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Abstract. We study the election and the naming problems in the asynchronous message passing
model. We present a necessary condition based on Angluin’s lifting lemma [Ang80] that must
be satisfied by any network that admits a naming (or an election) algorithm. We then show that
this necessary condition is also sufficient: we present an election and naming algorithm based on
Mazurkiewicz’s algorithm [Maz97]. The algorithm we obtained is totally asynchronous and it needs
a polynomial number of messages of polynomial size, whereasprevious election algorithms in this
model are pseudo-synchronous and use messages of exponential size.
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1. Introduction

The understanding of properties of a network which enable tosolve in a distributed way typical problems
of distributed computing enhances our understanding of what can be computed in a distributed way.
Such problems are election, naming, spanning tree construction, termination detection, network topology
recognition, consensus, mutual exclusion, etc. Not only solutions to these problems constitute primitive
building blocks for many other distributed algorithms, butthese solutions generally rely on combinatorial
tools that enable a more general study of what can be computedin a distributed way.

We consider networks with arbitrary topology that are represented by simple connected graphs en-
dowed with a port-numbering that enables each process to distinguish its neighbours. In one computation
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step, each process can either modify its state, or send a message to one of its neighbours, or receive a
message from a neighbour. We consider the asynchronous message passing model: processes cannot
access a global clock, processes execute computation stepsat arbitrary speed, and a message sent from a
process to a neighbour arrives within some finite but unpredictable time.

1.1. Election and Naming

In this paper, we focus on two classical problems of distributed computing that are election and naming.
The election problem is one of the paradigms of the theory of distributed computing. It was first posed by
LeLann [LeL77]. A distributed algorithm solves the election problem if it always terminates and in the
final configuration exactly one process is marked aselectedand all the other processes arenon-elected.
Moreover, it is supposed that once a process becomeselectedor non-electedthen it remains in such a
state until the end of the execution of the algorithm. Election algorithms constitute a building block of
many other distributed algorithms. The elected vertex actsas coordinator, initiator, and more generally
performs some special role [TvS02]. If processes have initially unique identifiers, it is always possible
to solve this problem by electing the process with the smallest identifier. Nevertheless, if we consider
anonymousnetworks where processes do not have identifiers and executethe same algorithm, it is not
always possible to solve the election problem. One aim of this paper is to present a characterization of
networks where this problem can be solved.

The naming problem is another important problem in the theory of distributed computing. The aim
of a naming algorithm is to arrive at a final configuration where all processes have unique identities (we
assume that identities are totally ordered). Many distributed algorithms work correctly only under the
assumption that all processes can be unambiguously identified thus it is very important to be able to give
dynamically and in a distributed way unique identities to all processes.

The enumeration problem is a variant of the naming problem. The aim of a distributed enumeration
algorithm is to assign to each network vertex a unique integer in such a way that this yields a bijection
between the setV (G) of vertices and{1, 2, . . . , |V (G)|}.

1.2. Related Works

Since the pioneer work of Angluin [Ang80], it is well-known that there exists networks that do not admit
any election algorithm since they are too “symmetric”. The model of Angluin is defined in the following
way. A network is a simple undirected connected graph with a port-numbering. A process is attached
to each vertex and there is no global time (the network is asynchronous). A basic computation step is
a pairwise exchange of messages by the two processes at the two ends of some edge. This exchange
allows the two processes to change their internal states anddoes not affect any other process. To break
the symmetry between two adjacent processes a “coin toss” may be used. In the Angluin’s model,
the combinatorial tool used to express these symmetries is the notion ofsimple coverings, i.e., locally
bijective homomorphisms between simple graphs.

In [Maz97], Mazurkiewicz considers a model where in one computation step, a process can modify
its state and the states of its neighbours by the applicationof some relabelling rule depending only on its
previous state and the previous states of its neighbours. This model corresponds to a more abstract model
of computation than the message passing model studied in this paper; it is a model where a computation
step involves some synchronization between neighbouring processes. In his model, Mazurkiewicz shows
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that a graphG admits an election (or a naming) algorithm if and only ifG is not ambiguous (in [GMM04]
it is proved that a graphG is non-ambiguous if and only ifG is not a simple covering of another graph
H distinct fromG). In other words, in Mazurkiewicz’s model, Angluin’s necessary condition is also
sufficient.

In the message passing model, Yamashita and Kameda give a characterization of networks admit-
ting an election algorithm [YK96]. The characterization ofYamashita and Kameda is really differ-
ent from Mazurkiewicz’s result and the techniques they usedare also different from the ones used by
Mazurkiewicz. The characterization presented in [YK96] relies on the notion of “views”, where the
view of each vertexv in a graphG with a port-numberingν is an infinite labelled rooted tree obtained by
considering all labelled walks inG starting fromv. Yamashita and Kameda first show that if two vertices
v, v′ of some network(G, ν) have the same view, there exists an execution of any algorithm such that
v andv′ always remain in the same state. Then they prove that if a network (G, ν) admits a naming
(or an election) algorithm, all vertices must have distinctviews. Yamashita and Kameda show that this
necessary condition is also sufficient. Their algorithm relies on a result of Norris [Nor95] stating that
two vertices of a network(G, ν) have the same view if and only if they have the same view up to height
|V (G)|. Thus, each vertex just has to compute its view up to height|V (G)| and to compare it with the
view of the other vertices; the vertex with the “smallest” view is elected.

The results obtained by Boldiet al. [BCG+96] enable to establish some links between the results of
Mazurkiewicz and of Yamashita and Kameda. Boldiet al. consider a synchronous model of computation,
but their results can be interpreted in the model studied by Yamashita and Kameda. The impossibility
results presented in [BCG+96] rely on some adaptation of the Angluin’s lifting lemma and thus the
characterizations obtained by Boldiet al. are expressed in terms of fibrations and coverings that are
special homomorphisms between directed graphs. The characterization presented in [BCG+96] is close
to the existing characterization in Mazurkiewicz’s model.Nevertheless, the algorithm presented by Boldi
et al. to obtain sufficient conditions uses the same ideas as the algorithm of Yamashita and Kameda.

The algorithms of Yamashita and Kameda (and of Boldiet al.) are really different from the Mazurkie-
wicz’one. Indeed, Yamashita and Kameda’s algorithm needs some initial knowledge on the network
in order to enable each process to know what is the height of the view it should compute. On the
other hand, Mazurkiewicz’s algorithm does not need any initial knowledge to terminate, even if some
initial knowledge is needed to enable the vertices to detectthat the computation is over. This is an
important property, since it is used by Godard et al. in [GMM04] to characterize graph classes that
can be recognized in a distributed way in Mazurkiewicz’s model. Moreover, to execute Mazurkiewicz’s
algorithm, it is sufficient for each vertex to have a memory ofpolynomial size, whereas in Yamashita and
Kameda’s algorithm, each process needs a memory of exponential size. This is an important property,
since the size of messages in Yamashita and Kameda’s algorithm is related to the size of the memory
of the processes and we can expect to have smaller messages ifwe manage to adapt Mazurkiewicz’s
algorithm in the asynchronous message passing model.

Election and naming have also been studied in intermediate models between the models of Mazurkie-
wicz and of Yamashita and Kameda [Cha05, CM04, CMZ04, Maz04].

1.3. Our Results

We give a characterization of networks where naming and election can be solved in the asynchronous
message passing model (Theorem 4.1). This result is based onthe notions of fibrations and coverings.
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Then, we present a characterization of graphs where election and naming can be solved for any port-
numbering (Theorem 4.2).

In order to obtain necessary conditions, in Section 3 we introduce a way to encode any network
with a port-numbering by a simple labelled digraph and we then obtain an impossibility result from the
Angluin’s lifting lemma [Ang80] (Proposition 3.2).

The naming algorithmM presented in Section 4 uses some ideas of the Mazurkiewicz’salgorithm
[Maz97]. It has some interesting properties that the previous existing algorithms do not have. Any
execution of our algorithm needs a polynomial number of messages of polynomial size (Proposition 4.4),
whereas the algorithms of Yamashita and Kameda and of Boldiet al. need messages of exponential size.
Moreover, our algorithm is totally asynchronous, whereas the algorithms of Yamashita and Kameda and
of Boldi et al. are executed in a pseudo-synchronous way. An interesting consequence of this property
is that for any network(G, ν), there exists an execution of our algorithm on(G, ν) that enables to solve
election and naming on(G, ν) (Proposition 4.2). Thus, our algorithm may utilise the “asymmetry” of
the execution even if the graph is really “symmetric”.

2. Preliminaries

2.1. Undirected Graphs, Directed Graphs and Labelled (Di)Graphs

2.1.1. Undirected Graphs

We consider finite undirected connected graphs without multiple edges or loop called also simple graphs.
Each such a graph is written asG = (V (G), E(G)) whereV (G) is the set of vertices ofG and where
the set of edgesE(G) is a set of pairs of distinct vertices ofG. For each edge{u, v} ∈ E(G), u andv
are theendsof {u, v} andu andv are said to beadjacentor neighbours. We denote byNG(u) the set of
all vertices ofG adjacent tou anddegG(u) is the degree ofu in G, i.e., the size ofNG(u).

Throughout the paper we will consider graphs where verticesand edges are labelled with labels from
a recursive setL. A graphG labelled overL will be denoted by(G,λ), whereλ : V (G) ∪E(G)→ L is
the labelling function. The graphG is called the underlying graph and the mappingλ is a labelling ofG.
Labelled graphs will be designated by bold letters likeG,H, . . . If G is a labelled graph, thenG denotes
the underlying graph.

We suppose thatǫ is a label that does not belong toL and then any partial labelling functionλ of
G defined on a setB of vertices and edges using labels fromL can be canonically extended to a total
labelling function ofG by definingλ(v) = ǫ or λ(e) = ǫ for each vertexv or edgee in (V (G)∪E(G))\
B.

In some applications we need several labelling functions for a given graphG. Let (λ1, ..., λk) be a
tuple of labelling functions ofG, the labelled graph obtained with this tuple is denoted(G, (λ1, ..., λk))
and the label of a vertexv ∈ V (G) is (λ1(v), ..., λk(v)).

2.1.2. Directed Graphs

In order to describe our characterization, one needs to consider also directed graphs (or digraphs) that
can have multiple arcs and self-loops. A digraphD is defined by a setV (D) of vertices, by a setA(D)
of arcs and by two mapssD andtD (in general, the subscripts will be omitted) fromA(D) to V (D). For
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each arca ∈ A(D), s(a) is thesourceof a andt(a) is its target. We say thata is going out ofs(a) and
coming intot(a). A self-loop is an arc with the same source and target. A digraph with no self-loop and
such that for each couple(u, v) of vertices there is at most one arca such thats(a) = u andt(a) = v is
said to be simple.

A digraphD is strongly connectedif for all verticesu, v ∈ V (D), there exists a sequence of arcs
a1, a2, . . . ap such thats(a1) = u,∀i ∈ [1, p − 1], t(ai) = s(ai+1) andt(ap) = v. In the following, we
will only consider strongly connected digraphs.

A symmetricdigraphD is a digraph endowed with a symmetry, that is, an involutionSym : A→ A
such that for everya ∈ A : s(a) = t(Sym(a)).

Definition 2.1. A homomorphismϕ from the digraphD to the digraphD′ is given by a pair of functions
ϕV : V (D) → V (D′) and ϕA : A(D) → A(D′) commuting with the source and target maps, i.e.,
sD′ ◦ ϕA = ϕV ◦ sD andtD′ ◦ ϕA = ϕV ◦ tD.

A homomorphismϕ is anisomorphismif ϕ is bijective. We writeD ≃ D′ wheneverD andD′ are
isomorphic.

Throughout the paper we will consider digraphs where the vertices and the arcs are labelled with
labels from a recursive setL. A digraphD labelled overL will be denoted by(D,λ), whereλ : V (D)∪
A(D)→ L is the labelling function. The digraphD is called the underlying digraph and the mappingλ
is a labelling ofD. A mappingϕ : V (D) ∪ A(D) → V (D′) ∪ A(D′) is a homomorphism from(D,λ)
to (D′, λ′) if ϕ is a digraph homomorphism fromD to D′ which preserves the labelling, i.e., such that
λ′(ϕ(x)) = λ(x) for everyx ∈ V (D)∪A(D). Labelled digraphs will be designated by bold letters like
D,D′, . . . If D is a labelled digraph, thenD denotes the underlying digraph. As for graphs, one can note
that it is possible to extend any partial labelling functionλ of a digraphD using labels from a setL in a
total labelling function ofD by using a special labelǫ /∈ L.

Given a symmetric digraphD, the labelling of the arcs ofD may reflect the fact thatD is symmetric.

Definition 2.2. Let D be a digraph endowed with the symmetrySym. let λ : C → C be a labelling
function ofD. The labellingλ is symmetricif there exists an involutionι : C → C such that for each
arca ∈ A(D), λ(Sym(a)) = ι(λ(a)).

Given a labelled connected simple graphG = (G,λ), one associates a labelled symmetric strongly
connected digraph denoted byDir(G) = (Dir(G), λ) and defined as follows. The set of vertices of
Dir(G) is the set of vertices ofG, i.e.,V (Dir(G)) = V (G) and each vertex ofG has the same label
in Dir(G) as inG. For each edge{u, v} ∈ E(G), there exists two arcsa(u,v), a(v,u) ∈ A(Dir(G))
such thats(a(u,v)) = t(a(v,u)) = u, t(a(u,v)) = s(a(v,u)) = v andSym(a(u,v)) = a(v,u). Note that this
digraph does not contain multiple arcs or self-loop and thatits arcs are unlabelled.

2.2. Fibrations and coverings

The notions of fibrations and coverings are fundamental in this work. Definitions, main properties and
some applications are presented in [Bod89, BV02].

A fibration is a homomorphism that induces an isomorphism between the incoming arcs of each
vertex and the incoming arcs of its image.
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Definition 2.3. A digraphD is fibred overa digraphD′ via a homomorphismϕ if ϕ is a homomorphism
from D to D′ such that for each arca′ ∈ A(D′) and for each vertexv ∈ ϕ−1(t(a′)), there exists a unique
arca ∈ A(D) such thatt(a) = v andϕ(a) = a′ ; this arca is called thelifting of a′ at v.

We say that the homomorphismϕ is afibration from D to D′, the digraphD is thetotal digraphof
ϕ and the digraphD′ is thebaseof ϕ.

Thefibre over a vertexv′ (resp. an arca′) of D′ is defined as the setϕ−1(v′) of vertices ofD (resp.
the setϕ−1(a′) of arcs ofD).

In the sequel digraphs are always strongly connected and total digraphs non empty.
A covering projection is a fibration that also induces an isomorphism between the outgoing arcs of

each vertex and the outgoing arcs of its image.

Definition 2.4. A digraphD is acoveringof a digraphD′ via a homomorphismϕ if ϕ is a homomor-
phism fromD to D′ such that for each arca′ ∈ A(D′) and for each vertexv ∈ ϕ−1(t(a′)) (resp.
v ∈ ϕ−1(s(a′)), there exists a unique arca ∈ A(D) such thatt(a) = v (resp.s(a) = v) andϕ(a) = a′.

The homomorphismϕ is called acovering projectionfrom D to D′.

In the sequel a covering projection will be called a covering. If D′ has no self-loop and no multiple arcs
then the covering is said to be simple.

A symmetric covering is a covering between symmetric digraphs that preserves the functionSym.

Definition 2.5. A symmetric digraphD is called asymmetric coveringof a symmetric digraphD′ via
a homomorphismϕ if D is a covering ofD′ via ϕ and if for each arca ∈ A(D), ϕ(Sym(a)) =
Sym(ϕ(a)).

The homomorphismϕ is called asymmetric coveringfrom D to D′.
A symmetric digraphD is said to besymmetric covering primeif for each symmetric digraphD′

such thatD is a symmetric covering ofD′, D ≃ D′.

All these definitions are extended in a natural way to labelled digraphs.
An interesting property satisfied by covering is that all thefibres have the same cardinality, that

is called thenumber of sheetsof the covering. The following proposition is a result of Boldi and Vi-
gna [BV02].

Proposition 2.1. A coveringϕ : D→ D′ with a connected base and a nonempty covering is surjective;
moreover, there existsq ∈ {1, 2, · · · } such that for eachx ∈ V (D′) ∪A(D′), |ϕ−1(x)| = q.

Given a labelled digraphD, there exists a “minimal” labelled digraphD0 such thatD is fibred over
D0. The existence of such a labelled digraph has been shown by Boldi and Vigna [BV02].

Proposition 2.2. For any strongly connected labelled digraphD, there exists a strongly connected la-
belled digraphD0 such thatD is fibred overD0 and such that for any strongly connected labelled digraph
D′, if D is fibred overD′, thenD′ is fibred overD0.

The digraphD0 is called the minimum base ofD.

The minimum base of a labelled digraphD can be computed in polynomial time using the degree re-
finement technique [BV02, Lei82]; this method is close to thetechnique used to minimize a deterministic
automaton [HU79].
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Let D andD′ be two digraphs such thatD is a surjective covering ofD′ via ϕ. If D′ has no self-loop
then for each arca ∈ A(D) : ϕ(s(a)) 6= ϕ(t(a)). Finally, the following property is a direct consequence
of the definitions and it is fundamental in the sequel of this paper :

Proposition 2.3. Let D and D′ be two labelled digraphs such thatD′ has no self-loop andD is a
surjective covering ofD′ via ϕ. Let a1 anda2 be two arcs ofD. If a1 6= a2 anda1, a2 ∈ ϕ−1(a′)
(a′ ∈ A(D′)) then{s(a1), t(a1)} ∩ {s(a2), t(a2)} = ∅.

2.3. Local Computations on Arcs

In this paper we consider labelled digraphs and we assume that local computations modify only labels
of vertices and of arcs. Digraph relabelling systems on arcsand more generally local computations on
arcs satisfy the following constraints, that arise naturally when describing distributed computations with
decentralized control:

(C1) they do not change the underlying digraph but only the labelling of vertices and of the arcs, the
final labelling being the result of the computation (relabelling relations),

(C2) they arelocal, that is, each relabelling step changes only the label of thesource, the label of the
target of an arc and the label of the arc,

(C3) they arelocally generated, that is, the applicability of a relabelling rule on an arc only depends on
the label of the arc, the labels of the source and of the target(locally generated relabelling relation).

The relabelling is performed until no more transformation is possible, i.e., until a normal form is ob-
tained.

The more formal framework is the following. LetDL be the class ofL-labelled digraphs. Then any
binary relationR⊆ DL × DL onDL is called adigraph rewriting relation. We assume that it is closed
under isomorphism, i.e., ifD R D1 andD′ ≃ D thenD′ R D′

1
for some labelled digraphD′

1
≃ D1.

In the remainder of the paperR∗ stands for the reflexive-transitive closure ofR . The labelled digraph
D isR-irreducible (or just irreducible ifR is fixed) if there is noD1 such thatD R D1.

Definition 2.6. Let R⊆ DL × DL be a digraph rewriting relation. The relationR is a relabelling
relation if whenever two labelled digraphs are in relation then the underlying unlabelled digraphs are
equal, i.e.,D1 R D2 implies thatD1 = D2.

Definition 2.7. Let R⊆ DL × DL be a digraph relabelling relation. The relationR is (arc) local if
(D,λ) R (D,λ′) implies that there exists an arca ∈ A(D) such thatλ(x) = λ′(x) for every x /∈
{a, s(a), t(a)}.

The next definition states that an arc local relabelling relationR is arc locally generatedif the appli-
cability of any relabelling depends only on the labels of thearc and of the ends of the arc.

Definition 2.8. LetR be a relabelling relation arc local. ThenR is arc locally generatedif the following
is satisfied: for all labelled digraphs(D1, λ), (D1, λ

′), (D2, η), (D2, η
′) and all arcs(u, u′) ∈ A(D1)

and(v, v′) ∈ A(D2), the following three conditions:
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1. λ(u) = η(v), λ(u′) = η(v′), λ′(u) = η′(v), λ′(u′) = η′(v′),

2. λ(w) = λ′(w), for eachw ∈ V (D1) \ {u, u′},

3. η(w) = η′(w), for eachw ∈ V (D2) \ {v, v′},

imply that(D1, λ) R (D1, λ
′) if and only if (D2, η) R (D2, η

′).

We only consider recursive relabelling relations. The purpose of all assumptions about recursiveness
done throughout the paper is to have “reasonable” objects w.r.t. the computational power. By definition,
arc local computationsare computations on labelled digraphs corresponding to arclocally generated
relabelling relations.

Given an arc locally generated relationR, a computation stepon a digraphD is the relabelling of
the labels of an arca and of the ends ofa that leads to a digraphD′ such thatD R D′; the arca is the
support of the relabelling step. AnexecutionofR onD is a sequenceD = D0 R D1 R . . . R Di R . . .
whereDi is called theconfigurationof D at stepi. A final configuration is a configurationD where no
more relabelling step can be applied, i.e., there does not exists anyD′ such thatD R D′.

A complete presentation of graph relabelling systems and local computations for the model of
Mazurkiewicz may be found in [GMM04] (pp. 256-260). It can beeasily adapted to the model studied
in this work.

2.4. Distributed Computations of Local Computations on Arcs

The notion of relabelling sequence defined above obviously corresponds to a notion ofsequentialcom-
putation. Clearly, a locally generated relabelling relation allows parallel relabellings too, since non-
overlapping edges may be relabelled independently. Thus wecan define a distributed way of computing
by allowing that two consecutive relabelling steps with disjoint supports may be applied in any order (or
concurrently). More generally, any two relabelling sequences such that one can be obtained from the
other by exchanging successive concurrent steps, lead to the same result.

Hence, the notion of relabelling sequence associated to a arc locally generated relabelling relation
may be regarded as aserializationof a distributed computation. This model is asynchronous, in the sense
that several relabelling stepsmaybe done at the same time but we do not require that all of them have
to be performed. In the sequel we will essentially handle sequential relabelling sequences, but the reader
should keep in mind that such sequences may be done in parallel.

2.5. Coverings and Arc Local Computations

First, We present a fundamental lemma which connects coverings and locally generated relabelling re-
lations on arcs. It is the natural extension of the lifting lemma [Ang80]. It states that wheneverD1

is a covering ofD′
1
, every relabelling step inD′

1
can be lifted to a relabelling chain inD1 which is

compatible with the covering relation. It is a direct consequence of Proposition 2.3.

Lemma 2.1. (lifting lemma)
LetR be a locally generated relabelling relation on arcs and letD1 be a covering of the labelled digraph
D′

1 via the morphismγ; we assume thatD′
1 has no self-loop. IfD′

1 R
∗ D′

2 then there existsD2 such
thatD1 R

∗ D2 andD2 is a covering ofD′
2 via γ.
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Proof:
Consider two labelled digraphsD1 = (D1, λ) andD′

1 = (D′
1, η) such thatD1 is a covering ofD′

1 via a
homomorphismγ and an arc locally generated relabelling relationR.

It is sufficient to prove the lemma whenD′
1 = (D′

1, η) R (D′
1, η

′) = D′
2, let r be the rewritting rule

for this step. Consider the rewritten arca = (v, v′) ∈ A(D′
1) : for eachx ∈ (V (D′

1)∪A(D′
1))\{a, v, v′},

η′(x) = η(x). SinceD1 is a covering ofD′
1 via γ andD′

1 has no self-loop from Proposition 2.3 arcs
of A(D1) which are mapped byγ on (v, v′) are disjoint. Consequently, one can apply the relabelling
rule r on each arc(u, u′) ∈ A(D1) such thatγ(u) = v andγ(u′) = v′. Let λ′ be the new labelling of
D1 obtained once all these relabelling steps have been performed. For eachu ∈ γ−1({v, v′}), λ′(u) =
η′(γ(u)) and for eachu ∈ V (D1) \ γ−1({v, v′}), λ′(u) = λ(u) = η(γ(u)) = η′(γ(u)). The same
relations hold for arcs. Thus, the labelled digraphD2 = (D1, λ

′) is a covering ofD′
2 via γ. ⊓⊔

3. From Asynchronous Message Passing to Local Computationson Arcs

3.1. The Asynchronous Message Passing Model

Our model follows standard models for distributed systems given in [AW04, Lyn96, Tel00]. The commu-
nication model is a point-to-point communication network which is represented as a simple connected
undirected graph where vertices represent processes and two vertices are linked by an edge if the corre-
sponding processes have a direct communication link. Processes communicate by message passing and
each process can distinguish its neighbours, i.e., the different links incident to it.

Since each process knows from which channel it receives a message or to which channel it sends a
message, one supposes that the network is represented by a simple graph with a port-numbering function.

Definition 3.1. Given a simple labelled graphG, aport-numberingfunctionν is a set of local functions
{νu | u ∈ V (G)} such that for each vertexu ∈ V (G), νu is a bijection betweenNG(u) and[1,degG(u)].

Remark 3.1. We consider graphs with a port-numbering thus information concerning edges may be
attached to vertices and we don’t need labels on edges.

We assume in the sequel that edges ofG have no labels. We consider the asynchronous message passing
model: processes cannot access a global clock, processes execute computation steps at arbitrary speed,
and a message sent from a process to a neighbour arrives within some finite but unpredictable time.

3.2. Port-numbering and Symmetric Digraphs

A network is represented by a simple labelled graph(G, ν) whereG = (G,λ) is a simple graph whose
vertices are labelled andν is a port-numbering function.

Remark 3.2. The labellingλ of processes may encode some properties of the network. For example, if
the network is anonymous, all the vertices have the same label (i.e., ∀u, u′ ∈ V (G), λ(u) = λ(u′)). If
the processes have unique identities, then for allu, u′ ∈ V (G) if u 6= u′ thenλ(u) 6= λ(u′). If there
exists a distinguished process, then there existsu ∈ V (G) such that for eachu′ ∈ V (G) distinct fromu,
λ(u) 6= λ(u′).
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21
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21

(G, ν)

(1, 2)(2, 1)(1, 2) (2, 1)

(2, 1)

(1, 2)

(2, 1)

(1, 2)

(Dir(G), ν)

(1, 2)(2, 1)

(D, ν ′)

Figure 1. A graphG with a port numberingν and the associated labelled digraph(Dir(G), ν) that is a covering
of (D, ν′). From Proposition 3.2, there is no election algorithm for(G, ν). The same argument gives the same
result for any ring.

Given a network(G, ν), one associates to(G, ν) a symmetric labelled digraph(Dir(G), ν) where
each vertexv ∈ V (Dir(G)) has the same label as inG and where each arca(u,v) ∈ A(Dir(G)) such
thats(a) = u andt(a) = v is labelled by(νu(v), νv(u)). Let ι be defined by :ι((p, q)) = (q, p), wherep
andq are two integers. One can note that for each arca ∈ A(Dir(G)) labelled by(p, q), the arcSym(a)
is labelled by(q, p) = ι((p, q)), i.e., the labelling of the arcs ofDir(G) induced byν is symmetric.

Examples of this construction are presented on Figures 1, 2 and 3.

Remark 3.3. Let (G, ν) be a simple graph endowed with a port-numberingν. The labelled digraph
(Dir(G), ν) is symmetric covering prime if and only if(Dir(G), ν) considered as an automaton whose
all states are final is minimal.

3.3. Encoding a Network with a Labelled Digraph

The construction presented in this section may appear technical nevertheless the intuition is very natural
and simple, and it is illustrated in Figures 2 and 3.

Given a labelled digraphD = (D,λ) whose arcs are unlabelled, one will associate toD a simple

labelled digraph
←→
D defined in the following way.

To each arca ∈ A(D) whose source isu and whose target isv, we associate the setVa of three
vertices denoted{outbufa(u, v), canala(u, v), inbufa(u, v)} and the setAa of four arcs that are:
(u, outbufa(u, v)), (outbufa(u, v), canala(u, v)), (canala(u, v), inbufa(u, v)), (inbufa(u, v), v).

The unlabelled simple digraph
←→
D is then defined by:

V (
←→
D ) = V (D) ∪ (

⋃

a∈A(D)

Va) andA(
←→
D ) =

⋃

a∈A(D)

Aa.

We need to memorize the meaning (semantic) of the different vertices of
←→
D . To do so, we consider

the labelled digraph
←→
D = (

←→
D , (κ, λ)) whereλ andκ are two labellings of the vertices of

←→
D defined as
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v4

v3 v2

v1

1

1

2

1

3

1

(G, ν)

v4

v3 v2

v1

(1, 1)

(1, 1)

(2, 1) (1, 2)

(3, 1)

(1, 3)

(Dir(G), ν)

inbuf(v1, v4)

canal(v1, v4)

outbuf(v1, v4)

2

1

3

1

1

1

v3

v1

v2

v4
(
←→
G , ν)

Figure 2. We adopt the following notation for vertices of(
↔

G, ν). A black-circle vertex corresponds to the label
process, a square vertex corresponds to the labelsend, a diamond vertex corresponds to the labeltransmission,
and a double-square vertex corresponds to the labelreceive There is no multiple arcs thus subscripts foroutbuf,
canal andinbuf are omitted.
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follows. For each vertexv ∈ V (
←→
D ), λ(v) is the label ofv in D if v ∈ V (D) andλ(v) = ǫ otherwise.

The labelling functionκ encodes the role of each vertex of
←→
D and is defined as follows:

• ∀u ∈ V (D), κ(u) = process,

• ∀a ∈ A(D), κ(outbufa(s(a), t(a))) = send,

• ∀a ∈ A(D), κ(inbufa(s(a), t(a))) = receive,

• ∀a ∈ A(D), κ(canala(s(a), t(a))) = transmission.

One considers now a labelling functionν of the arcs ofD such that for each arca ∈ V (D), there
exists positive integersp, q such thatν(a) = (p, q). We extendν into a labelling function of vertices of
←→
D such that for each arca ∈ A(D) whose label is(p, q), ν(outbufa(a)) = p andν(inbufa(a)) = q
(for the other vertices,ν is equal toǫ).

Suppose now thatD is a symmetric labelled digraph and thatν is a symmetric labelling function of
D. One notices that for each arca ∈ A(D), ν(inbufa(a)) = ν(outbufSym(a)(Sym(a))).

Given a network(G, ν) whereG is a simple labelled graph andν is a port-numbering ofG, we
note(

←→
G , ν) the simple labelled digraph obtained by applying the construction described above on the

labelled digraph(Dir(G), ν).

3.4. Encoding Basic Instructions with Local Computations on Arcs

As in [YK96] (see also [Tel00] pp. 45-46), we assume that eachprocess, depending on its state, either
changes its state, or receives a message via a port or sends a message via a port.

Given a network(G, ν) and its representation(
←→
G , ν) as a simple labelled digraph described in the

previous section, we now explain how the basic instructionseach process of(G, ν) can execute in terms

of local computations on arcs of(
←→
G , ν) :

• an event that enables a process to modify its state (i.e., an internal transition) is encoded by a
relabelling rule that can be applied on a vertexv ∈ V (

←→
G ) such thatκ(v) = process,

• a send event of the form “send a messagem via portp” is encoded by a relabelling rule that can
be applied on the arc(u, v) ∈ A(

←→
G ) whereκ(u) = process, κ(v) = send andν(v) = p,

• a receive event of the form “receive a messagem via portq” is encoded by a relabelling rule that
can be applied on the arc(v, u) ∈ A(

←→
G ) whereκ(u) = process, κ(v) = receive andν(v) = q,

• an event concerning the transmission control can be encodedby a relabelling rule concerning an
arc of the form(u, v) or (v, u) with κ(u) ∈ {send, receive} andκ(v) = transmission.

Proposition 3.1. Let D andD′ be two symmetric labelled digraphs. Letν (resp. ν ′) be a symmetric
labelling function of the arcs ofD (resp. D′) such that for each arca ∈ V (D), there exists positive
integersp, q such thatν(a) = (p, q) and for each arca′ ∈ V (D′), there exists positive integersp, q such
thatν ′(a′) = (p, q). If (D, ν) is a covering of(D′, ν ′) then(

←→
D , ν) is a covering of(

←→
D ′, ν ′).
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1 1
(G, ν)

(1, 1)

(1, 1)

(Dir(G), ν)

(1, 1)(D, ν ′)

1 1

11

(
←→
G , ν)

1

1
(
←→
D , ν ′)

ϕ

Figure 3. The digraph(Dir(G), ν) is a proper symmetric covering of(D, ν′) and thus there is no election algo-
rithm for (G, ν) from Proposition 3.2.

Proof:
Consider two digraphs((D,λ), ν), ((D′, λ′), ν ′) such that(D, ν) is a covering of(D′, ν ′) via a homo-

morphismϕ. We define a homomorphismγ from (
←→
D , ν) to (

←→
D ′, ν ′) as follows. For each vertexv ∈

V (
←→
D ), we defineγ(v) = ϕ(v) if v ∈ V (D). For each arca ∈ A(D) such thats(a) = u andt(a) = v,

we defineγ(outbufa(u, v)) = outbufγ(a)(γ(u), γ(v)), γ(canala(u, v)) = canalγ(a)(γ(u), γ(v)) and
γ(inbufa(u, v)) = inbufγ(a)(γ(u), γ(v)).

It is then easy to check that(
←→
D , ν) is a simple covering of(

←→
D ′, ν ′) via the the homomorphism

γ. ⊓⊔

3.5. A Necessary Condition for the Election

We present here a necessary condition that must be satisfied by any network(G, ν) that admits an
election algorithm.

Proposition 3.2. Given a simple labelled graphG and a port-numbering functionν of G. If there ex-
ists an election or a naming algorithm forG endowed withν as port-numbering then(Dir(G), ν) is
symmetric covering prime.

Proof:
By contradiction. Consider a simple labelled graphG, a port-numbering functionν of G and a labelled
digraph(D, ν ′) such that(Dir(G), ν) is a proper symmetric covering of(D, ν ′) via a homomorphism
γ. From Proposition 3.1, we know that(

←→
G , ν) is a covering of(

←→
D , ν ′).

Consider now a message passing algorithmA on (G, ν) and the corresponding algorithmA′ on

(
←→
G , ν) using local computations on arcs obtained by the transformation described in Section 3.4.
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Note that if there exists a no finite execution ofA′ on (
←→
D , ν ′), then there exists a no finite execution

of A′ on (
←→
G , ν), and then there exists a no finite execution ofA on (G, ν). Finally,A is not an election

(or naming) algorithm for(G, ν).

Consider a finite executionρ of A′ on (
←→
D , ν ′). The labelled digraph(

←→
D , ν ′) has no self-loop and,

from Lemma 2.1, there exists an executionρ′ of A′ on (
←→
G , ν) that is lifted up from this finite execution

of A′ on (
←→
D , ν ′). Consequently, as the covering is strict, from Proposition2.1, each label that appears

in the final configuration ofρ in (
←→
D , ν ′) appears at least twice in the final configuration ofρ′ in (

←→
G , ν).

Consequently, there exists an execution ofA on (G, ν), where in the final configuration, no vertex
has a unique label. Consequently,A is not an election (or naming) algorithm for(G, ν). ⊓⊔

Remark 3.4. As immediate consequences of this result we deduce two classical results for the asyn-
chronous message passing model: there exists no election algorithm in an anonymous network of two
processes ([Tel00] p. 316), and there exists no algorithm for election in an anonymous ring of known
size ([Tel00] Theorem 9.5 p. 317) (sketches of the proofs aregiven in Figures 1 and 3).

4. A Mazurkiewicz-like Algorithm

We show in this section that the necessary condition given bythe Proposition 3.2 is also sufficient. To
do so, we present an enumeration algorithm inspired by Mazurkiewicz’s algorithm and adapted to the
message passing model.

We first give a general description of our algorithm, that will be denotedM, when executed on a
connected labelled simple graphG with a port-numberingν.

During the execution of the algorithm, each vertexv attempts to get its own unique identity which
is a number between1 and |V (G)|. Once a vertexu has chosen a numbern(v), it sends it to each
neighbouru with the port-numberνu(v). When a vertexv receives a message from one neighbourv, it
stores the numbern(v) with the port numbersνu(v) andνv(u). From all information it has gathered from
its neighbours, each vertex can construct itslocal view (which is the set of numbers of its neighbours
associated with the corresponding port numbers). Then, a vertex broadcasts its number with itslocal
view. If a vertexu discovers the existence of another vertexv with the same number then it should
decide if it changes its identity. To this end it compares itslocal view with the local view ofv. If the
label ofu or the local view ofu is “weaker”, thenu picks another number — its new temporary identity
— and broadcasts it again with its local view. At the end of thecomputation, if the graph is symmetric
covering prime, then every vertex will have a unique number:the algorithm is a naming algorithm.

4.1. Labels

We consider a network(G, ν) whereG = (G,λ) is a simple labelled graph and whereν is a port-
numbering ofG. The functionλ : V (G) → L is the initial labelling and is not modified during the
execution of the algorithm. We suppose that there exists a total order<L on L. During the execution,
the label of each vertexv is a tuple(λ(v), n(v),N(v),M(v)) representing following information.

• λ(v) ∈ L is the initial label ofv and is not modified by the algorithm.

• n(v) ∈ N is the currentnumberof the vertexv computed by the algorithm.
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• N(v) ∈ Pfin(N3)1 is the local viewof v. The local view of a vertexv contains the information
a vertexv has about its neighbours. If a vertexv has a neighbouru such thatνu(v) = p and
νv(u) = q, then(m, p, q) ∈ N(v) if the last message thatv gets fromu indicates thatn(u) = m.

• M(v) ∈ N×L×Pfin(N
3) is themailboxof v. The mailbox ofv contains all information received

by v during the execution of the algorithm. If(m, ℓ,N ) ∈ M(v), it means that at some previous
step of the execution, there was a vertexu such thatn(u) = m, λ(u) = ℓ andN(u) = N .

Initially, each vertexv has a label of the form(λ(v), 0, ∅, ∅) indicating that it has not choosen any
number, that it has no information about its neighbours or about the other vertices of the graph.

In our algorithm, processes exchange messages of the form< (m,nold,M), p >. If a vertexu
sends a message< (m,nold,M), p > to one of its neighbourv, then the message contains following
information.

• m is the current numbern(u) of u.

• nold is the previous number ofu, i.e., the numberu sends tov in its previous message; if in the
meanwhile,u has not modified its number, thennold = m.

• M is the mailbox ofu.

• p is the port-number the message has been sent through, i.e.,p = νu(v).

4.2. An Order on Local Views

As in Mazurkiewicz’s algorithm [Maz97], the nice properties of the algorithm rely on a total order on
local views, i.e., on finite subsets ofN

3. We consider the usual lexicographic order onN
3: (n, p, q) <

(n′, p′, q′) if n < n′, or if n = n′ andp < p′, or if n = n′, p = p′ andq < q′.
Then, we use the same order on finite sets as Mazurkiewicz: given two distinct setsN1,N2 ∈

Pfin(N
3), we defineN1 ≺ N2 if the maximum of the symmetric differenceN1 △ N2 = (N1 \ N2) ∪

(N2 \N1) belongs toN2.
If N(u) ≺ N(v), then we say that the local viewN(v) of v is strongerthan the local viewN(u) of

u and thatN(u) is weakerthanN(v). Using the total order<L on L, we define(ℓ,N ) ≺ (ℓ′,N ′) if
eitherℓ <L ℓ′, or ℓ = ℓ′ andN ≺ N ′. We denote by� the reflexive closure of≺.

4.3. The Enumeration AlgorithmM

The algorithm for the vertexv0 (see Algorithm 1) is expressed in an event-driven description (see Tel
[Tel00] p. 553). The algorithm we describe here requires that the messages sent in a communication
channel arrive in the same order they are sent (FIFO propertyof communication channels); we will
explain in Section 4.5 how to drop this hypothesis.

The actionI can be executed by a process on wake-up only if it has not received any message. In this
case, it chooses the number1, updates its mailbox and informs its neighbours.

The actionR describes the instructions the vertexv0 has to follow when it receives a message<
(n′, n′

old,M
′), p > from a neighbour via portq. First, it updates its mailbox by addingM ′ to it. Then it

1For any setS, Pfin(S) denotes the set of finite subsets ofS.
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modifies its number if there exists(n(v0), ℓ,N ) ∈ M(v0) such that(λ(v0),N(v0)) ≺ (ℓ,N ). Then, it
updates its local view by removing(n′

old, p, q) from N(v0) (if N(v0) contains such an element) and by
adding(n′, p, q) to N(v0). Then, it adds its new state(n(v0), λ(v0),N(v0)) to its mailbox. Finally, if its
mailbox has been modified by the execution of all these instructions, it sends its number and its mailbox
to all its neighbours.

If the mailbox ofv0 is not modified by the execution of the actionR, it means that the information
v0 has about its neighbour (i.e., its number) was correct, thatall the elements ofM ′ already belong to
M(v0), and that for each(n(v0), ℓ,N ) ∈M(v0), (ℓ,N ) � (λ(v0),N(v0)).

Algorithm 1 : AlgorithmM.

I : {n(v0) = 0 and no message has arrived atv0}
begin

n(v0) := 1 ;
M(v0) := {(n(v0), λ(v0), ∅)};
for i := 1 to deg(v0) do

send< (n(v0), 0,M(v0)), i > via porti ;

end

R : {A message< (n′, n′
old,M

′), p > has arrived atv0 from portq}
begin

Mold := M(v0);
nold := n(v0);
M(v0) := M(v0) ∪M ′;
if n(v0) = 0 or ∃(n(v0), ℓ,N ) ∈M(v0) such that(λ(v0),N(v0)) ≺ (ℓ,N ) then

n(v0) := 1 + max{n | ∃(n, ℓ,N ) ∈M(v0)};

N(v0) := N(v0) \ {(n
′
old, p, q)} ∪ {(n′, p, q)};

M(v0) := M(v0) ∪ {(n(v0), λ(v0),N(v0))};
if M(v0) 6= Mold then

for i := 1 to deg(v0) do
send< (n(v0), nold,M(v0)), i > through porti;

end

4.4. Correctness ofM

We consider a simple connected labelled graphG and a port-numberingν of G. For each vertexv,
an internal transition is the execution of the instructionsthat update its state once a message has been
received, but not the send events that follow this transition. If a vertexv executes the actionI, the
corresponding internal transition is the modification of its number and of its mailbox.

An execution of the algorithm on(G, ν) is a sequence of send events, receive events and internal
events, where at each step, one transition is performed (this corresponds to the notion of execution
defined by Tel [Tel00] (pp. 45-47) and thus an execution is seen as a serialization of the distributed
execution).
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We consider an executionρ ofM on(G, ν) and for each vertexv ∈ V (G), we denote by(λ(v), ni(v),
Ni(v),Mi(v)) the state ofv after theith computation step ofρ. We first remark that the steps that cor-
respond to send events and receive events do not modify the value of (λ(v), n(v),N(v),M(v)) for any
vertexv ∈ V (G). Moreover, for each computation step where an internal event is performed, the value
of (λ(v), n(v), N(v),M(v)) is modified for at most one vertexv ∈ V (G).

The following lemma can be easily proved by an induction on the length of the execution and sum-
marizes some simple properties that each execution of the algorithmM satisfies.

Lemma 4.1. For each vertexv ∈ V (G) and for each stepi,

1. ∃(n, p, q) ∈ Ni(v) ⇐⇒ ∃v′ ∈ NG(v) such thatνv(v
′) = q andνv′(v) = p,

2. ni(v) 6= 0 =⇒ (ni(v), λ(v), Ni(v)) ∈Mi(v),

3. ∀(n, p, q) ∈ Ni(v), n 6= 0 and∃(n, ℓ′,N ′) ∈Mi(v),

4. ∀(n, p, q), (n′, p′, q′) ∈ Ni(v), q 6= q′,

5. ∀(n(v0), ℓ,N ) ∈Mi(v), (ℓ,N ) � (λ(v0),N(v0)),

6. (n, p, q) ∈ Ni(v) if and only if the last message received byv through portq was< (n,M), p >
for someM ⊆Mi(v).

The algorithm has some remarkable monotonicity propertiesthat are described in the following
lemma.

Lemma 4.2. For each vertexv and each stepi, ni(v) ≤ ni+1(v), Ni(v) � Ni+1(v), andMi(v) ⊆
Mi+1(v).

Proof:
We suppose that some internal event is executed at stepi + 1 by some vertexv ∈ V (G). The property is
obviously true for any vertexw ∈ V (G) \ {v} and it is easy to see thatMi(v) ⊆Mi+1(v).

If ni(v) 6= ni+1(v), thenni+1(v) = 1 + max{n1 | (n
′, ℓ′,N ′) ∈ Mi(v)} and eitherni(v) = 0 <

ni+1(v) or (ni(v), λ(v), Ni(v)) ∈Mi(v) as shown in Lemma 4.1 and thereforeni(v) < ni+1(v).
If Ni(v) 6= Ni+1(v), then v has received a message< (n′, n′

old,M
′), p > through portq and

Ni+1(v) = Ni(v) \ {(n′
old, p, q)} ∪ {(n′, p, q)}. Let v′ be the neighbour ofv such thatνv(v

′) = q ;
we know thatνv′(v) = p.

If (n′
old, p, q) /∈ Ni(v), thenmax Ni+1(v) △ Ni(v) = (n′, p, q) ∈ Ni+1(v) and thenNi(v) ≺

N+1(v).
If (n′

old, p, q) ∈ Ni(v), thenn′
old 6= n′. Let j < i + 1 be the computation step wherev′ has sent the

message< (n′, n′
old,M

′), p >. We know thatn′
old ≤ n′ = nj(v

′) and consequently,maxNi+1(v)△
Ni(v) = (n′, p, q) ∈ Ni+1(v) andNi(v) ≺ N+1(v). ⊓⊔

The local knowledge of a vertexv reflects to some extent some real properties of the current config-
uration. The two following lemmas enable us to prove that if avertexv knows a numberm (i.e., there
existsℓ,N such that(m, ℓ,N ) ∈ Mi(v)), then for eachm′ ≤ m, there exists a vertexv′ in the graph
such thatni(v

′) = m′. We first show that ifv knowsm there existsv′ such thatni(v
′) = m.
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Lemma 4.3. For each vertexv ∈ V (G), each stepi and each(m, ℓ,N ) ∈ Mi(v), there exists a vertex
v′ ∈ V (G) such thatni(v

′) = m.

Proof:
We first note that(m, ℓ,N ) is added to

⋃
v∈V (G)

Mi(v) at some stepi only if there exists a vertexv ∈ V (G)

such thatni(v) = m, λ(v) = ℓ andNi(v) = N .
Given a vertexv ∈ V (G), a stepi and an element(m, ℓ,N ) ∈ Mi(v), let U = {(u, j) ∈

V (G) × N | j ≤ i, nj(u) = m} and U ′ = {(u, j) ∈ U | ∀(u′, j′) ∈ U, (λ(u′),Nj′(u
′)) ≺

(λ(u), Nj(u)) or (λ(u′), Nj′(u
′)) = (λ(u),Nj(u)) andj′ ≤ j}. Since(m, ℓ,N ) ∈ Mi(v), U and

U ′ are both non-empty and it is easy to see that there existsi0 such that for each(u, j) ∈ U ′, j = i0.
If i0 < i, let (u, i0) ∈ U ′ ; we know thatni0+1(u) 6= ni0(u), but this is impossible, since by

maximality of(λ(u), Ni0(u)), u cannot have modified its number. Consequently,i0 = i and there exists
v′ ∈ V (G) such thatni(v

′) = m. ⊓⊔

In the following lemma, we show that if a vertexv knows an identity numberm, then it knows all
the numbers smaller thanm.

Lemma 4.4. For each vertexv ∈ V (G) and each stepi, for every(m, ℓ,N ) ∈ Mi(v), for everym′ ∈
[1,m], there exists(m′, ℓ′,N ′) ∈Mi(v).

Proof:
We prove this lemma by induction oni. Initially, the property is obviously true. We suppose thatthe
property is satisfied at stepi and that some vertexv executes some internal transition at stepi + 1. If v
executes the actionI at stepi + 1, thenMi(v) = {(1, λ(v), ∅)} and the property is obviously true.

If v executes the actionR at stepi+1, thenv has received some message< (n′, n′
old,M), p > from

a neighbourv′. Let j < i + 1 be the computation step wherev′ has sent this message ; we know that
M ′ = Mj(v

′). If v does not modify its number at stepi + 1, then{m | ∃(m, ℓ,N ) ∈Mi+1(v)} = {m |
∃(m, ℓ,N ) ∈ Mi(v) ∪Mj(v

′)} and the property is true at stepi + 1 by the induction hypothesis. Ifv
modifies its number at stepi + 1, thenni+1(v) = 1 + max{m | ∃(m, ℓ,N ) ∈ Mi(v) ∪Mj(v

′)} and
Mi+1(v) = Mi(v) ∪Mj(v

′) ∪ {(ni+1(v), λ(v),Ni+1(v)}. Then, the property is also satisfied at step
i + 1 by the induction hypothesis. ⊓⊔

We now want to prove that any execution ofM on (G, ν) terminates. We know that a vertex does
not send any message if its state(λ(v), n(v),N(v),M(v)) is not modified once it has executed some
internal event. Then it is sufficient to prove that there exists a stepi such that for each stepi′ ≥ i and
for each vertexv ∈ V (G), ni′(v) = ni(v), Ni′(v) = Ni(v) andMi′(v) = Mi(v). From Lemmas 4.3
and 4.4, we know that for each computation stepi, the set{ni(v) | v ∈ V (G)} is a set[0, k] or [1, k]
with k ≤ V (G). Then, from Lemma 4.2, we know that there exists a stepi0 such that for each vertex
v ∈ V (G) and for each stepi ≥ i0, ni(v) = ni0(v). Consequently, we know that for each vertexv,
Ni(v) can only take a finite number of values and then, it is the same for Mi(v). Consequently, from
Lemma 4.2, we know that any executionρ ofM onG terminates.

We can then describe properties satisfied by the final configuration of any execution of the algorithm
M onG. First, we note that in the final configuration, there is no message in transit.
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Lemma 4.5. Any executionρ ofM on a simple labelled graphG = (G,λ) with a port-numberingν
terminates and the final labelling(λ, nρ, Nρ,Mρ) of the vertices ofG satisfies the following properties:

1. there exists an integerk ≤ |V (G)| such that{nρ(v) | v ∈ V (G)} = [1, k],

and for all verticesv, v′ ∈ V (G):

2. Mρ(v) = Mρ(v
′),

3. (nρ(v), λ(v), Nρ(v)) ∈Mρ(v
′),

4. if nρ(v) = nρ(v
′), thenλ(v) = λ(v′) andNρ(v) = Nρ(v

′),

5. (n, p, q) ∈ Nρ(v) if and only if there existsw ∈ NG(v) such thatνv(w) = q, νw(v) = p and
nρ(w) = n.

Proof:

1. From Lemmas 4.3 and 4.4 and since any vertex has applied oneof the actionsI,R.

2. Since each time a vertex modifies its mailbox, it sends it toits neighbours and since all messages
have arrived.

3. It follows from the previous property and from Lemma 4.1.

4. From Lemma 4.1.

5. From Lemma 4.1 and since all messages have arrived.
⊓⊔

Thanks to Lemma 4.5, one can show that the final labelling of(G, ν) enables to construct a digraph
(D, ν ′) such that(Dir(G), ν) is a symmetric covering of(D, ν ′).

Proposition 4.1. Given a graphG with a port numberingν, we can associate with the final labelling of
any executionρ ofM on (G, ν), a digraph(D, ν ′) such that(Dir(G), ν) is a symmetric covering of
(D, ν ′).

Proof:
We use the notation of Lemma 4.5.

We consider the digraphD defined byV (D) = {m ∈ N | ∃v ∈ V (G), nρ(v) = m}, A(D) =
{a(n,p,q,m) | ∃{v,w} ∈ E(G) such thatnρ(v) = n, nρ(w) = m, δv(w) = p, δw(v) = q} and for each
arca(n,p,q,m), s(a(n,p,q,m)) = n andt(a(n,p,q,m)) = m. We define the functionSym : A(D)→ A(D) as
follows: for each arca(n,p,q,m) ∈ A(D), Sym(a(n,p,q,m)) = a(m,q,p,n). Note that for each arca(n,p,p,n),
Sym(a(n,p,p,n)) = a(n,p,p,n).

We define a labellingη of the vertices ofD as follows. For eachv ∈ V (G), η(nρ(v)) = λ(v). From
Lemma 4.5, two verticesv, v′ with the same final number have the same labelλ(v) and then this labelling
is well-defined. We define the labellingν ′ of the arcs ofD as follows: for each arca(n,p,q,m) ∈ A(D),
ν ′(a(n,p,q,m)) = (p, q). Thus, for each arca(n,p,q,m), ν ′(Sym(a(n,p,q,m))) = ν ′(a(m,q,p,n)) = (q, p) and
the arc labelling ofD is symmetric.
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We define an homomorphismϕ from (Dir(G), ν) to (D, ν) as follows. For eachv ∈ V (Dir(G)),
ϕ(v) = nρ(v) and for eacha ∈ A(Dir(G)), ϕ(a) = a(nρ(s(a)),νs(a)(t(a)),νt(a)(s(a)),nρ(t(a))) . Since, for
each arca ∈ A(Dir(G)), s(ϕ(a)) = nρ(s(a)) = ϕ(s(a)) andt(ϕ(a)) = nρ(t(a)) = ϕ(t(a)), ϕ is an
homomorphism fromDir(G) to D.

Since for each arca ∈ A(Dir(G)), ν(a) = (νs(a)(t(a)), νt(a)(s(a))) = ν ′(ϕ(a)) and since for each
vertexv ∈ V (Dir(G)), λ(v) = η(ϕ(v)), ϕ is a homomorphism from(Dir(G), ν) to (D, ν ′). Moreover,
for each arca ∈ A(Dir(G)), ϕ(Sym(a)) = a(nρ(t(a)),νt(a)(s(a)),νs(a)(t(a)),nρ(s(a))) = Sym(ϕ(a)).

For each arca(n,p,q,m) ∈ A(D), there exists an edge{v,w} ∈ E(G) such thatnρ(v) = n, νv(w) =
q, νw(v) = p andnρ(w) = m. From Lemma 4.5, we know that for eachu ∈ ϕ−1(n) (resp. u ∈
ϕ−1(m)), Nρ(u) = Nρ(v) (resp.Nρ(u) = Nρ(w)) and therefore, sinceν is a bijection betweenNG(u)
and[1,degG(u)], there exists a uniqueu′ ∈ NG(u) such thatnρ(u

′) = m (resp.nρ(u
′) = n), νu(u′) = p

(resp. νu(u′) = q) andνu′(u) = q (resp. νu′(u) = p). Thus, for each arca(n,p,q,m) ∈ A(D), for
each vertexu ∈ ϕ−1(s(a)) (resp. u ∈ ϕ−1(t(a))), there exists a unique arca ∈ Dir(G) such that
ϕ(a) = a(n,p,q,m) ands(a) = u (resp. t(a) = u). Consequently,(Dir(G), ν) is a symmetric covering
of (D, ν ′). ⊓⊔

Consider now a graphG with a port-numberingν such that(Dir(G), ν) is symmetric covering
prime. For every executionρ ofM on(G, ν), the digraph obtained from the final labelling is isomorphic
to (Dir(G), ν) and therefore the set of numbers of the vertices is exactly[1, |V (G)|]: each vertex has
a unique number. Moreover, the termination detection of thealgorithm is possible onG. Indeed, once
a vertex gets the identity number|V (G)|, from Lemmas 4.3 and 4.4, it knows that all the vertices have
different identity numbers that will not change any more andit can conclude that the computation is
over. In this case, one can also solve the election problem, since this vertex can take the labelelectedand
broadcasts the information that a vertex has been elected.

Furthermore, it has been shown in Proposition 3.2 that for every graphG with a port-numberingν
such that(Dir(G), ν) is not symmetric covering prime, there does not exist any algorithm that solves
the naming problem or the election problem on(G, ν). Thus we have proven the following theorem.

Theorem 4.1. Given a simple labelled graphG with a port-numberingν, there exists an election (or a
naming) algorithm for(G, ν) if and only if (Dir(G), ν) is symmetric covering prime.

Remark 4.1. Note that any execution ofM on a network always terminates, even if the vertices cannot
detect that the computation is over if they have no information about the network.

To detect the termination of the execution ofM on some graphG with a port-numberingν, the
vertices ofG do not need to know the topology ofG: the knowledge of its size is sufficient.

As Yamashita and Kameda, we are interested in characterizing graphs that admit an election (or a
naming) algorithm for any port-numbering. We present this characterization in the next theorem.

Theorem 4.2. Given a simple labelled graphG, there exists an election (or a naming) algorithm forG

if and only if Dir(G) is symmetric covering prime.

Proof:
It is easy to see that ifDir(G) is symmetric covering prime, then for any port-numberingν of G,
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(Dir(G), ν) is symmetric covering prime and consequently, there existsan election (or a naming) algo-
rithm for G.

We now show that ifDir(G) is a proper symmetric covering of some symmetric digraphD via a
homomorphismϕ, then there exists a symmetric labellingν ′ of the arcs ofD and a port-numberingν of
G such that(Dir(G), ν) is a symmetric covering of(D, ν ′). In this case, there exists a port-numbering
ν of G such that it is impossible to solve the election (or the naming) on (G, ν).

We first give a numberp(a) to each arca ∈ A(D) such that for each vertexv, p induces a bijection
between the outgoing arcs ofv and [1,deg+(v)] wheredeg+(v) is the number of outgoing arcs ofv
in D. Then we define the labellingν ′ of the arcs ofD as follows: for each arca ∈ A(D), ν ′(a) =
(p(a), p(Sym(a))). It is easy to see that the labellingν ′ is a symmetric labelling of the arcs where for
each(p, q) ∈ N

2, ι((p, q)) = (q, p).
In order to define the port-numberingν of G, we proceed as follows. For each edge{u, v} ∈ E(G),

we defineνu(v) = p(ϕ(a(u,v))) andνv(u) = p(ϕ(a(v,u))). Sinceϕ is a covering and from the definition
of p, it is clear thatν = {νu | u ∈ V (G)} is a port-numbering.

It remains to show that(Dir(G), ν) is a symmetric covering of(D, ν ′) via ϕ, i.e., thatϕ pre-
serves the labels of the arcs. For each arca(u,v) ∈ A(Dir(G)), ν(ϕ(a(u,v)) = (νu(v), νv(u)) =
(p(ϕ(a(u,v))), p(ϕ(a(v,u)))) = (p(ϕ(a(u,v))), p(ϕ(Sym(a(u,v))))) = (p(ϕ(a(u,v))), p(Sym(ϕ(a(u,v)))))
= ν ′(ϕ(a(u,v)). Consequently,(Dir(G), ν) is a symmetric covering of(D, ν ′) via ϕ. ⊓⊔

4.5. Remarks on the AlgorithmM

Contrary to the algorithms of Yamashita and Kameda [YK96] and of Boldi et al. [BCG+96], the algo-
rithmM is totally asynchronous, in the sense that, once a vertex hassent messages to all its neighbours,
it does not have to wait for a message from each of its neighbours in order to continue to execute the
algorithm. An interesting consequence of this property is that for any network(G, ν), there exists an
execution ofM on (G, ν) that enables to elect a vertex, even if(Dir(G), ν) is not symmetric covering
prime.

Proposition 4.2. For any network(G, ν), there exists an execution ofM on(G, ν) that enables to solve
naming and election on(G, ν).

Proof:
Given a network(G, ν), let us consider an execution where there is exactly one processv0 that executes
the actionI and where all the other processes starts executing the algorithm only when they receive a
message. In other words, all the processes are initially passive and there is a unique initiatorv0. Then,
for any vertexv ∈ V (G) \ {v0}, each timev modifies its number, there exists an element(1, λ(v0), ∅)
in its mailbox and thusn(v) is always different from1. Consequently, if we consider the final labelling
of (G, ν) at the end of the execution, there exists a unique vertexv0 whose number is1. Consequently,
from Propositions 2.1 and 4.1, we know that each numbern(v) that appears in the final labelling is the
number of a unique vertex: each vertex has a unique number. Since, in this case, it is possible to detect
the termination of the algorithm by Remark 4.1, we know that this execution enables to solve naming
and election on(G, ν). ⊓⊔

Nevertheless, for any network(G, ν), there exists a “canonical” execution ofM that solves naming
and election on(G, ν) if and only if (Dir(G), ν) is symmetric covering prime.
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A synchronousexecution is an execution inrounds. At each round, each process receives the mes-
sages that have been sent to it during the previous round; then, it modifies its state and it sent as many
messages as needed to its neighbours. Note that in a synchronous execution ofM on a network(G, ν),
all the processes initially executes the actionI.

The following proposition is similar to impossibility results given by Yamashita and Kameda [YK96]
and Boldiet al. [BCG+96].

Proposition 4.3. Consider a network(G, ν) and a synchronous execution ofM on(G, ν). The labelled
digraph obtained from the final labelling is the minimum baseof (Dir(G), ν).

Proof:
Consider a network(G, ν) and let(D, ν ′) be the minimum base of(G, ν). We denote byϕ the fibration
from (Dir(G), ν) to (D, ν ′). Note that(Dir(G), ν) is a symmetric covering of(D, ν ′) via ϕ (this is
ensured by the fact thatν is a port-numbering ofG).

Let v, v′ ∈ V (G) be such thatϕ(v) = ϕ(v′). Initially, v andv′ have the same label, they both
apply the actionI and they send the same messages to their neighbours. Moreover, for anyu ∈ NG(v),
there exists a unique vertexu′ ∈ NG(v′) such thatνv′(u

′) = νv(u), νu′(v′) = νu(v) andϕ(u′) = ϕ(u).
Consequently, for any roundi, the verticesv andv′ get exactly the same messages from their neighbours,
modify their states in the same way and send the same messagesto their neighbours.

Consequently, in the final configuration, for all verticesv, v′ ∈ V (G) such thatϕ(v) = ϕ(v′),
n(v) = n(v′) andN(v) = N(v′). Consequently, the graph obtained from the final labelling is (D, ν ′).

⊓⊔

We can remark that the mailbox of each vertex contains a lot ofuseless information. Indeed, if
some(n, ℓ,N ) belongs to the mailboxM(v) of a vertexv, one can remove fromM(v) all the ele-
ments(n, ℓ′,N ′) ∈ M(v) such that(ℓ′,N ′) ≺ (ℓ,N ). We can thus replace the mailboxM(v) of v by
{(n, ℓ,N ) ∈ M(v) | ∀(n, ℓ′,N ′) ∈ M(v), (ℓ′,N ′) � (ℓ,N )}. In this way, the mailbox of each vertex
contains at most|V (G)| elements of the form(n, ℓ,N ).

Moreover, it is not necessary to ensure that the communication channels preserve the order of mes-
sages (i.e., they have the FIFO property). Indeed, each timea vertex receives a message< (n′, n′

old,M
′),

p > through portq from a neighbourv′, if there exists(n, p, q) ∈ N(v) such thatn > n′, then we know
that v has received earlier a message< (n, nold,M), p > through portq that contains a more recent
information about the state ofv′. Moreover, we know that in this case,M ′ ⊆ M . Consequently, each
timev receives a message< (n′, n′

old,M
′), p > through portq, it checks if there exists(n, p, q) ∈ N(v)

and performs the following instructions. Ifn > n′, it just discards the message. Otherwise, if there is no
such an element or ifn ≤ n′ then it updates its local view by removing(n, p, q) from N(v) and adding
(n′, p, q) to N(v) and it continues the algorithm as before.

Nevertheless, if we assume that the communication channelshave the FIFO property, one can reduce
the size of the messages. Indeed, each time a vertex modifies its mailbox, it just has to send the elements
it adds to its mailbox instead of sending the whole mailbox. In the complexity analysis we do in the
next section, we suppose that the communication channels have the FIFO property and that the sizes of
messages and mailboxes are reduced as we just explained.
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4.6. Complexity Analysis

We are interested in determining the time complexity, the message complexity ofM and we want to
determine the size of the messages and the size of the memory needed by each vertex.

As Tel [Tel00] (p. 71), we define the time complexity by supposing that internal events need zero
time units and that the transmission time (i.e., the time between sending and receiving a message) is at
most one time unit. This corresponds to the number of rounds needed by a synchronous execution of the
algorithm. Note that the correctness ofM is independent of these assumptions.

We consider an initial labellingλ of G such that the size of each labelℓ is at mostO(log |V (G)|)
bits (which is enough to give distinct labels to all verticesof G if needed).

We consider an execution of the algorithm where the size of messages and mailboxes has been
reduced as explained in the previous section. Moreover, we suppose that each process sends the elements
{(n′, n′

old,N
′)} of its mailbox one by one and it sendsk messages if it hask elements to send to its

neighbours.

Proposition 4.4. Given a network(G, ν) with n vertices,m edges, whose maximum degree is∆ and
whose diameter isD, any execution ofM on (G, ν) needsO(Dn2) time units andO(m2n) messages
of O(∆ log n) bits. Moreover, the memory needed by each process isO(∆n log n) bits.

Proof:
Consider a network(G, ν) with n vertices,m edges, whose maximum degree is∆ and whose diameter
is D. Consider an execution ofM on (G, ν). From Lemmas 4.3 and 4.4, we know that each vertex
modifies its number at mostn times.

For each vertexv, since the numbers ofv and of its neighbours can only increase, the couple(n(v),
N(v)) can take at most(degG(v) + 1)n different values. Each time a vertex modifies its number or
its local view, it can generate at mostO(m) messages, since a vertex whose mailbox already contains
(n(v), λ(v), N(v)) will not broadcast this information to its neighbours. Consequently, any execution of
M onG needs at mostO(m2n) messages. Moreover, since we suppose that all messages havethe form
< (n, nold, {(n

′, ℓ′,N ′)}), p > and sinceN(v) contains at most∆ elements, each message has a size of
O(∆ log n) bits.

Each time a vertexv modifies its number or its local view, all vertices ofG know (n(v), λ(v),N(v))
in D time units. Moreover, each time a vertexv modifies its number, the neighbours ofv modify their
local views in1 time unit. Thus, each time a vertex modifies its number, all the vertices ofG have
the same mailbox inD + 1 time units if no vertex has modified its number in the meanwhile. If all
vertices have the same mailbox and if all send messages have arrived, we know from Lemma 4.1, that
the computation is over. Consequently, any execution of thealgorithm terminates inO(Dn2) time units.

For each vertexv, n(v) can be encoded withlog n bits andN(v) can be encoded withO(∆ log n)
bits. Since each vertex keeps only the information that is useful in its mailbox, there are at mostn
elements inM(v) and each of these elements can be encoded withO(∆ log n) bits. Consequently, each
vertex ofG needs a memory ofO(∆n log n) bits to store its state. ⊓⊔

Remark 4.2. For any network(G, ν), the algorithms of Yamashita and Kameda [YK96] and of Boldiet
al. [BCG+96] needsO(n) time units andO(mn) messages of2O(n) bits. Moreover, each process needs
2O(n) bits of memory.
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Thus,M is an algorithm that is executed in polynomial time and needsmessages of polynomial size,
whereas the algorithms known before need messages of exponential size.

5. Final Remarks

In this paper, we have presented a characterization of networks that admit naming and election algorithms
in the asynchronous message passing model. This characterization is expressed in terms of coverings of
directed graphs. To obtain a sufficient condition, we have adapted Mazurkiewicz’s algorithm in the asyn-
chronous message passing model and the enumeration algorithm we obtained has some nice properties
that the previous existing algorithms do not have. In particular, our algorithm needs a polynomial number
of messages of polynomial size, whereas existing algorithms use messages of exponential size.

In [YK99], Yamashita and Kameda consider different models of port awareness. In the algorithm
they use to solve the election problem, if a vertex sends a message, it sends it to all its neighbours.
The algorithm we described in Section 4 uses the same technique. Therefore they consider two kinds
of emissions of messages: either each vertex can distinguish its outgoing ports or not. If it cannot,
then each vertex can just broadcast a message to all its neighbours. Moreover they also distinguish
two kinds of receptions of messages: either a vertex can knowthe port through which it receives each
message, or it receives all messages in a mailbox and it has nomeans to know who is the sender of
each message. Consequently, in [YK99], four message passing models are studied: theport-to-port
model (that has been studied here), theport-to-mailboxmodel, thebroadcast-to-portmodel and the
broadcast-to-mailboxmodel. One can also obtain characterizations of networks admitting election and
naming algorithms in these different models expressed in terms of coverings and fibrations. Moreover,
one can easily adapt algorithmM to these different models to obtain polynomial algorithms,whereas
the algorithms presented by Yamashita and Kameda in [YK99] need messages of exponential size.

In Mazurkiewicz’s model, the algorithm presented by Mazurkiewicz in [Maz97] is used as a basic
building block to solve other classical problems in distributed computing. In [GMM04], Godard, Mé-
tivier and Muscholl characterize graph classes that can be recognized in a distributed way. In [MT00],
Métivier and Tel characterize graph classes where any distributed algorithm can be transformed into a
distributed algorithm where processes can detect that the global computation is finished and in [GM02],
Godard and Métivier characterize graph classes that admit an election algorithm.

It is a natural question to wonder if these results can be extended to the asynchronous message
passing model, once we have a Mazurkiewicz-like algorithm in this model. In [CGMT07], using the
algorithm described in this paper and a termination detection algorithm of Szymansky, Shi and Pry-
wes [SSP85], some extensions of the results of [MT00, GM02] have been obtained in the asynchronous
message passing model.
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