corollary 39 we deduce a non
bounded relabelling sequence with R.

123

On the power of synchronization between two adjacent processes 193

Finally from Lemma 36 and these corollaries:

Theorem 41 Let R be a labelled edge locally generated rel-
abelling relation. The relabelling system S(R) simulates R .

Corollary 42 Let G be a labelled graph. There exists an
election algorithm for G based on local computation on
labelled edges if and only if there exists an election algo-
rithm for G based on local computations on open labelled
edges.

8 Application to asynchronous systems with
synchronous message passing

We refer to the definition given by Tel [27, p. 47]: a message
passing is said to be synchronous if a send event and the corre-
sponding receive event are coordinated to form a single tran-
sition of the system, i.e., a transition is an atomic event corre-
sponding to both the receive and send events. This hypothe-
sis implies that, as for Angluin’s model, the initial symmetry
between two adjacent vertices can be non-deterministically
broken.

Finally, if we consider an asynchronous system with a port
numbering and synchronous message passing, events may be
encode by rules having the form given in Figs. 12, 13.

We prove in the sequel that this model is equivalent to the
model of local computations on labelled edges with a port
numbering and consequently to the model of Angluin. By this
way we characterize graphs that admit an election algorithm
in this model (let G be a labelled network, as for Angluin’s
model we ask that there exists an election algorithm for every
port numbering δ of G.).

By definition, Angluin’s model is more powerful than the
synchronous message passing model.

In the case of synchronous message passing with a port
numbering we cannot memorize the label of the edge e =
{u, v} on the two endvertices u and v simultaneously: only
one endvertex may be relabelled (with notation of the rule
RSynch it corresponds to Z ′ = f (Z , X, j) on the vertex v).
We memorize the new state of the edge on the vertex v asso-
ciated with the port j. The problem consists, when the next

Fig. 12 The rule RSynch where X ′ = f1(X, i), Z ′ = f2(Z , X, j),
i and j are the corresponding port numbers and f1, f2 are transition
functions

Fig. 13 We assume that α(i) and α(j) are states associated to the edge
through ports i and j ; the state up to date of the edge e is α′(j)

Fig. 14 The new state of the edge is memorized on the vertex v and
its counter is c(k) + 1

synchronization will happen on the edge e, in the determi-
nation of the vertex on which is memorized the last state
associated to e examining the states of u and v. Consider the
following notation:

A natural solution with this problem is obtained by asso-
ciating to the state of the edge memorized on the endvertices
counters c(i) and c(j) (the initial value is 0) and each time
there is a transformation on the edge e the state of e corre-
sponds to the state on u or v associated to the counter having
the maximal value. When a transformation is applied on the
edge, it computes the new state of the edge, adds 1 to the
counter having the maximal value and associates this new
value of the counter to the new state of e on v. For the rule
RSynch, let k such that c(k) = Max{c(i), c(j)}, before the
application of RSynch the state of the edge is α(k). After
the application of RSynch the new state of e is α′(j) and its
counter is c(k) + 1 (see Fig. 14).

In fact we can solve this problem with only 3 values
{0, 1, 2} by applying the following method: if for a endvertex
the counter is 0 and it is 1 for the other endvertex then the
maximal counter is 1; if it is 1 and 2 then the maximal counter
is 2; if it is 0 and 2 then the maximal counter is 0. If the state
up to date of the edge (the state of the edge associated to
the counter having the maximal value) before the application
of the transformation is on the receiver vertex then the new
counter associated to the new state of the edge is equal to the
old; if not, to obtain the value of the new counter associated
with the new state of the edge, we increment modulo 3 the
maximal counter before the transformation.

That proves that one can simulate any local computation
on open labelled edges by synchronous message passing.

Finally, from Theorem 41:

Theorem 43 There exists an enumeration or an election
algorithm in an asynchronous network G with synchronous
message passing if and only if G is minimal.

9 Comparison of the power of the previous models

Angluin’s model and synchronous message passing model
consider port numbering and thus they use as initial knowl-
edge the vertex-degrees (i.e., for each vertex its initial label
contains its degree). Results of previous sections imply:

Theorem 44 The following models are equivalent:

1. local computations on labelled edges with the knowledge
of vertex-degrees,

123

194 J. Chalopin, Y. Métivier

Fig. 15 The graphs T1 and T2 are minimal, nevertheless it does not
exist local computations on labelled edges without the knowledge of
the vertex-degrees which solves the election problem on the family
{T1, T2}

2. local computations on open labelled edges with the
knowledge of vertex-degrees,

3. Angluin’s model,
4. synchronous message passing model.

One can wonder whether the knowledge of the vertex-
degrees makes local computations on labelled edges more
powerful. We give in the sequel a positive answer to this
question. For that, we consider the election problem for fam-
ilies of labelled graphs.

Proposition 45 Let T1 and T2 given in Fig. 15. It does not
exist an election algorithm R defined by local computations
on labelled edges without the knowledge of vertex-degrees
for the family {T1, T2}.

Proof Let R be an election algorithm defined by local com-
putations on labelled edges which solves the election problem
for T2. We consider a run ρ of R on T2 and we assume that v1
is the elected vertex. We consider the subgraph T (resp. T′)
of T1 induced by vertices u1 and u2 (resp. u′

1 and u′
2). As T

and T′ are isomorphic to T2, there exists a run of R on T and
T′ such that u1 and u′

1 are elected. We get a contradiction.

However, from the election algorithm given in Fig. 5 we
deduce:

Lemma 46 There exists an election algorithm defined by
local computations on labelled edges for the family of trees
when each vertex initially knows its degree.

Thus:

Proposition 47 Local computations on labelled edges with
the knowledge of vertex-degrees are strictly more powerful
than local computations on labelled edges without the knowl-
edge of vertex-degrees.

10 More comparisons

10.1 Is it important to have labels on edges

In our models, we have considered labelled graphs such that
the edges can have labels and this property has been used
to describe the different algorithms we present. We wonder
if the results remain true when we consider models where

Fig. 16 A relabelling rule

Fig. 17 Application of a
relabelling rule

the edges cannot be labelled. We present a minimal graph
in which we cannot find an election algorithm using local
computations on edges when the edges are not labelled.

Consider a path G on four vertices {v1, v2, v3, v4} (for
each 1 ≤ i ≤ 3, vi is a neighbour of vi+1) where all ver-
tices have the same initial label. This graph is minimal and
therefore we can solve the election problem with local com-
putations on labelled edges. Consider a relabelling relation
R having the termination property and associated to an algo-
rithm involving local computations on labelled edges such
that there is not any rule that labels the edges.

Consider Fig. 17. We prove by induction that there exists
an execution of R such that the vertices v1 and v3 (resp. v2
and v4) have the same labels. Initially, the result is true since
all vertices have the same initial label. If at a step i + 1, a
rule R is applied, this rule has necessarily the form given in
Fig. 16, where A is the label of v1 and B is the label of v2. As
described in Fig. 17, the rule R can be applied to the nodes
v1 and v2 and then to the nodes v3 and v4: the property holds.

10.2 Local computations on edges without port numbering
(labelling)

This kind of computations may be illustrated by popula-
tion protocols inspired by sensor networks and defined by
Angluin et al. in [1,2,4]. These models are based on pair-
wise interactions of mobile agents in populations. In such
interactions, there is an initiator and a responder.

10.2.1 Local computations on open edges

This case considers only one-way communication between
two agents in an interaction. The state of the initiator remains
unchanged, only the state of the responder changes. It corre-
sponds to Fig. 18.

In [9], a complete characterization of graphs for which
enumeration and election are possible is presented. We can

123

On the power of synchronization between two adjacent processes 195

Fig. 18 We assume that X ′ = f (X, Z) and f is a transition function

Fig. 19 We assume that X ′ = f1(X, Z), Z ′ = f2(Z , X) and f1, f2
are transition functions

notice that the class of graphs for which enumeration is solv-
able is different from the class of graphs for which election
is solvable.

10.2.2 Local computations on edges

In this case we assume that two-way communication is pos-
sible. The two agents play distinct roles thus the model is
asymmetric (see Fig. 19).

Graphs for which enumeration and election are possible
are characterized in [6].

Remark 48 In [1,2] a finite set of possible states for an agent
is given it defined the set of values of the memory of each
agent.

11 Conclusion

In this work, our initial motivation was to study local com-
putations on labelled edges as a simple and natural example
of local computations on labelled graphs which encode syn-
chronism in distributed computing. The study of the impact
of the synchronism on the computational power is an old
and natural question; it has been done also for the classical
consensus problem (see for example [11]).

The characterization of graphs that admit a naming (an
election) algorithm in this model is a characterization of
the same kind as other results existing for different mod-
els [5,6,20]. For all these models, one can find a particu-
lar type of locally constrained homomorphisms such that the
graphs where we can solve the naming problem are the graphs
that are minimal according to this type of locally constrained
homomorphisms.

We have also proved the non trivial equivalence between
local computations on labelled edges and local computations
on open labelled edges.

As nice corollaries of our study we have obtained (for the
first time to our knowledge) the characterization of graphs
that admit and election algorithm for two seminal models :
Angluin’s model and the atomic receive/send model, which
are considered as realistic model to understand some para-
digms of distributed computations.

Our study enables also to have a better understanding of
some initial knowledges as the vertex-degrees or the impor-
tance of labels on edges.

In Mazurkiewicz’s model, the algorithm presented by
Mazurkiewicz in [20] is used as a basic building block to
solve other classical problems in distributed computing. In
[16], Godard et al. characterize graph classes that can be
recognized in a distributed way. In [23], Métivier and Tel
characterize graph classes where any distributed algorithm
can be transformed into a distributed algorithm where pro-
cesses can detect that the global computation is finished and
in [15], Godard and Métivier characterize graph classes that
admit an election algorithm.

It is a natural question to wonder if these results can be
extended to the local computations on labelled edges, once
we have a Mazurkiewicz-like algorithm in this model.

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fisher, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sen-
sors. Distr. Comput. 18(4), 235–253 (2006)

2. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: On the power
of anonymous one-way communication. In: Proceedings of 9th
Conference on Principles of Distributed Computing, pp. 307–318
(2005)

3. Angluin, D.: Local and global properties in networks of processors.
In: Proceedings of the 12th Symposium on Theory of Computing,
pp. 82–93 (1980)

4. Aspnes, J., Ruppert, E.: An introduction to population protocols.
In: Middleware for Network Eccentric and Mobile Applications,
pp. 97–119. Springer, Berlin (2009)

5. Boldi, P., Codenotti, B., Gemmell, P., Shammah, S., Simon, J.,
Vigna, S.: Symmetry breaking in anonymous networks: Character-
izations. In: Proceedings of 4th Israeli Symposium on Theory of
Computing and Systems, pp. 16–26. IEEE Press (1996)

6. Chalopin, J.: Local computations on closed unlabelled edges: The
election problem and the naming problem. In: Proceedings of the
31st Conference on Current Trends in Theory and Practice of Infor-
matics (SOFSEM 2005), vol. 3381 of Lecture Notes in Computer
Science, pp. 81–90. Springer, Berlin (2005)

7. Chalopin, J., Métivier, Y.: Election and local computations on
edges. In: Proceedings of Foundations of Software Science and
Computation Structures, 7th International Conference (FOSSACS
2004), vol. 2987 of Lecture Notes in Computer Science, pp. 90–104.
Springer, Berlin (2004)

8. Chalopin, J., Métivier, Y.: An efficient message passing elec-
tion algorithm based on mazurkiewicz’s algorithm. Fundam. Inf.
80(1-3), 221–246 (2007)

9. Chalopin, J., Métivier, Y., Zielonka, W.: Local computations in
graphs: The case of cellular edge local computations. Fundam.
Inf. 74(1), 85–114 (2006)

10. Chalopin, J., Paulusma, D.: Graph labelings derived from models
in distributed computing. In: WG, pp. 301–312 (2006)

11. Dolev, D., Dwork, C., Stockmeyer, L.J.: On the minimal synchro-
nism needed for distributed consensus. J. ACM 34(1), 77–97 (1987)

12. Fiala, J., Paulusma, D.: A complete complexity classification of the
role assignement problem. Theor. Comput. Sci. 349, 67–81 (2005)

13. Fiala, J., Paulusma, D., Telle, J.A.: Locally constrained graph
homomorphisms and equitable partitions. Eur. J. Comb. 29(4),
850–880 (2008)

123

196 J. Chalopin, Y. Métivier

14. Ghosh, S.: Distributed systems—an algorithmic approach. Chap-
man and Hall/CRC, London (2006)

15. Godard, E., Métivier, Y.: A characterization of families of graphs
in which election is possible (ext. abstract). In Nielsen, M.,
Engberg, U. (eds), Proceedings of Foundations of Software Sci-
ence and Computation Structures, FOSSACS’02, number 2303 in
LNCS, pp. 159–171. Springer, Berlin (2002)

16. Godard, E., Métivier, Y., Muscholl, A.: Characterization of clas-
ses of graphs recognizable by local computations. Theory Comput.
Syst. 37(2), 249–293 (2004)

17. Godard, E.: A self-stabilizing enumeration algorithm. Inf. Process.
Lett. 82(6), 299–305 (2002)

18. Hoare, C.A.R.: Communicating sequential processes. Commun.
ACM 21(8), 666–677 (1978)

19. Mazurkiewicz, A.: Trace theory. In: Brauer, W. et al., (eds.) Petri
nets, applications and relationship to other models of concurrency.
vol. 255 of Lecture notes in computer science, pp. 279–324. Sprin-
ger, Berlin (1987)

20. Mazurkiewicz, A.: Distributed enumeration. Inf. Process. Lett. 61,
233–239 (1997)

21. Mazurkiewicz, A.: Bilateral ranking negotiations. Fundam. Inf.
60(1–4), 1–16 (2004)

22. Milne, G., Milner, R.: Concurrent processes and their syntax. J.
ACM 26(2), 302–321 (1979)

23. Métivier, Y., Tel, G.: Termination detection and universal graph
reconstruction. In SIROCCO 00—7th International Colloquium on
Structural Information & Communication Complexity, pp. 237–
251 (2000)

24. Reidemeister, K.: Einführung in die Kombinatorische Topolo-
gie. Vieweg, Brunswick (1932)

25. Rosen, K.H. (ed.): Handbook of discrete and combinatorial math-
ematics. CRC Press, Boca Raton (2000)

26. Tanenbaum, A., Steen, M.van : Distributed systems—principles
and paradigms. Prentice Hall, London (2002)

27. Tel, G.: Introduction to distributed algorithms. Cambridge Univer-
sity Press, Cambridge (2000)

28. Yamashita, M., Kameda, T.: Computing on anonymous networks:
Part i—characterizing the solvable cases. IEEE Transactions on
Parallel and Distributed Systems 7(1), 69–89 (1996)

29. Yamashita, M., Kameda, T.: Leader election problem on networks
in which processor identity numbers are not distinct. IEEE Trans.
Parallel Distrib. Syst. 10(9), 878–887 (1999)

123

	On the power of synchronization between two adjacent processes
	Abstract
	1 Introduction
	1.1 Our models
	1.2 Election and naming
	1.3 Overview of our results
	1.4 Related works: comparison and comments
	1.5 Summary

	2 Basic notions and notation
	2.1 Graphs
	2.2 Labelled Graphs

	3 Local computations on (open) labelled edges and distributed algorithms
	3.1 Local computations on labelled edges
	3.2 Local computations on open labelled edges
	3.3 Distributed algorithms

	4 Election, enumeration and local computations on labelled edges
	4.1 Definitions
	4.2 Coverings
	4.3 Local computations and coverings
	4.4 Impossibility result

	5 An enumeration algorithm for minimal graphs based on local computations on labelled edges
	5.1 Labels
	5.1.1 Labels for edges
	5.1.2 Labels for vertices

	5.2 An order on local views
	5.3 Relabeling rules
	5.4 Main properties and proof of mathcal M
	5.5 Analysis of mathcal M

	6 Application to Angluin's model
	6.1 Angluin's model
	6.2 Election in Angluin's model

	7 Local computations on labelled edges and local computations on open labelled edges are equivalent
	7.1 The main ideas for the simulation
	7.2 Labels for the simulation
	7.2.1 Vertices
	7.2.2 Edges

	7.3 Relabelling rules for the simulation
	7.4 Proof of the simulation

	8 Application to asynchronous systems with synchronous message passing
	9 Comparison of the power of the previous models
	10 More comparisons
	10.1 Is it important to have labels on edges
	10.2 Local computations on edges without port numbering (labelling)
	10.2.1 Local computations on open edges
	10.2.2 Local computations on edges

	11 Conclusion
	References

