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Abstract. We study the election and the naming problems in the asyndu®message passing
model. We present a necessary condition based on Angluitireyl lemma [Ang80] that must
be satisfied by any network that admits a naming (or an elgcttgorithm. We then show that
this necessary condition is also sufficient: we present actieh and naming algorithm based on
Mazurkiewicz’s algorithm [Maz97]. The algorithm we obtathis totally asynchronous and it needs
a polynomial number of messages of polynomial size, whegeasgous election algorithms in this
model are pseudo-synchronous and use messages of expbaizeti
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1. Introduction

The understanding of properties of a network which enabs®obee in a distributed way typical problems
of distributed computing enhances our understanding oftwha be computed in a distributed way.
Such problems are election, naming, spanning tree cotistniéermination detection, network topology
recognition, consensus, mutual exclusion, etc. Not onlytems to these problems constitute primitive
building blocks for many other distributed algorithms, these solutions generally rely on combinatorial
tools that enable a more general study of what can be computedistributed way.

We consider networks with arbitrary topology that are repréed by simple connected graphs en-
dowed with a port-numbering that enables each processtinglissh its neighbours. In one computation
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step, each process can either modify its state, or send aagess one of its neighbours, or receive a
message from a neighbour. We consider the asynchronousageepassing model: processes cannot
access a global clock, processes execute computationattegistrary speed, and a message sent from a
process to a neighbour arrives within some finite but unptatiie time.

1.1. Election and Naming

In this paper, we focus on two classical problems of distaduicomputing that are election and naming.
The election problem is one of the paradigms of the theorystfiduted computing. It was first posed by
LeLann [LeL77]. A distributed algorithm solves the electiproblem if it always terminates and in the
final configuration exactly one process is markeelestedand all the other processes aren-elected
Moreover, it is supposed that once a process becateesedor non-electedhen it remains in such a
state until the end of the execution of the algorithm. Etectlgorithms constitute a building block of
many other distributed algorithms. The elected vertex astsoordinator, initiator, and more generally
performs some special role [TvS02]. If processes havaalhyitunique identifiers, it is always possible
to solve this problem by electing the process with the sratltentifier. Nevertheless, if we consider
anonymousetworks where processes do not have identifiers and extreisame algorithm, it is not
always possible to solve the election problem. One aim af pliper is to present a characterization of
networks where this problem can be solved.

The naming problem is another important problem in the thebddistributed computing. The aim
of a naming algorithm is to arrive at a final configuration wéhal processes have unique identities (we
assume that identities are totally ordered). Many distébtilalgorithms work correctly only under the
assumption that all processes can be unambiguously icdehtifus it is very important to be able to give
dynamically and in a distributed way unique identities igpabcesses.

The enumeration problem is a variant of the naming problehe dim of a distributed enumeration
algorithm is to assign to each network vertex a unique intégsuch a way that this yields a bijection
between the sét' (G) of vertices and 1,2, ..., |V (G)|}.

1.2. Related Works

Since the pioneer work of Angluin [Ang80], it is well-knowhdt there exists networks that do not admit
any election algorithm since they are too “symmetric”. Thedal of Angluin is defined in the following
way. A network is a simple undirected connected graph witl-pumbering. A process is attached
to each vertex and there is no global time (the network is @sgmous). A basic computation step is
a pairwise exchange of messages by the two processes atdlents of some edge. This exchange
allows the two processes to change their internal stateslaes not affect any other process. To break
the symmetry between two adjacent processes a “coin tosg’bmaused. In the Angluin’s model,
the combinatorial tool used to express these symmetridgisidtion ofsimple coveringsi.e., locally
bijective homomorphisms between simple graphs.

In [Maz97], Mazurkiewicz considers a model where in one cotagion step, a process can modify
its state and the states of its neighbours by the applicafigome relabelling rule depending only on its
previous state and the previous states of its neighbouiis.nibdel corresponds to a more abstract model
of computation than the message passing model studiedsipaipier; it is a model where a computation
step involves some synchronization between neighbourogesses. In his model, Mazurkiewicz shows
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that a graphz admits an election (or a naming) algorithm if and onlgifs not ambiguous (in [GMMO04]

it is proved that a graplt’ is non-ambiguous if and only i is not a simple covering of another graph
H distinct fromG). In other words, in Mazurkiewicz’s model, Angluin’s necass condition is also
sufficient.

In the message passing model, Yamashita and Kameda giveaci@nazation of networks admit-
ting an election algorithm [YK96]. The characterization Ydmashita and Kameda is really differ-
ent from Mazurkiewicz’s result and the techniques they umedalso different from the ones used by
Mazurkiewicz. The characterization presented in [YK98je® on the notion of “views”, where the
view of each vertex in a graphG with a port-numbering’ is an infinite labelled rooted tree obtained by
considering all labelled walks i starting fromv. Yamashita and Kameda first show that if two vertices
v,v’" of some network G, v) have the same view, there exists an execution of any algoriich that
v andv’ always remain in the same state. Then they prove that if aarkt(¢z, ) admits a naming
(or an election) algorithm, all vertices must have distivietvs. Yamashita and Kameda show that this
necessary condition is also sufficient. Their algorithmeseln a result of Norris [Nor95] stating that
two vertices of a networkG, v) have the same view if and only if they have the same view upitghbe
|V (G)|. Thus, each vertex just has to compute its view up to heighd=)| and to compare it with the
view of the other vertices; the vertex with the “smallestéwiis elected.

The results obtained by Boléi al.[BCG'96] enable to establish some links between the results of
Mazurkiewicz and of Yamashita and Kameda. Belthl. consider a synchronous model of computation,
but their results can be interpreted in the model studied &madshita and Kameda. The impossibility
results presented in [BC®6] rely on some adaptation of the Angluin’s lifting lemmadathus the
characterizations obtained by Boleli al. are expressed in terms of fibrations and coverings that are
special homomorphisms between directed graphs. The dheration presented in [BC®6] is close
to the existing characterization in Mazurkiewicz's modéévertheless, the algorithm presented by Boldi
et al. to obtain sufficient conditions uses the same ideas as thetalg of Yamashita and Kameda.

The algorithms of Yamashita and Kameda (and of Betdil.) are really different from the Mazurkie-
wicz'one. Indeed, Yamashita and Kameda'’s algorithm needsesinitial knowledge on the network
in order to enable each process to know what is the heighteivibw it should compute. On the
other hand, Mazurkiewicz's algorithm does not need anyaihknowledge to terminate, even if some
initial knowledge is needed to enable the vertices to deteait the computation is over. This is an
important property, since it is used by Godard et al. in [GMM@ characterize graph classes that
can be recognized in a distributed way in Mazurkiewicz’s glo#iloreover, to execute Mazurkiewicz’s
algorithm, it is sufficient for each vertex to have a memorpaolfynomial size, whereas in Yamashita and
Kameda’s algorithm, each process needs a memory of expahsiae. This is an important property,
since the size of messages in Yamashita and Kameda’s lgoist related to the size of the memory
of the processes and we can expect to have smaller messagesriinage to adapt Mazurkiewicz's
algorithm in the asynchronous message passing model.

Election and naming have also been studied in intermediatieta between the models of Mazurkie-
wicz and of Yamashita and Kameda [Cha05, CM04, CMZ04, Maz04]

1.3. Our Results

We give a characterization of networks where naming andislecan be solved in the asynchronous
message passing model (Theorem 4.1). This result is bas#tearotions of fibrations and coverings.
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Then, we present a characterization of graphs where eteatiol naming can be solved for any port-
numbering (Theorem 4.2).

In order to obtain necessary conditions, in Section 3 wenthice a way to encode any network
with a port-numbering by a simple labelled digraph and we tbletain an impossibility result from the
Angluin’s lifting lemma [Ang80] (Proposition 3.2).

The naming algorithm\1 presented in Section 4 uses some ideas of the Mazurkievatgrsithm
[Maz97]. It has some interesting properties that the previexisting algorithms do not have. Any
execution of our algorithm needs a polynomial number of ragss of polynomial size (Proposition 4.4),
whereas the algorithms of Yamashita and Kameda and of Bolli need messages of exponential size.
Moreover, our algorithm is totally asynchronous, wheréesalgorithms of Yamashita and Kameda and
of Boldi et al. are executed in a pseudo-synchronous way. An interestingecpuence of this property
is that for any networKG, v), there exists an execution of our algorithm (@R, ) that enables to solve
election and naming oG, v) (Proposition 4.2). Thus, our algorithm may utilise the ‘lesyetry” of
the execution even if the graph is really “symmetric”.

2. Preliminaries

2.1. Undirected Graphs, Directed Graphs and Labelled (Di)®@aphs
2.1.1. Undirected Graphs

We consider finite undirected connected graphs withoutipieledges or loop called also simple graphs.
Each such a graph is written 8= (V(G), E(G)) whereV (G) is the set of vertices off and where
the set of edge&(G) is a set of pairs of distinct vertices 6f. For each edgéu,v} € E(G), v andv
are theendsof {u, v} andu andv are said to badjacentor neighbours We denote byV¢(u) the set of
all vertices ofG adjacent ta: anddeg(u) is the degree of. in G, i.e., the size oV (u).

Throughout the paper we will consider graphs where verigeesedges are labelled with labels from
arecursive sef. A graphG labelled overL will be denoted by(G, \), whereX: V(G) U E(G) — Lis
the labelling function. The grap is called the underlying graph and the mapping a labelling ofG.
Labelled graphs will be designated by bold letters likeH, . . . If G is a labelled graph, the@ denotes
the underlying graph.

We suppose thatis a label that does not belong foand then any partial labelling functiok of
G defined on a seB of vertices and edges using labels frantan be canonically extended to a total
labelling function ofG by definingA(v) = e or A(e) = e for each vertex or edgee in (V(G)U E(G)) \

B.

In some applications we need several labelling functiomsafgiven graph. Let (A4, ..., ;) be a
tuple of labelling functions o7, the labelled graph obtained with this tuple is dendt€d( Ay, ..., Ax))
and the label of a vertex € V(G) is (A1(v), ..., Ax (v)).

2.1.2. Directed Graphs

In order to describe our characterization, one needs toidenalso directed graphs (or digraphs) that
can have multiple arcs and self-loops. A digraphs defined by a sé’ (D) of vertices, by a seti(D)
of arcs and by two maps, andtp (in general, the subscripts will be omitted) fraA{ D) to V(D). For
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each ara: € A(D), s(a) is thesourceof a andt(a) is itstarget We say that is going out ofs(a) and
coming intot(a). A self-loop is an arc with the same source and target. A gigraith no self-loop and
such that for each couple:, v) of vertices there is at most one arsuch thats(a) = v andt(a) = v is
said to be simple.

A digraph D is strongly connectedf for all verticesu,v € V(D), there exists a sequence of arcs
ai,as,...ap suchthats(a) = u,vi € [1,p — 1],t(a;) = s(ai+1) andt(a,) = v. In the following, we
will only consider strongly connected digraphs.

A symmetriadigraph D is a digraph endowed with a symmetry, that is, an involutsgmn : A — A
such that for every, € A : s(a) = t(Sym(a)).

Definition 2.1. A homomorphisnp from the digraphD to the digraphD’ is given by a pair of functions
pv: V(D) — V(D) andpa: A(D) — A(D') commuting with the source and target maps, i.e.,
SpropA = Py 0Sp andtD/ oYA =y otp.

A homomorphismy is anisomorphismif ¢ is bijective. We writeD ~ D’ wheneverD and D’ are
isomorphic.

Throughout the paper we will consider digraphs where théioces and the arcs are labelled with
labels from a recursive sét A digraphD labelled overL will be denoted by D, \), whereA: V(D) U
A(D) — L is the labelling function. The digraphP is called the underlying digraph and the mapping
is a labelling ofD. A mappingy: V(D) U A(D) — V(D') U A(D’) is a homomorphism fromiD, \)
to (D', N) if ¢ is a digraph homomorphism froi® to D’ which preserves the labelling, i.e., such that
N(p(x)) = M(x) foreveryx € V(D) U A(D). Labelled digraphs will be designated by bold letters like
D,D’,...If Dis alabelled digraph, theP denotes the underlying digraph. As for graphs, one can note
that it is possible to extend any partial labelling functioof a digraphD using labels from a sdt in a
total labelling function ofD by using a special label¢ L.

Given a symmetric digrapP, the labelling of the arcs db may reflect the fact thab is symmetric.

Definition 2.2. Let D be a digraph endowed with the symmef&ym. let A : C — C be a labelling
function of D. The labellingX is symmetridf there exists an involution : C' — C such that for each
arca € A(D), A(Sym(a)) = t(A(a)).

Given a labelled connected simple gra@gh= (G, ), one associates a labelled symmetric strongly
connected digraph denoted Byir(G) = (Dir(G), A) and defined as follows. The set of vertices of
Dir(G) is the set of vertices of7, i.e., V(Dir(G)) = V(G) and each vertex aoff has the same label
in Dir(G) as inG. For each edgdu,v} € E(G), there exists two arcg, ., ag,.) € A(Dir(G))
such thats(a(u,v)) = t(a(%u)) = u, t(a(uﬂ,)) = S(G(%u)) = andSym(a(M)) = A(y,u)- Note that this
digraph does not contain multiple arcs or self-loop and itisaircs are unlabelled.

2.2. Fibrations and coverings

The notions of fibrations and coverings are fundamental islork. Definitions, main properties and
some applications are presented in [Bod89, BV02].

A fibration is a homomorphism that induces an isomorphismvbeh the incoming arcs of each
vertex and the incoming arcs of its image.
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Definition 2.3. A digraph D is fibred overa digraphD’ via a homomorphisnp if ¢ is a homomorphism
from D to D’ such that for each ak¢ € A(D’) and for each vertex € ¢~1(t(a’)), there exists a unique
arca € A(D) such that(a) = v andp(a) = @’ ; this arca is called thdifting of «’ atv.

We say that the homomorphisgis afibration from D to D’, the digraphD is thetotal digraphof
 and the digraphD’ is thebaseof .

Thefibre over a vertex)’ (resp. an are’) of D’ is defined as the set! (v') of vertices ofD (resp.
the setp~!(a’) of arcs of D).

In the sequel digraphs are always strongly connected aabidigiraphs non empty.
A covering projection is a fibration that also induces an iegohism between the outgoing arcs of
each vertex and the outgoing arcs of its image.

Definition 2.4. A digraph D is acoveringof a digraphD’ via a homomorphisny if ¢ is a homomor-

phism from D to D’ such that for each are’ € A(D’) and for each vertex € ~1(t(a’)) (resp.

v € ¢~ !(s(a’)), there exists a unique atcc A(D) such that(a) = v (resp.s(a) = v) andp(a) = o'
The homomorphisny is called acovering projectiorfrom D to D’.

In the sequel a covering projection will be called a coveriigD’ has no self-loop and no multiple arcs
then the covering is said to be simple.
A symmetric covering is a covering between symmetric digsathat preserves the functidiym.

Definition 2.5. A symmetric digraphD is called asymmetric coveringf a symmetric digraptD’ via
a homomorphismp if D is a covering ofD’ via ¢ and if for each arax € A(D), ¢(Sym(a)) =
Sym((a)).

The homomorphisny is called asymmetric coveringrom D to D’.

A symmetric digraphD is said to besymmetric covering prim# for each symmetric digraptD’
such thatD is a symmetric covering ab’, D ~ D’'.

All these definitions are extended in a natural way to laldelligraphs.

An interesting property satisfied by covering is that all thees have the same cardinality, that
is called thenumber of sheetef the covering. The following proposition is a result of Boand Vi-
gna [BV02].

Proposition 2.1. A coveringy : D — D’ with a connected base and a nonempty covering is surjective;
moreover, there existg€ {1,2,--- } such that for eachr € V(D’) U A(D’), |~ (z)| = q.

Given a labelled digrap, there exists a “minimal” labelled digragh, such thatD is fibred over
Dy. The existence of such a labelled digraph has been shown loly &al Vigna [BV02].

Proposition 2.2. For any strongly connected labelled digraph there exists a strongly connected la-
belled digrapD such thaD is fibred ove, and such that for any strongly connected labelled digraph
D/, if D is fibred overD’, thenD’ is fibred overDy.

The digraphDy, is called the minimum base @.

The minimum base of a labelled digraphcan be computed in polynomial time using the degree re-
finement technique [BV02, Lei82]; this method is close totdwhnique used to minimize a deterministic
automaton [HU79].
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Let D andD’ be two digraphs such th& is a surjective covering ab’ via . If D’ has no self-loop
then for each ara € A(D) : p(s(a)) # (t(a)). Finally, the following property is a direct consequence
of the definitions and it is fundamental in the sequel of tlipgy :

Proposition 2.3. Let D and D’ be two labelled digraphs such thBY has no self-loop an® is a
surjective covering oD’ via ¢. Let a; andas be two arcs ofD. If a; # as anday,as € o 1(a’)
(a' € A(D")) then{s(a1),t(a1)} N{s(az),t(az)} = 0.

2.3. Local Computations on Arcs

In this paper we consider labelled digraphs and we assuntéotted computations modify only labels
of vertices and of arcs. Digraph relabelling systems on arnckmore generally local computations on
arcs satisfy the following constraints, that arise naturahen describing distributed computations with
decentralized control:

(C1) they do not change the underlying digraph but only the laigelof vertices and of the arcs, the
final labelling being the result of the computatiorlébelling relations,

(C2) they arelocal, that is, each relabelling step changes only the label osthece, the label of the
target of an arc and the label of the arc,

(C3) they arelocally generatedthat is, the applicability of a relabelling rule on an ardyodepends on
the label of the arc, the labels of the source and of the t@iedlly generated relabelling relation).

The relabelling is performed until no more transformatisrpossible, i.e., until a normal form is ob-
tained.

The more formal framework is the following. L&, be the class of -labelled digraphs. Then any
binary relationRC Dy, x Dy, on Dy, is called adigraph rewriting relation We assume that it is closed
under isomorphism, i.e., D R D; andD’ ~ D thenD’ R D/, for some labelled digrap®} ~ D;.

In the remainder of the pap&* stands for the reflexive-transitive closure®f. The labelled digraph
D is R-irreducible (or just irreducible ifR is fixed) if there is ndD; such thatD R D;.

Definition 2.6. Let RC Dy, x Dy, be a digraph rewriting relation. The relatidR is a relabelling
relation if whenever two labelled digraphs are in relation then thdeautying unlabelled digraphs are
equal, i.eD; R D implies thatD; = Ds.

Definition 2.7. Let RC Dy, x Dy, be a digraph relabelling relation. The relatidhis (arc)local if
(D,\) R (D,)) implies that there exists an atcc € A(D) such that\(z) = N'(z) for everyz ¢
{a,s(a), t(a)}.

The next definition states that an arc local relabellingti@heR is arc locally generatedf the appli-
cability of any relabelling depends only on the labels oféheand of the ends of the arc.

Definition 2.8. Let R be a relabelling relation arc local. Th&his arc locally generatedf the following
is satisfied: for all labelled digraphd1, A), (D1, '), (D2,1n), (D2,7n’) and all arcs(u,u') € A(D1)
and(v,v") € A(D;), the following three conditions:
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L Aw) = n(v), A(w') = n('), X'(u) = 7'(v), N(u) = n'(v"),

N (w), foreachw € V(Dy) \ {u,u'},

2. Mw)
3. n(w) = n'(w), foreachw € V(D3) \ {v,v'},
imply that(D1,\) R (D1, \) ifand only if (D2, 1) R (D2, 7).

We only consider recursive relabelling relations. The psgof all assumptions about recursiveness
done throughout the paper is to have “reasonable” objects the computational power. By definition,
arc local computationsare computations on labelled digraphs corresponding tdosally generated
relabelling relations.

Given an arc locally generated relati®, a computation stepn a digraphD is the relabelling of
the labels of an ara and of the ends af that leads to a digrap®’ such thatD R D’; the arca is the
support of the relabelling step. Aaxecutiorof R onDisasequencBD =Dy R D R... RD; R ...
whereD; is called theconfigurationof D at stepi. A final configuration is a configuratio® where no
more relabelling step can be applied, i.e., there does nstiseanyD’ such thatD R D'.

A complete presentation of graph relabelling systems awdl loomputations for the model of
Mazurkiewicz may be found in [GMMO04] (pp. 256-260). It candmsily adapted to the model studied
in this work.

2.4. Distributed Computations of Local Computations on Arcs

The notion of relabelling sequence defined above obviousisesponds to a notion aequentiakcom-
putation. Clearly, a locally generated relabelling relatiallows parallel relabellings too, since non-
overlapping edges may be relabelled independently. Thusawelefine a distributed way of computing
by allowing that two consecutive relabelling steps withjaig supports may be applied in any order (or
concurrently). More generally, any two relabelling sequesnsuch that one can be obtained from the
other by exchanging successive concurrent steps, lea@ tathe result.

Hence, the notion of relabelling sequence associated to eally generated relabelling relation
may be regarded assarializationof a distributed computation. This model is asynchronauthé sense
that several relabelling stepsaybe done at the same time but we do not require that all of them ha
to be performed. In the sequel we will essentially handlaeisatjal relabelling sequences, but the reader
should keep in mind that such sequences may be done in paralle

2.5. Coverings and Arc Local Computations

First, We present a fundamental lemma which connects awy®iand locally generated relabelling re-
lations on arcs. It is the natural extension of the liftinghlea [Ang80]. It states that whenevEx;

is a covering ofD’, every relabelling step i@’ can be lifted to a relabelling chain B, which is
compatible with the covering relation. It is a direct consegce of Proposition 2.3.

Lemma 2.1. (lifting lemma)

Let R be a locally generated relabelling relation on arcs anilebe a covering of the labelled digraph
D/ via the morphismy; we assume thdD/ has no self-loop. D} R* D), then there exist®, such
thatD; R* Dy andDs is a covering oD} via .
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Proof:
Consider two labelled digrapid; = (D;, A) andD, = (D}, n) such thafD, is a covering ofD] via a
homomorphismy and an arc locally generated relabelling relati®n

It is sufficient to prove the lemma whdd| = (D},n) R (D},n") = D}, letr be the rewritting rule
for this step. Consider the rewritten are= (v,v') € A(Dj) : foreache € (V(D])UA(D}))\{a,v,v'},
n'(z) = n(z). SinceD; is a covering ofD} via v andD/ has no self-loop from Proposition 2.3 arcs
of A(D;) which are mapped by on (v,v’) are disjoint. Consequently, one can apply the relabelling
rule r on each ar¢u,u’) € A(D;) such thaty(u) = v and~y(u') = /. Let X' be the new labelling of
D; obtained once all these relabelling steps have been pegtbriFor each, € v~ ({v,v'}), N (u) =
7 (7(u)) and for eachu € V(D1) \ v~ ({v,0'}), N(u) = A(u) = n(y(w)) = 7/ (3(u)). The same
relations hold for arcs. Thus, the labelled digrdph = (D;, \') is a covering ofD}, via ~. O

3. From Asynchronous Message Passing to Local Computatioms Arcs

3.1. The Asynchronous Message Passing Model

Our model follows standard models for distributed systeimsrgin [AW04, Lyn96, Tel00]. The commu-
nication model is a point-to-point communication networkigh is represented as a simple connected
undirected graph where vertices represent processes arnettices are linked by an edge if the corre-
sponding processes have a direct communication link. Bsgsecommunicate by message passing and
each process can distinguish its neighbours, i.e., therdiit links incident to it.

Since each process knows from which channel it receives aagesor to which channel it sends a
message, one supposes that the network is representedyla graph with a port-numbering function.

Definition 3.1. Given a simple labelled grap, aport-numberingfunctionv is a set of local functions
{vu | v € V(G)} such that for each vertexe V(G), v, is a bijection betweeV (v) and[1, degq (u)].

Remark 3.1. We consider graphs with a port-numbering thus informationcerning edges may be
attached to vertices and we don’t need labels on edges.

We assume in the sequel that edge&diave no labels. We consider the asynchronous messagegassin
model: processes cannot access a global clock, processast@xomputation steps at arbitrary speed,
and a message sent from a process to a neighbour arrives wihie finite but unpredictable time.

3.2. Port-numbering and Symmetric Digraphs

A network is represented by a simple labelled grégh v) whereG = (G, \) is a simple graph whose
vertices are labelled andis a port-numbering function.

Remark 3.2. The labellingX of processes may encode some properties of the network xaore, if
the network is anonymous, all the vertices have the samé (ebgVu, v’ € V(G), AM(u) = A(u')). If
the processes have unique identities, then forall € V(G) if u # v/ thenA(u) # A(u'). If there
exists a distinguished process, then there existsl’(G) such that for each’/ € V(G) distinct fromu,

A(u) # A(u).
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Figure 1. A graphG with a port numbering and the associated labelled digrg@ghir(G), v) that is a covering
of (D, v'). From Proposition 3.2, there is no election algorithm f6f, ). The same argument gives the same
result for any ring.

Given a network G, v), one associates i@, ) a symmetric labelled digraptDir(G), v) where
each vertew € V(Dir(G)) has the same label as @ and where each arg,, .,y € A(Dir(G)) such
thats(a) = wandt(a) = vis labelled by(v, (v), v, (u)). Let. be defined by 1((p, q)) = (¢, p), wherep
andgq are two integers. One can note that for eachnvagc A(Dir(G)) labelled by(p, q), the arcSym(a)
is labelled by(q,p) = «((p, q)), i.e., the labelling of the arcs dbir(G) induced by is symmetric.

Examples of this construction are presented on Figures ad3a

Remark 3.3. Let (G, v) be a simple graph endowed with a port-numberingThe labelled digraph
(Dir(G),v) is symmetric covering prime if and only {i{Dir(G), v) considered as an automaton whose
all states are final is minimal.

3.3. Encoding a Network with a Labelled Digraph

The construction presented in this section may appear iggdhmevertheless the intuition is very natural
and simple, and it is illustrated in Figures 2 and 3.

Given a labelled digrapl> = (D, \) whose arcs are unlabelled, one will associat®ta simple
labelled digraphf) defined in the following way.

To each araw € A(D) whose source i and whose target is, we associate the s&f, of three
vertices denotedoutbu f,(u, v), canal, (u,v), inbu f,(u,v)} and the setd,, of four arcs that are:
(u, outbu fo (u,v)), (outbu fo(u,v), canaly (u,v)), (canaly (u, v), inbu fu(u,v)), (inbu fo(u,v),v).

The unlabelled simple digrapﬁ is then defined by:

V(D)=v(D)u( |J Va)andA(D)= |J A
acA(D) acA(D)

We need to memorize the meaning (semantic) of the differeriices of D. To do S0, we consider
<—> > >
the labelled digraptD = ( D, (k, A)) where\ andx are two labellings of the vertices dP defined as
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U1

0] 1 [ outbuf(vi,vy)

U3 (1,1) (1,3) U2

Figure 2. We adopt the following notation for vertices(@, v). A black-circle vertex corresponds to the label
process, a square vertex corresponds to the lalegld, a diamond vertex correspondsto the lab@nsmission,
and a double-square vertex corresponds to the lshiglive There is no multiple arcs thus subscripts datbu f,
canal andinbu f are omitted.
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follows. For each vertex € V(ﬁ), A(v) is the label ofv in D if v € V(D) and\(v) = € otherwise.
>
The labelling functiornx encodes the role of each vertex 6f and is defined as follows:

e Vu € V(D), k(u) = process,

o Va € A(D), k(outbufa(s(a),t(a))) = send,

o Va € A(D), (inbufa(s(a),t(a))) = receive,

o Va € A(D), k(canaly(s(a), t(a))) = transmission.

One considers now a labelling functienof the arcs ofD such that for each are € V (D), there
exists positive integers, ¢ such thatv(a) = (p, q). We extendv into a labelling function of vertices of
D such that for each are € A(D) whose label igp, q), v(outbuf,(a)) = p andv(inbuf,(a)) = q
(for the other verticesy is equal tox).

Suppose now thdD is a symmetric labelled digraph and thais a symmetric labelling function of
D. One notices that for each aics A(D), v(inbufa(a)) = v(outbu fgym) (Sym(a))).

Given a network(G, v) whereG is a simple labelled graph andis a port-numbering ofa, we
note(‘@, v) the simple labelled digraph obtained by applying the caision described above on the
labelled digraph Dir(G), v).

3.4. Encoding Basic Instructions with Local Computations o Arcs

As in [YK96] (see also [Tel00] pp. 45-46), we assume that gaodeess, depending on its state, either
changes its state, or receives a message via a port or sengissage via a port.

Given a network G, v) and its representatioﬁa), v) as a simple labelled digraph described in the
previous section, we now explain how the basic instructiegsh process diG, v) can execute in terms

. <~
of local computations on arcs 0iG , v) :

e an event that enables a process to modify its state (i.e.ntamal transition) is encoded by a
. . >
relabelling rule that can be applied on a vertex V( G ) such that:(v) = process,

e a send event of the form “send a message®ia portp” is encoded by a relabelling rule that can
>
be applied on the ar@:, v) € A( G ) wherex(u) = process, k(v) = send andv(v) = p,

e areceive event of the form “receive a messag®ia portq” is encoded by a relabelling rule that

can be applied on the afe, u) € A(?) wherex(u) = process, k(v) = receive andv(v) = g,
e an event concerning the transmission control can be endogledrelabelling rule concerning an
arc of the form(u, v) or (v, u) with k(u) € {send, receive} andx(v) = transmission.

Proposition 3.1. Let D andD’ be two symmetric labelled digraphs. Let(resp. ') be a symmetric
labelling function of the arcs dD (resp. D’) such that for each are € V (D), there exists positive
integersp, ¢ such that/(a) = (p, q¢) and for each are’ € V' (D’), there exists positive integepsq such

thatv/(a’) = (p, q). If (D,v) is a covering of D’, ') then(ﬁ, v) is a covering of(ﬁ’, V).
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(G,v) o1, ! !
’ 1 1
(G.v)
(1,1)
(Dir(G),v) o o
(1,1)
goj ]
CHONE Q@ 00 (D)
=

Figure 3. The digraphDir(G), v) is a proper symmetric covering 6D, ') and thus there is no election algo-
rithm for (G, v) from Proposition 3.2.

Proof:

Consider two digraph§(D, \),v), (D', X'),v") such that D, v) is a covering of D', ') via a homo-
morphismyp. We define a homomorphism from ((5), v) to (f)/, V') as follows. For each vertex €
V(ﬁ), we definey(v) = ¢(v) if v € V(D). For each ara € A(D) such thats(a) = u andt(a) = v,
we definey(outbufo(u,v)) = outbuf. 4 (v(u),v(v)), v(canaly(u,v)) = canalyq)(v(w),y(v)) and
(inbufa(u,v)) = inbuf, o) (v(u). 7(v)). _

It is then easy to check th&tD ,v) is a simple covering of D’,7/) via the the homomorphism

. O

3.5. A Necessary Condition for the Election

We present here a necessary condition that must be satisfieshybnetwork(G, v) that admits an
election algorithm.

Proposition 3.2. Given a simple labelled grapx and a port-numbering functionm of G. If there ex-
ists an election or a naming algorithm f& endowed withv as port-numbering the(Dir(G),v) is
symmetric covering prime.

Proof:
By contradiction. Consider a simple labelled gragha port-numbering function of G and a labelled
digraph(D, /) such that Dir(G), v) is a proper symmetric covering 6D, ') via a homomorphism
~. From Proposition 3.1, we know théG , v) is a covering of D, /).

Consider now a message passing algoritdnon (G, v) and the corresponding algorithpd’ on
(‘6, v) using local computations on arcs obtained by the transfoomaescribed in Section 3.4.
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Note that if there exists a no finite execution4fon (ﬁ, "), then there exists a no finite execution
of A’ on (ﬁ, v), and then there exists a no finite execution4bn (G, v). Finally, A is not an election
(or naming) algorithm fofG, v).

Consider a finite executiop of A’ on (f), ). The labelled digrapm(ﬁ, ") has no self-loop and,
from Lemma 2.1, there exists an executjgrof .4’ on (E), v) that is lifted up from this finite execution
of A’ on (f), v'). Consequently, as the covering is strict, from Proposifidh each label that appears
in the final configuration op in ((5), V') appears at least twice in the final configuratiornp'ah (‘6, v).

Consequently, there exists an executiondobn (G, v), where in the final configuration, no vertex
has a unique label. Consequenilyjs not an election (or naming) algorithm fo&, /). O

Remark 3.4. As immediate consequences of this result we deduce twoicdhsssults for the asyn-
chronous message passing model: there exists no electjorithin in an anonymous network of two
processes ([Tel00] p. 316), and there exists no algorithnelection in an anonymous ring of known
size ([Tel00] Theorem 9.5 p. 317) (sketches of the proofgasen in Figures 1 and 3).

4. A Mazurkiewicz-like Algorithm

We show in this section that the necessary condition givethbyProposition 3.2 is also sufficient. To
do so, we present an enumeration algorithm inspired by Md@auicz’s algorithm and adapted to the
message passing model.

We first give a general description of our algorithm, thatl\w# denotedM, when executed on a
connected labelled simple graghwith a port-numbering .

During the execution of the algorithm, each verieattempts to get its own unique identity which
is a number betweeh and |V (G)|. Once a vertex: has chosen a number(v), it sends it to each
neighbouru with the port-number,, (v). When a vertex receives a message from one neighbayuit
stores the numbet(v) with the port numbers,, (v) andv, (u). From all information it has gathered from
its neighbours, each vertex can constructiatal view (which is the set of numbers of its neighbours
associated with the corresponding port numbers). Thentaxbroadcasts its number with ikscal
view, If a vertexu discovers the existence of another vertewith the same number then it should
decide if it changes its identity. To this end it compareddtsal view with the local view ofv. If the
label ofu or the local view ofu is “weaker”, thenu picks another number — its new temporary identity
— and broadcasts it again with its local view. At the end of¢benputation, if the graph is symmetric
covering prime, then every vertex will have a unique numbiee: algorithm is a naming algorithm.

4.1. Labels

We consider a networkG, v) whereG = (G, \) is a simple labelled graph and wheres a port-
numbering ofG. The function) : V(G) — L is the initial labelling and is not modified during the
execution of the algorithm. We suppose that there exist$ah doder<;, on L. During the execution,
the label of each vertexis a tuple(A(v), n(v), N(v), M(v)) representing following information.

e \(v) € Lis the initial label ofv and is not modified by the algorithm.

e n(v) € Nis the currenhumberof the vertexv computed by the algorithm.
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e N(v) € Pga(N?)1is thelocal viewof v. The local view of a vertex contains the information
a vertexv has about its neighbours. If a vertexhas a neighbout. such that,(v) = p and
vy(u) = q, then(m, p, q) € N(v) if the last message thatgets fromu indicates that(u) = m.

e M(v) € N x L x Pg,(N3) is themailboxof v. The mailbox ofv contains all information received
by v during the execution of the algorithm. (fn, ¢, ) € M (v), it means that at some previous
step of the execution, there was a vertesuch that(u) = m, A(u) = £ andN (u) = N.

Initially, each vertexv has a label of the forni\(v), 0,0, ?) indicating that it has not choosen any
number, that it has no information about its neighbours auakhe other vertices of the graph.

In our algorithm, processes exchange messages of the fortm, n.q, M),p >. If a vertexu
sends a message (m,nyq, M),p > to one of its neighbour, then the message contains following
information.

e m is the current numbet(u) of u.

e 1,4 IS the previous number af, i.e., the number, sends tov in its previous message; if in the
meanwhile,u has not modified its number, ther;; = m.

e M is the mailbox ofu.

e pis the port-number the message has been sent through, +ev, (v).

4.2. An Order on Local Views

As in Mazurkiewicz's algorithm [Maz97], the nice propedief the algorithm rely on a total order on
local views, i.e., on finite subsets bf. We consider the usual lexicographic orderft (n,p, q) <
(n',p,¢)ifn<n',orifn=n"andp < p/,orifn=n/,p=p andqg < ¢'.

Then, we use the same order on finite sets as Mazurkiewicendiwo distinct setgVvy, Ny €
Pian(N3), we defineN; < Ny if the maximum of the symmetric differend¥; A Ny = (N7 \ N2) U
(N2 \ N7) belongs taNs.

If N(u) < N(v), then we say that the local viel (v) of v is strongerthan the local viewV (u) of
u and thatN (u) is weakerthan N (v). Using the total ordek ;, on L, we define(¢,N') < (¢, N") if
either? <, ¢/, or¢ = ¢ and N < N’. We denote by the reflexive closure ok.

4.3. The Enumeration Algorithm M

The algorithm for the vertexy (see Algorithm 1) is expressed in an event-driven desorip(see Tel
[Tel00] p. 553). The algorithm we describe here requires tha messages sent in a communication
channel arrive in the same order they are sent (FIFO progdrgommunication channels); we will
explain in Section 4.5 how to drop this hypothesis.

The actionl can be executed by a process on wake-up only if it has nowvesta@ny message. In this
case, it chooses the numberupdates its mailbox and informs its neighbours.

The actionR describes the instructions the vertexhas to follow when it receives a message
(n',n.,;, M"),p > from a neighbour via por. First, it updates its mailbox by adding’ to it. Then it

For any setS, Psn(S) denotes the set of finite subsetsHf
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modifies its number if there exist®(vo), £, ') € M (vg) such that\(vg), N(vg)) < (¢,N). Then, it
updates its local view by removing:., ;, p, ¢) from N (vo) (if N(vg) contains such an element) and by
adding(n’, p, ¢) to N(vp). Then, it adds its new stafe(vg), A(vg), N (vp)) to its mailbox. Finally, if its
mailbox has been modified by the execution of all these ingbms, it sends its number and its mailbox
to all its neighbours.

If the mailbox ofvg is not modified by the execution of the acti® it means that the information
vg has about its neighbour (i.e., its number) was correct, diahe elements of\/” already belong to
M (vy), and that for eacln(vy), ¢, N') € M(vg), (¢, N') < (A(vo), N(vg)).

Algorithm 1: Algorithm M.
I:{n(vg) = 0 and no message has arrivedgit
begin
n(vg) :=1;
M (o) := {(n(vo), Mwvo), D) };
for i := 1to deg(vg) do
| send< (n(vo),0,M(vp)), > via porti ;

end
R : {A message< (n',n,;, M'),p > has arrived aty, from portg}
begin

Moiq == M (vo);

Nold = n(vo);

M (vg) :== M (vo) UM,

if n(vg) = 0o0or I(n(vy),L,N) €

| n(vo) —1—|—max{n|5|(n, N) € M(vg)};
vg) 1= N (vo) \ {(n}4: P, )?} {(n',p, )}

N(
M (vo) := M (vo) U{(n(vo), A(vo), N(vo))};
M( ) 75 Mg then

L for i := 1to deg(vg) do

M (vg) such that(A(vg), N(vg)) < (¢, N') then

| send< (n(vo),noia; M(vo)), i > through port;

end

4.4. Correctness ofM

We consider a simple connected labelled gr&pland a port-numbering of G. For each vertexw,

an internal transition is the execution of the instructidingt update its state once a message has been
received, but not the send events that follow this transitidf a vertexv executes the actiob, the
corresponding internal transition is the modification efiumber and of its mailbox.

An execution of the algorithm ofG, v) is a sequence of send events, receive events and internal
events, where at each step, one transition is performed ¢ihniresponds to the notion of execution
defined by Tel [Tel00] (pp. 45-47) and thus an execution is1sE®a serialization of the distributed
execution).
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We consider an executignof M on (G, v) and for each vertex € V(G), we denote by\(v), n;(v),
N;(v), M;(v)) the state ob after theith computation step gf. We first remark that the steps that cor-
respond to send events and receive events do not modify the e&(\(v), n(v), N(v), M (v)) for any
vertexv € V(G). Moreover, for each computation step where an internal tegguerformed, the value
of (A(v),n(v), N(v), M(v)) is modified for at most one vertexc V (G).

The following lemma can be easily proved by an induction anlémgth of the execution and sum-
marizes some simple properties that each execution of gogitdm M satisfies.

Lemma 4.1. For each vertex € V(G) and for each step
1. 3(n,p,q) € N;(v) < T’ € Ng(v) such that, (v') = g andv, (v) = p,
2. ni(v) #0 = (ni(v), A(v), N;(v)) € M;(v),
3. VY(n,p,q) € Ni(v),n # 0and3(n, ', N") € M;(v),

4. V(n,p, Q)7 (n,7p,7q/) € Ni(v)vq 7é qlv
5. V(n(vo), £, N') € M;(v), (£,N') = (A(vg), N(vp)),

6. (n,p,q) € N;(v) if and only if the last message received dthrough porty was< (n, M), p >
for someM C M;(v).

The algorithm has some remarkable monotonicity propettiras are described in the following
lemma.

Lemma 4.2. For each vertew and each step, n;(v) < n;+1(v), N;(v) = Nit1(v), and M;(v) C
Mi—f—l(v)-

Proof:
We suppose that some internal event is executed at stepby some vertex € V(G). The property is
obviously true for any vertexy € V(G) \ {v} and it is easy to see that;(v) C M, (v).

If n;(v) # nit1(v), thenn;i1(v) = 14+ max{ny | (n’,¢',N') € M;(v)} and eithem;(v) = 0 <
nit+1(v) or (n;(v), AM(v), N;(v)) € M;(v) as shown in Lemma 4.1 and thereforgv) < n;41(v).

If N;(v) # Niyi(v ) thenv has received a message (n',n,,;, M'),p > through portg and
Nit1(v) = Ni(v) \ {(n),;,p,9)} U{(n',p,q)}. Letv' be the neighbour of such thatv,(v') = ¢ ;
we know thatv,, (v) = p.

If (n,4,p,q) ¢ Ni(v), thenmax N;1(v) A Nij(v) = (n',p,q) € Nip1(v) and thenN;(v) <
N_|_1(’U).

If (nl,4,p,q) € Ni(v), thenn!,, # n’. Letj < i+ 1 be the computation step wherehas sent the
message< (n',n,,;, M'),p >. We know thatn),;, < n’ = n;(v") and consequentlypax N; 1 (v) A
Ni(v) = (n',p,q) € Nit1(v) andNi(v) < Ny (v). O

The local knowledge of a vertexreflects to some extent some real properties of the curreritgzo
uration. The two following lemmas enable us to prove thatveaexv knows a numberm (i.e., there
exists/, N such that(m, ¢, N') € M;(v)), then for eachn’ < m, there exists a vertex’ in the graph
such that;(v') = m’. We first show that iy knowsm there exists’ such that;(v') = m.
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Lemma 4.3. For each vertex € V(G), each step and eachim, ¢, N') € M;(v), there exists a vertex
v" € V(G) such that;(v') = m.

Proof:

We first note thatm, ¢, N') isaddedto |J M;(v) at some steponly if there exists a vertex € V(G)
veV(QG)

such that;(v) = m, A\(v) = £ andN;(v) = N.

Given a vertexv € V(G), a stepi and an elementm, ¢, N') € M;(v), letU = {(u,j) €
V(G) x N | j < inj(u) = m} andU’ = {(u,j) € U | Y(.j') € U AW),Ny@W)) <
(A(w), Nj(u)) or (AM(w'), Njs(u')) = (Mu), Nj(u)) andj’ < j}. Since(m,¢,N) € M;(v), U and
U’ are both non-empty and it is easy to see that there existsch that for eackw, j) € U’, j = ip.

If ig < i, let (u,i9) € U’ ; we know thatn;,1(u) # n;,(u), but this is impossible, since by
maximality of (A(u), NV;, (u)), u cannot have modified its number. Consequerigly- ¢ and there exists
v € V(QG) such that;(v') = m. 0

In the following lemma, we show that if a vertexknows an identity numbem, then it knows all
the numbers smaller than.

Lemma 4.4. For each vertex € V(G) and each step for every(m, ¢, N') € M;(v), for everym’ €
[1,m], there existgm’, ¢/, N") € M;(v).

Proof:
We prove this lemma by induction an Initially, the property is obviously true. We suppose this
property is satisfied at stepand that some vertex executes some internal transition at step 1. If v
executes the actiohat stepi + 1, thenM;(v) = {(1, A(v),?)} and the property is obviously true.

If v executes the actioR at stepi + 1, thenv has received some messagén’, n/,,, M), p > from
a neighbour/. Letj < i + 1 be the computation step wheséhas sent this message ; we know that
M' = M;(v'). If v does not modify its number at stég- 1, then{m | 3(m, L, N) € M;;1(v)} = {m |
I(m, L, N') € M;(v) U M;(v'")} and the property is true at stép- 1 by the induction hypothesis. if
modifies its number at step+ 1, thenn; 1 (v) = 1 + max{m | 3(m,{,N) € M;(v) U M;(v")} and
Miy1(v) = M;(v) U M;(v") U {(nit+1(v), A(v), Niy1(v)}. Then, the property is also satisfied at step
1 + 1 by the induction hypothesis. O

We now want to prove that any execution.®t on (G, v) terminates. We know that a vertex does
not send any message if its stabtgv), n(v), N(v), M (v)) is not modified once it has executed some
internal event. Then it is sufficient to prove that there &x& step such that for each step > ¢ and
for each vertexw € V(G), ny(v) = ni(v), Ny (v) = N;(v) and My (v) = M;(v). From Lemmas 4.3
and 4.4, we know that for each computation stethe set{n;(v) | v € V(G)} is a set[0, k] or [1, k]
with & < V(G). Then, from Lemma 4.2, we know that there exists a gteguch that for each vertex
v € V(G) and for each step > iy, n;(v) = n;,(v). Consequently, we know that for each vertex
N;(v) can only take a finite number of values and then, it is the sam@/f(v). Consequently, from
Lemma 4.2, we know that any executiprof M on G terminates.

We can then describe properties satisfied by the final corafigur of any execution of the algorithm
M onG. First, we note that in the final configuration, there is no sage in transit.



J. Chalopin and Y. Métivier / An Efficient Message Passingtifle Algorithm based on Mazurkiewicz’s Algorithm19

Lemma 4.5. Any executionp of M on a simple labelled grapG = (G, \) with a port-numbering/
terminates and the final labelling, n,, N,, M,) of the vertices of7 satisfies the following properties:

1. there exists an integér< |V (G)| such that{n,(v) | v € V(G)} = [1, k],
and for all vertices, v’ € V(G):

2. Mp(v) = M,(v"),

3. (np( )s Av), Np(v)) € Mp(v'),
. ifny(v) = n,(v'), theni(v) = A(v') and N, (v) = N,(v'),

5. (n, p, ) N, (v) if and only if there existav € Ng(v) such that,(w) = ¢, vw(v) = p and

1. From Lemmas 4.3 and 4.4 and since any vertex has appliedfdhe actiond, R.

2. Since each time a vertex modifies its mailbox, it sendsitstoeighbours and since all messages
have arrived.

3. It follows from the previous property and from Lemma 4.1.
4. From Lemma4.1.

5. From Lemma 4.1 and since all messages have arrived.
O

Thanks to Lemma 4.5, one can show that the final labellingGhf) enables to construct a digraph
(D, ') such that Dir(G), v) is a symmetric covering ofD, /).

Proposition 4.1. Given a graphG with a port numbering/, we can associate with the final labelling of
any executiorp of M on (G, v), a digraph(D, /) such that(Dir(G),v) is a symmetric covering of
(D, V).

Proof:
We use the notation of Lemma 4.5.

We consider the digraplh defined byV (D) = {m € N | v € V(G),n,(v) = m}, A(D) =
{ampgm) | Hv,w} € E(G) such that,(v) = n,n,(w) = m,d,(w) = p,d,(v) = ¢} and for each
arca, p.g.m)r S(A(n,p,gm)) = nandt(ag, p.qm)) = m. We define the functios’ym : A(D) — A(D) as
follows: for each ara,, ; g m) € A(D), SYym(a(n p.gm)) = A(m,q,p,n)- NOte that for each ara, , ;, ),
Sym(agmppn) = Anppn)-

We define a labelling of the vertices ofD as follows. For each € V(G), n(n,(v)) = A(v). From
Lemma 4.5, two vertices, v' with the same final number have the same lalje) and then this labelling
is well-defined. We define the labelling of the arcs ofD as follows: for each ara, ;, ., € A(D),
V'(a(npqm)) = (,q)- Thus, for each are, ,, 4 m), V' (Sym(agmp.qm))) = V' (aamqpn)) = (¢,p) and
the arc labelling ofD is symmetric.
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We define an homomorphism from (Dir(G),v) to (D, v) as follows. For each € V(Dir(G)),
(,0(7)) = np( ) and for eachu € A(DZT( )) ( ) = Q(p, (S(a))vys(a)(t(a))7yt(a)(S(a))7np(t(a)))' Since, for
each ara € A(Dir(G)), s(¢(a)) = ny(s(a) = (s(a)) and(p(a)) = ny(t(a)) = p(t(a)), @ is an
homomorphism fromDir(G) to D.

Since for each are € A(Dir(G)), v(a) = (vyq)(t(a)), vq)(s(a))) = v'(¢(a)) and since for each
vertexv € V(Dir(G)), AM(v) = n(p(v)), ¢ is ahomomorphism fromiDir(G), v) to (D, ). Moreover,
for each ara € A(Dir(G)), o(Sym(a)) = a(n,(t(a))va) (5(a)) (o) (Ha))mp (s(a))) = SYM((a)).

For each are,, ,, , m) € A(D), there exists an edde, w} € E(G) such that,(v) = n, v, (w) =
q, vw(v) = p andn,(w) = m. From Lemma 4.5, we know that for eache ¢~ !(n) (resp. u €
¢~ 1(m)), N,(u) = N,(v) (resp.N,(u) = N,(w)) and therefore, since is a bijection betweeiN¢ (u)
and[1, degq (u)], there exists a uniqué € Ng(u) such that,(u') = m (resp.n,(v') = n), v, (v') =p
(resp. vy (u') = q) andvy(u) = q (resp. vy (u) = p). Thus, for each are(,, ,m) € A(D), for
each vertexu € ¢~ 1(s(a)) (resp. u € ¢~ 1(t(a))), there exists a unique arc € Dir(G) such that
p(a) = a(ypqm) ands(a) = u (resp.t(a) = u). Consequently, Dir(G),v) is a symmetric covering
of (D, V). O

Consider now a grapli= with a port-numberings such that(Dir(G),v) is symmetric covering
prime. For every executiopof M on (G, v), the digraph obtained from the final labelling is isomorphic
to (Dir(G),v) and therefore the set of numbers of the vertices is exattly’ (G)|): each vertex has
a unique number. Moreover, the termination detection ofallgerithm is possible okx. Indeed, once
a vertex gets the identity numbgr (G)|, from Lemmas 4.3 and 4.4, it knows that all the vertices have
different identity numbers that will not change any more énchn conclude that the computation is
over. In this case, one can also solve the election problierce ¢his vertex can take the laledectedand
broadcasts the information that a vertex has been elected.

Furthermore, it has been shown in Proposition 3.2 that feryegraphG with a port-numbering
such that(Dir(G), v) is not symmetric covering prime, there does not exist angrélyn that solves
the naming problem or the election problem (@&, ~). Thus we have proven the following theorem.

Theorem 4.1. Given a simple labelled grap@ with a port-numbering/, there exists an election (or a
naming) algorithm fo G, v) if and only if (Dir(G), v) is symmetric covering prime.

Remark 4.1. Note that any execution o¥1 on a network always terminates, even if the vertices cannot
detect that the computation is over if they have no infororatibout the network.

To detect the termination of the execution.®f on some graplG with a port-numbering/, the
vertices ofG do not need to know the topology 6f: the knowledge of its size is sufficient.

As Yamashita and Kameda, we are interested in charactgriggiamphs that admit an election (or a
naming) algorithm for any port-numbering. We present tliaracterization in the next theorem.

Theorem 4.2. Given a simple labelled grap@&, there exists an election (or a haming) algorithm @r
if and only if Dir(G) is symmetric covering prime.

Proof:
It is easy to see that iDir(G) is symmetric covering prime, then for any port-numberin@f G,
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(Dir(G),v) is symmetric covering prime and consequently, there egistslection (or a naming) algo-
rithm for G.

We now show that ifDir(G) is a proper symmetric covering of some symmetric digréphia a
homomaorphismp, then there exists a symmetric labellingof the arcs ofD and a port-numbering of
G such that Dir(G), v) is a symmetric covering dfD, v/). In this case, there exists a port-numbering
v of G such that it is impossible to solve the election (or the ngnon G, v).

We first give a numbep(a) to each ara € A(D) such that for each vertex p induces a bijection
between the outgoing arcs ofand[1,deg™ (v)] wheredeg™ (v) is the number of outgoing arcs of
in D. Then we define the labelling’ of the arcs ofD as follows: for each are € A(D), v'(a) =
(p(a),p(Sym(a))). Itis easy to see that the labelling is a symmetric labelling of the arcs where for
each(p, q) € N?,u((p, q)) = (¢, ).

In order to define the port-numberingof G, we proceed as follows. For each edgev} € E(G),
we definev, (v) = p(¢(a(u,v))) andv,(u) = p(e(aw,u)))- Sinceyp is a covering and from the definition
of p, itis clear thatr = {v,, | u € V(G)} is a port-numbering.

It remains to show thatDir(G),v) is a symmetric covering ofD, ') via ¢, i.e., thaty pre-
serves the labels of the arcs. For each @tg,) € A(Dir(G)), v(p(aww) = (Vu(v),ve(u)) =
(P(p(a(uw)))s P((a@ww))) = (P(P(agp))) P(e(Sym(ag.w))))) = P(e(awwn)), P(Sym(o(aw.)))))
= V' (¢(a(,))- Consequently Dir(G), v) is a symmetric covering ofD, ') via ¢. O

4.5. Remarks on the Algorithm M

Contrary to the algorithms of Yamashita and Kameda [YK9&] ahBoldi et al. [BCG™96], the algo-
rithm M is totally asynchronous, in the sense that, once a vertegdrgsnessages to all its neighbours,
it does not have to wait for a message from each of its neigisbimuorder to continue to execute the
algorithm. An interesting consequence of this propertyhi for any network G, v), there exists an
execution ofM on (G, v) that enables to elect a vertex, everiifir(G), v) is not symmetric covering
prime.

Proposition 4.2. For any network G, v/), there exists an execution 8fl on (G, v) that enables to solve
naming and election of(G, v).

Proof:

Given a networ G, v), let us consider an execution where there is exactly oneepsag that executes
the actionI and where all the other processes starts executing theitalgoonly when they receive a
message. In other words, all the processes are initiallgiyasand there is a unique initiatog. Then,
for any vertexv € V(G) \ {vo}, each timev modifies its number, there exists an elem@nt\(vg), 0)

in its mailbox and thus(v) is always different froml.. Consequently, if we consider the final labelling
of (G, v) at the end of the execution, there exists a unique vegaxhose number i3. Consequently,
from Propositions 2.1 and 4.1, we know that each numigej that appears in the final labelling is the
number of a unique vertex: each vertex has a unique numhaee Sin this case, it is possible to detect
the termination of the algorithm by Remark 4.1, we know tliég £xecution enables to solve naming
and election on{G, v). O

Nevertheless, for any netwoll, v), there exists a “canonical” execution 8f that solves naming
and election orfG, v) if and only if (Dir(G), v) is symmetric covering prime.
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A synchronougexecution is an execution mounds At each round, each process receives the mes-
sages that have been sent to it during the previous round; itheodifies its state and it sent as many
messages as needed to its neighbours. Note that in a synclsrerecution of\1 on a network( G, v),
all the processes initially executes the acflon

The following proposition is similar to impossibility relésigiven by Yamashita and Kameda [YK96]
and Boldiet al.[BCG™96].

Proposition 4.3. Consider a networkG, ) and a synchronous execution®f on (G, v). The labelled
digraph obtained from the final labelling is the minimum bagéDir(G),v).

Proof:

Consider a networkG, ) and let(D, v’) be the minimum base @i, ). We denote by the fibration
from (Dir(G),v) to (D,v'). Note that(Dir(G),v) is a symmetric covering ofD, v') via ¢ (this is
ensured by the fact thatis a port-numbering o6).

Let v,v’ € V(G) be such thatp(v) = (v'). Initially, v andv’ have the same label, they both
apply the actiorI and they send the same messages to their neighbours. MorEmeny v € Ng(v),
there exists a unique vertex € Ng(v') such that,, (u') = v, (u), vy (V') = 1y (v) andp(u’) = ¢(u).
Consequently, for any rounglthe vertices andv’ get exactly the same messages from their neighbours,
modify their states in the same way and send the same messafes neighbours.

Consequently, in the final configuration, for all vertices’ € V(G) such thatp(v) = ¢(v'),
n(v) = n(v") andN(v) = N(v'). Consequently, the graph obtained from the final labelln@, /).

O

We can remark that the mailbox of each vertex contains a latsefess information. Indeed, if
some(n, ¢,N') belongs to the mailboX/(v) of a vertexv, one can remove fromd/(v) all the ele-
ments(n, ¢', N’) € M (v) such that(¢’, N') < (¢,N'). We can thus replace the mailbadx(v) of v by
{(n, 6, Ny € M(v) | V(n, ¢/ ,N") € M(v), ¢ ,N") < (¢,N)}. In this way, the mailbox of each vertex
contains at mosf’ (G)| elements of the fornfn, ¢, \).

Moreover, it is not necessary to ensure that the commupitatihannels preserve the order of mes-
sages (i.e., they have the FIFO property). Indeed, eachetiveetex receives a messaggn’,n/,,, M'),

p > through portg from a neighbour/, if there existn, p, ¢) € N(v) such that, > n’, then we know
that v has received earlier a message(n, n.q, M),p > through portg that contains a more recent
information about the state af. Moreover, we know that in this cas&/’ C M. Consequently, each
time v receives a message (n’,n.,,, M'), p > through portg, it checks if there existén, p, ¢) € N(v)

and performs the following instructions. #f > n/, it just discards the message. Otherwise, if there is no
such an element or # < n’ then it updates its local view by removirig, p, ¢) from N (v) and adding
(n',p,q) to N(v) and it continues the algorithm as before.

Nevertheless, if we assume that the communication chahaeésthe FIFO property, one can reduce
the size of the messages. Indeed, each time a vertex mothfi@gilbox, it just has to send the elements
it adds to its mailbox instead of sending the whole mailbax.tHe complexity analysis we do in the
next section, we suppose that the communication channeé¢stha FIFO property and that the sizes of
messages and mailboxes are reduced as we just explained.
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4.6. Complexity Analysis

We are interested in determining the time complexity, thessage complexity oM and we want to
determine the size of the messages and the size of the memedgd by each vertex.

As Tel [Tel00] (p. 71), we define the time complexity by sugpgsthat internal events need zero
time units and that the transmission time (i.e., the timevbenh sending and receiving a message) is at
most one time unit. This corresponds to the number of rouegsled by a synchronous execution of the
algorithm. Note that the correctness.bf is independent of these assumptions.

We consider an initial labelling. of G such that the size of each lakis at mostO(log |V (G)|)
bits (which is enough to give distinct labels to all verticé<~ if needed).

We consider an execution of the algorithm where the size ddsages and mailboxes has been
reduced as explained in the previous section. Moreoverwypase that each process sends the elements
{(n/,n,;, N")} of its mailbox one by one and it sendsmessages if it has elements to send to its
neighbours.

Proposition 4.4. Given a network(G, v) with n vertices,m edges, whose maximum degreeAisand
whose diameter i£), any execution of\ on (G, v) needsO(Dn?) time units andD(m?n) messages
of O(Alog n) bits. Moreover, the memory needed by each proce€X isn log n) bits.

Proof:

Consider a networkG, v) with n vertices,m edges, whose maximum degreeNsand whose diameter

is D. Consider an execution o¥1 on (G, v). From Lemmas 4.3 and 4.4, we know that each vertex
modifies its number at mosttimes.

For each vertex, since the numbers efand of its neighbours can only increase, the couple),
N(v)) can take at mostdeg(v) + 1)n different values. Each time a vertex modifies its number or
its local view, it can generate at ma9{m) messages, since a vertex whose mailbox already contains
(n(v), A(v), N(v)) will not broadcast this information to its neighbours. Cemsently, any execution of
M onG needs at mosD(m?n) messages. Moreover, since we suppose that all messagethadoen
< (n,ne, {(n',¢,N")}),p > and sinceV (v) contains at mosh elements, each message has a size of
O(Alogn) bits.

Each time a vertex modifies its number or its local view, all vertices@fknow (n(v), A(v), N (v))
in D time units. Moreover, each time a vertexmodifies its number, the neighboursomodify their
local views in1 time unit. Thus, each time a vertex modifies its number, al\thrtices ofG have
the same mailbox irD + 1 time units if no vertex has modified its number in the meanevhilf all
vertices have the same mailbox and if all send messages hawdawe know from Lemma 4.1, that
the computation is over. Consequently, any execution oéltherithm terminates i) (Dn?) time units.

For each vertex, n(v) can be encoded witlog . bits andN (v) can be encoded witth(A logn)
bits. Since each vertex keeps only the information that efuksn its mailbox, there are at most
elements inV/ (v) and each of these elements can be encoded@thlog n) bits. Consequently, each
vertex of G needs a memory a@d(An logn) bits to store its state. 0

Remark 4.2. For any network G, v), the algorithms of Yamashita and Kameda [YK96] and of Beldi
al. [BCG196] needs)(n) time units and)(mn) messages af°("™) bits. Moreover, each process needs
20(") bits of memory.
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Thus, M is an algorithm that is executed in polynomial time and needssages of polynomial size,
whereas the algorithms known before need messages of exjrirsze.

5. Final Remarks

In this paper, we have presented a characterization of mk$vioat admit naming and election algorithms
in the asynchronous message passing model. This chazatieni is expressed in terms of coverings of
directed graphs. To obtain a sufficient condition, we hawaptetl Mazurkiewicz’s algorithm in the asyn-
chronous message passing model and the enumeration latgave obtained has some nice properties
that the previous existing algorithms do not have. In paldic our algorithm needs a polynomial number
of messages of polynomial size, whereas existing algosthge messages of exponential size.

In [YK99], Yamashita and Kameda consider different modélpart awareness. In the algorithm
they use to solve the election problem, if a vertex sends asages it sends it to all its neighbours.
The algorithm we described in Section 4 uses the same taghnigherefore they consider two kinds
of emissions of messages: either each vertex can distimgisisoutgoing ports or not. If it cannot,
then each vertex can just broadcast a message to all itshwigh Moreover they also distinguish
two kinds of receptions of messages: either a vertex can khevport through which it receives each
message, or it receives all messages in a mailbox and it haseans to know who is the sender of
each message. Consequently, in [YK99], four message passinlels are studied: thgort-to-port
model (that has been studied here), gwet-to-mailboxmodel, thebroadcast-to-portmodel and the
broadcast-to-mailboxnodel. One can also obtain characterizations of networksitéidg election and
naming algorithms in these different models expressedrindgef coverings and fibrations. Moreover,
one can easily adapt algorithi to these different models to obtain polynomial algorithmvbereas
the algorithms presented by Yamashita and Kameda in [YK868firmessages of exponential size.

In Mazurkiewicz’s model, the algorithm presented by Mazawkicz in [Maz97] is used as a basic
building block to solve other classical problems in disitdd computing. In [GMMO04], Godard, Mé-
tivier and Muscholl characterize graph classes that carebegnized in a distributed way. In [MTO00],
Métivier and Tel characterize graph classes where anyilaliséd algorithm can be transformed into a
distributed algorithm where processes can detect thatltt@bcomputation is finished and in [GMO02],
Godard and Métivier characterize graph classes that adngtetion algorithm.

It is a natural question to wonder if these results can benelet@ to the asynchronous message
passing model, once we have a Mazurkiewicz-like algorithnthis model. In [CGMTO07], using the
algorithm described in this paper and a termination deiacélgorithm of Szymansky, Shi and Pry-
wes [SSP85], some extensions of the results of [MT00, GM@g2¢tbeen obtained in the asynchronous
message passing model.
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