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Abstract. We examine the power and limitations of the weakest vertabedling system which
allows to change a label of a vertex in function of its own ledoe of the label of one of its neigh-
bours. We characterize the graphs for which two importastrithuted algorithmic problems are
solvable in this model : naming and election.
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1. Introduction

Various models of local computations on graphs provide amehtary and convenient framework to

study basic algorithmic problems of distributed computilmgthese models we have at our disposal only
bare synchronisation primitives and the correspondinglloomputation steps. It turns out that for many
basic algorithmic problems arising in distributed compgtsuch simple models are sufficient, they allow
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either to formulate an algorithm solving the problem or towHormally that the problem is not solvable
in the given context.

The relative simplicity of the local graph computation misdacilitates the conception of algorithms
and suitable combinatorial structures which subsequeatiybe translated and applied in a more realistic
but also more involved setting. Such models give us an insidfich is difficult to obtain in more
elaborate models.

Local graph computations often allow to delimit precisedg borderline between positive and neg-
ative results in distributed computing. It is clear that fhessibility of solving a particular problem
for a given class of networks depends on the power of the sgni@ation primitives and on the initial
knowledge available to the computational agents. Bettemprehension of all these factors enhances our
understanding of basic distributed algorithmic problems.

Another point of view is to consider local graph computaté@a kind of a higher-level language for
designing algorithms in asynchronous distributed systanasproving their correctness.

As it is well established in the domain of distributed conipgit some algorithmic problems like:
election, naming, termination detection, network topglogcognition constitute basic building blocks
for many other algorithms. Yamashita and Kameda [19, 20]diBet al. [3], Mazurkiewicz [15, 16],
Godard et al. [11, 12], Chalopin et al. [4, 5, 6] charactegzaphs in which election or naming are
possible for different models of distributed computations

The local graph computation model that we examine in our pepte most elementary one and
all the other local computation models considered in theepapited above [4, 5, 15, 16] can simulate
it trivially. In fact this is the weakest possible model aliog any synchronisation at all. In this model
an elementary computation step modifies the state of oneonletvertex and this modification depends
on its current state and on the state of one of its neighbdMes focus our attention on two important
algorithmic problems: the naming and the election problemkhough these two problems are often
equivalent in other models this is not the case in our model.

To characterize the graphs where we can solve both problemdind suitable graph homomor-
phisms that enable us to formulate conveniently the nepessaditions. This step is similar to An-
gluin [1], but in our case the relevant homomorphisms arelysubmersions. The presented conditions
turn out to be also sufficient: algorithms, inspired by M&kewicz [15], are given, that enable us to
solve the naming and the election problems for correspandiaphs.

1.1. Our Model

A network of processors will be represented as a connectdulaated graplG = (V(G), E(G)) with-
out self-loop and multiple edges. As usual the verticesasgmt processors and edges direct communica-
tion links. The state of each processor is represented bialied)\ (v) of the corresponding vertex An
elementary computation step will be represented by rdliabealules of the form given schematically in
Figure 1. If in a grapiG there is a vertex labelled with a neighbour labelled” then applying this rule
we replaceX by a new labelX’. The labels of all the other vertices are irrelevant for sacomputation
step and remain unchanged. The vertexGothanging the label will be calledctive (and filled with
black in figures), the neighbour vertex used to match theisutalledpassive(and marked as unfilled in
figures). All the other vertices aF not participating in such elementary relabelling step aléedidle.
The computations using uniquely this type of relabellingsiare called in our papeellular edge local
computations Thus an algorithm in our model is simply given by some (dagsinfinite but always
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Figure 1. Graphical form of a rule for cellular edge local qortations.

recursive) set of rules of the type presented in Figure 1. Aaluthe algorithm consists in applying the
relabelling rules specified by the algorithm until no ruleagplicable, which terminates the execution.
The relabelling rules are applied asynchronously and inadgr, which means that given the initial
labelling usually many different runs are possible. Therfardefinitions of the model follow in Section

2 and Section 3.

1.2. Election, Naming and Enumeration

The election problem is one of the paradigms of the theorystfiduted computing. It was first posed by
LeLann [13]. A distributed algorithm solves the electiomlplem if it always terminates and in the final
configuration exactly one processor is markecelestedand all the other processors aren-elected
Moreover, it is supposed that once a processor becateesedor non-electedhen it remains in such
a state until the end of the algorithm. Elections constitutauilding block of many other distributed
algorithms since the elected vertex can be subsequently tosmake some centralized decisions, to
initialize some other activity, to centralize or to broasicmformation etc. The generic conditions listed
above, required for an election algorithm, have a direaidiaion in our model: we are looking for a
relabelling system where each run terminates with exacty/\ertex labelleetlected and all the other
vertices labelled amon-elected Again we require that no rule allows to change eitherelattedor a
non-electedabel.

The aim of a naming algorithm is to arrive at a final configumativhere all processors have unique
identities. Again this is an essential prerequisite to maimer distributed algorithms which work cor-
rectly only under the assumption that all processors cambenbiguously identified. The enumeration
problem is a variant of the naming problem. The aim of a distéd enumeration algorithm is to at-
tribute to each network vertex a unique integer in such a \waythis yields a bijection between the set
V(G) of vertices and 1, 2,...,|V(G)|}.

In our setting, a distributed algorithm terminates if théwwk is in such a state that no relabelling
rule can be applied, but it does not mean that the processesvare that the computation has terminated.
We say that we can solve a problem with termination detedioa graph if there exists an algorithm
A that solves the problem a# such that in the final state, at least one vertex is aware theglabelling
rule can be applied in the graph.

The naming and the election problems are often equivalentaioous computational models [4, 5,
6, 15, 16, 19, 20], however this is not the case for our modeurhs out that in our model the class of
graphs for which naming is solvable admits a simple and elsg@aracterization; unfortunately a similar
characterization for the election problem is quite involve

1.3. Overview of our Results

Under the model of cellular edge local computations, weegnea complete characterization of labelled
graphs for which naming and election are possible. Bothlprob are solved constructively, we present
naming and election algorithms that work correctly for abélled graphs where these problems are
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solvable. Our naming algorithm is a nice adaptation of tiger@hm of Mazurkiewicz [15], whereas our
election algorithm uses also an adaptation of the algoritfiiBzymanski et al. [17] which is usually
used to detect the termination of an algorithm in the mespagsing model.

1.4. Related Works

The election problem was already studied in a great varietmadels [2, 14, 18]. The proposed algo-
rithms depend on the type of the basic computation stepgvibek correctly only for a particular type
of network topology (tree, grid, torus, ring with a knownmpe number of vertices etc.) or under the
assumption that some initial extra knowledge is availablprocessors.

Various local computation models studied in the literatare characterized by the relabelling rules
that they use. Figure 2 presents schematically such rutetheir hierarchy in terms of the computational
power. Characterizations of graphs where naming and efeci&n be solved exist for each of these
models, except for the model) that is studied in our paper.

Yamashita and Kameda [19] consider the model where, in daph ene of the vertices, depending
on its current label, either changes its state, or sendsites a message via one of its ports. They proved
that there exists an election algorithm f@rif and only if the symmetricity of~ is equal tol, where the
symmetricity depends on the number of vertices having theesaew. The view from a vertex of a
graphG is an infinite labelled tree rooted inobtained by considering all labelled walks@hstarting
from v. This message passing model is strictly less powerful theamrtodel(6) in Figure 2 but its com-
putational power is not comparable with the computatioralgr of the modelg1), (2), (3), (4), (5)
in Figure 2. In [20], Yamashita and Kameda study the impagaof the port labelling for the election
problem in this message passing model. From the resultsidf 8ial. [3], one can obtain different char-
acterizations for the different models considered in [2@sed on fibrations and coverings of directed
graphs.

In [6], Chalopin and Métivier consider also the messageipgsmodel where there exists a port
numbering, and they give an encoding of the basic events lansef local computations on arcs. This
encoding allows to give a new characterization of netwodtsathich there exists an election algorithm
in the message passing model. This characterization isllmasgymmetric coverings of directed graphs.

Mazurkiewicz [15] considers the asynchronous computatiaalel where in one computation step
labels are modified on a subgraph consisting of a node andigéinours, according to rules depending
on this subgraph only. This is the mod&) of Figure 2. Mazurkiewicz’s characterization of the graphs
where enumeration/election are possible is based on thennof unambiguous graphs and may be
formulated equivalently using coverings [10]. He gives @erand simple enumeration algorithm for the
graphs that are minimal for the covering relation, i.e.,athtan cover only themselves.

Boldi et al. [3] consider a model where the network is a dedanultigraphz. They consider models
where the arcs can be labelled or not. When a processor \atatdi it changes its state depending on
its previous state and on the states of its ingoing neiglddhe outgoing neighbours do not participate
in such an elementary computation step. They investigaterades of computation: synchronous and
asynchronous while in our paper only asynchronous comiputa@re examined. In their study, they
use fibrations which are generalizations of coverings. Betlél. [3] prove that there exists an election
algorithm in their model for a grap&' if and only if G is not properly fibred over another gragh (for
the asynchronous case, they only consider discrete fibsjtiolo obtain this characterization, they use
the same mechanism as Yamashita and Kameda: each node esiitpotvn view and next the node
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Figure 2. A hierarchy between the different models studig®bldi et al., Chalopin et al. and Mazurkiewicz.
The black vertices are active : their labels can change whemule is applied. The white vertices are passive :
their labels enable to apply the relabelling rule but theywdbchange. In the models where the edges are marked,
the edges are labelled and the relabelling rules can mokidy tabels, whereas it is not the case for the other
models. The inclusion; C r, between the rules; andr, means that, can simulate; but not vice versa, i.e.,

ro has a greater computational power than The model(3) and(4) have the same computational power, and
this is denoted by the symbal. The computational power of the modé)) is incomparable with the power of the
models(2), (3) and(4).

with the weakest view is elected. In the different modelg/tbensider, naming and election are not
always equivalent. From the work of Boldi et al., we can gagéduce characterizations of the graphs
where election is possible for the modélg and(6) of Figure 2.

In [5], the models(3), (4) and(6) of Figure 2 were examined. Note that, contrary to the model we
examine in the present paper, all these models allow edgdlitap In [5], it is shown that the models
(3) and(4) are equivalent in terms of computational power it has a strictly greater power. It turns
out that for all these three models, election and naming agven graphG; are equivalent. In [5], it is
proved that for the model8), (4) and(6) the election and naming problems can be solved on a graph
if and only if G is not a covering of any grapH not isomorphic ta, whereH can have multiple edges
but no self-loop. We should note that the mo@glwas also examined by Mazurkiewicz [16] who gives
an equivalent characterization based on equivalencaaeabver graph vertices and edges. Let us note
by the way that although the model studied in the presentr@apbthe mode(3) seem to be very close,
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the graphs for which the naming problem and the electionlpmltan be solved are very different for
both models. The intuitive reason is that if we allow to lathel edges as i(B) then each processor can
subsequently consistently identify the neighbours. Orother hand, in the modé¢l) that we examine
here, where edges are not labelled, a vertex can never knibwyifichronizes with the same neighbour
as previously or with another one.

In [4], the model(2) of Figure 2 is studied: in one computation step, two neightowodify simul-
taneously their labels according only to their states (thgees are not labelled). In this model, the graphs
admitting both naming and election algorithms are psewm@ing-minimal graphs. (A grap&y is a
pseudo-covering off if there exists a homomorphisip from G onto H and a partial grapld?’ of G
such thati’ is a covering ofH via the restriction ofp to G’).

The study of local computations uses various locally caistd graph homomorphisms. Some
properties and a complexity classification may be found jr9]8

The paper is organised as follows. Section 2 reviews theclsinitions of labelled graphs and
submersions. In Section 3 we give the definition of celluldges local computations as well as the
relation between such computations and submersions. [tioSetwe prove that there is no naming
(enumeration) algorithm for graphs which are not submersiinimal. Then we give a naming (an
enumeration) algorithm for submersion-minimal graphs.Skcttion 5 we give a graph for which the
election problem can be solved but not the enumeration enebllhen, as in Section 4, we characterize
graphs which admit an election algorithm. Section 6 pressoiine examples of graphs that admit naming
or election algorithms. Section 7 (conclusion) presentsesopen problems.

A preliminary version of this paper has been published in [7]

2. Preliminaries

2.1. Graphs and Labelled Graphs

We consider finite, undirected, connected graphs= (V(G), E(G)) with verticesV (G) and edges
E(G) c V(G) x V(G) without multiple edges or self-loop. Two verticesand v are said to be
adjacent or neighbours {fu, v} is an edge of7 (thusu andv are necessarily distinct since no self-loop
is admitted) andV¢(v) will stand for the set of neighbours of An edgee is incident to a vertex if

v € e andIg(v) will stand for the set of all the edges incidentito The degree of a vertex, denoted
da(v), is the number of edges incident with

A path of lengthp is a sequencéuvy, vy, va, ... ,v,) Of vertices such that for every < i < p,
{vi,vi1} € E(G). This path is simple if all vertices are pairwise distinct.

A homomorphism between graplisand H is a mappingy: V(G) — V(H) such that if{u,v} €
E(G) then{v(u),v(v)} € E(H). Since our graphs do not have self-loop, this implies tat) #
v(v) wheneveru andv are adjacent. We say thatis an isomorphism ify is bijective andy~! is a
homomorphism. A grapl#/ is a subgraph of7, notedd C G, if V(H) C V(G) andE(H) C E(G).
An occurrence off in G is an isomorphismy betweenH and a subgrapli’ of G.

Throughout the paper we will consider graphs with verticaselled with labels from a recursive
label setZ. A graph labelled oveL is an ordered paiG = (G, A), whereG is the underlying unlabelled
graph and\: V(G) — L is the (vertex) labelling function.

Let H be a subgraph ofi and Ay the restriction of a labelling\: V(G) — L to V(H). Then
the labelled grap = (H, \y) is called a subgraph d& = (G, \); we note this fact byH C G. A
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homomorphism of labelled graphs is just a labelling-présgrhomomorphism of underlying unlabelled
graphs.

(S) is the set of finite subsets &f.
For any integer;, we denote byl, ¢] the set of integer$1,2,...,q}.

2.2. Submersions

Graph submersions, i.e., locally surjective graph homguiesms, are the basic tool allowing to formu-
late necessary conditions for naming and election probierosr paper:

Definition 2.1. A graphG is a submersion of a grapH via a homomorphismy: G — H if for each

v € V(Q), v is surjective on the neighbourhod¥;(v), that isy(Ng(v)) = Nu(y(v)). The graphG

is aproper submersmmf H if + is not an isomorphism. Finallyy is submersion-minimaf G is not a
proper submersion of any other graph. Naturally, submessaf labelled graphs are just submersions of
underlying unlabelled graphs preserving the labelling.

2 2
30<I>n3 AN I>-3
1 G 1 H

Figure 3. The labelled grap& is a submersion df via the mappingy which maps each vertex @ labelled:
to the unique vertex cH with the same label. This submersion is proper and the grdfhs itself submersion-
minimal.

The following elementary proposition characterizes sutsme-minimal graphs as the grap@sfor
which there does not exist any colouring function using tass |V (G)| colours and satisfying some
additional properties: two vertices having distinct ialtiabels have distinct colors, two adjacent vertices
have distinct colors, two vertices having the same coloe™$lee same colors in their neighbourhood.

Proposition 2.1. A graphG = (G, \) is submersion-minimal if and only if there is no colouringné4
tion f from V(G) to a set of colour€ with |C| < |V (G)| satisfying the following conditions:

)
e Vu,v' € V(G), f(v) = f(v) = Av) = A(V');
o Vv € V(G),Y' € Ng(v), f(v) # f(');
e Vu,v' € V(G) such thatf (v) = f(v'),Vw € Ng(v),Jw’ € Ng(v') : f(w) = f(w').

Example 2.1. A complete graphG cannot be coloured with less th@vi(G)| colours and therefore is
submersion-minimal.

3. Cellular Edge Local Computations

In this section, after giving the formal definition of celmledge local computations, we study their
relations with submersions.
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3.1. Definitions

Let us recall that informally cellular edge local computas are computations that are realized by means
of the rules of the form presented in Figure 1: at each stepathed of one vertex is modified according
to a rule depending on the label of this vertex and the labelnef of its neighbours. The more formal
framework is the following.

Let Gr, be the class of.-labelled graphs. Then any binary relati®hC G;, x Gy, ongy, is called a
graph rewriting relation We assume thaR is closed under isomorphism, i.e.,.& R G’ andH ~ G
thenH R H' for some labelled grapH’ ~ G’. In the remainder of the pap@&™* stands for the reflexive
and transitive closure dR . The labelled grapl€x is R-irreducible (or just irreducible ifR is fixed) if
there is noG’ such thailG R G'.

Definition 3.1. Let R C Gy, x Gy, be a graph rewriting relation.

1. R is arelabelling relationif whenever two labelled graphs are in relation then the dgoheg
unlabelled graphs are equal, i.e.,:

G R H implies thatG = H.

2. R is cellular if it can only modify the label of only one vertex, i.€G, \) R (G, \') implies that
there exists a vertex € V(G) such that

A(x) = N (x) for everyz # v.

The next definition states that a cellular local relabellia@tionR is edge locally generatei the
applicability of any relabelling depends only on the lalml¢he vertices incident to an edge.

Definition 3.2. Let R be a relabelling relation. TheR is cellular edge locally generatei it is cel-
lular and the following is satisfied: for all labelled grapfts, \), (G, \), (H,n), (H,n’) and all edges
{v1,v2} € E(G) and{w;, w2} € E(H), the following three conditions:

1. A(vr) = n(w1), A(v2) = n(ws) andX'(v1) = ' (wr),
2. Mv) = XN(v), forall v # vy,
3. n(w) = 7' (w), forall w # w,

imply that (G, \) R (G, \') ifand only if (H,n) R (H,7').

We only consider recursive relabelling relations. The pggof all assumptions about recursiveness
done throughout the paper is to have “reasonable” objects the computational power. By definition,
cellular edge local computations on graphse computations on graphs corresponding to cellular edge
locally generated relabelling relations.

The relationR is callednoetherianon a graphG if there is no infinite relabelling sequen€g; R
G; R ..., with Gg = G. The relationR is noetherian on a set of graphs if it is noetherian on each
graph of the set. Finally, the relatidR is called noetherian if it is noetherian on each graph. Glear
noetherian relations code always terminating algorithms.
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A cellular edge locally generated relabelling relation bardescribed by a recursive set of relabelling
rules of the type represented in Figure 1. And equivalesiligh a set of rules induces a cellular edge
locally generated relabelling relation. Thus, slighthusimg the notationR will stand both for a set of
rules and the induced relabelling relation over labellegps.

3.2. Submersions and Cellular Edge Local Computations

We now present the fundamental lemma connecting submersiad cellular edge local computations.
This is a counterpart of the lifting lemma of Angluin [1] adeg to submersions.

Lemma 3.1. (Lifting Lemma)
Let R be a cellular edge locally generated relabelling relatiod ket G be a submersion cH. If
H R* H' then there exist&’ such thalG R* G’ andG’ is a submersion off’.

Proof:
It is sufficient to prove the lemma for one relabelling stegt (G, ), (H,v) be two graphs such that
(G, \) is a submersion of H, v) via ¢. Suppose that the relabelling step is applied to the actveex
w € V(H) and to the passive vertex € V(H) yielding a new labelling’’ on H.

For every vertexo € ¢! (w), since the homomorphism is locally surjective, there exists ¢
o Hw') N Ng(v). Since the vertices af~!(w) are pairwise non-adjacent, ¢ ! (w) and therefore,
we can apply the rule to every vertexc ¢~ (w). Thisyields alabelling/ onG such thatp : (G, \') —
(H,v") remains a submersion. Note that we have simulated here epeaabelling inH by several
relabellings inG that use the same rule. O

This is depicted in the following diagram:

c X,
submersionl l submersion
H— H
R*

4. Enumeration and Naming Problems

This section presents a characterization of graphs whiahitagh enumeration or a naming algorithm.
First we prove that there exist no naming and no enumeratguorithms on a graplG that use cellular
edge local computations if the graph is not submersionsmahi The proof is analogous to that of
Angluin [1]. Then we give and we prove an enumeration (a ngjnatigorithm for submersion-minimal
graphs.

4.1. Impossibility results for enumeration and naming

Proposition 4.1. Let G be a labelled graph which is not submersion-minimal. Themnetlis no naming
and no enumeration algorithm f@ using cellular edge local computations.
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Proof:

Let H be a labelled graph not isomorphic @ and such thaG is a submersion oH via . For every
cellular edge local algorithri®, consider an execution & on H that leads to a final configuratidd’.
From Lemma 3.1, there exists an executioriobn G such that the final configuratio®’ = (G, \) is
a submersion oH’. SinceG’ is not isomorphic td’, there exist distinct vertices, v € V(G) such
that\'(v) = X (v"). ConsequentlyR solves neither the naming nor the enumeration probler@Gon O

4.2. An Enumeration Algorithm

In this subsection, we describe a Mazurkiewicz-like aldon M using cellular edge local computations
that solves the enumeration problem on a submersion-mirgraph G.

Each vertexy attempts to get its own unique identity which is a number leetn and|V (G)|. The
vertex chooses a number and gathers the information abeuiimbers chosen by its neighbours. Then,
it broadcasts its number with itscal view(which is the set of the numbers of its neighbours). If a verte
u discovers the existence of another vertexith the same number then it should decide if it changes its
identity. To this end it compares its local view with the Ibeiew of v. If the label ofu or the local view
of u is “weaker”, thenu picks another number — its new temporary identity — and bcaatt it again
with its local view. At the end of the computation, if the ghaig submersion-minimal then every vertex
will have a unique number .

4.2.1. Labels

We consider a grapfx = (G, A) with an initial labellingA: V(G) — L. During the computation each
vertexv € V(G) will acquire new labels of the forr\(v), n(v), N (v), M (v)), where:

the first componenk(v) is just the initial label (and thus remains fixed during thenpatation),

e n(v) € Nis the currenidentity numbewof v computed by the algorithm,

e N(v) € Pan(N) is thelocal viewof v. Intuitively, the algorithm will try to update the curreniew
in such a way thatV(v) will consist of current identities of the neighbourswfThereforeN (v)
will always be a finite (possibly empty) set of integers,

e M(v) C N x L x Pg,(N) is the currenmailboxof v. It contains the whole information received
by v during the computation, i.e., the numbers and the local viefthe vertices of the network.

In many distributed algorithms, it is required that proc@sshave unique identities, and that each
processor knows its own identity initially. Thus in our framork the labelling\ of the graph may
encode the identities of the vertices (thus v' € V(G), A(v) # A(v')). On the other hand, if we deal
with anonymous systems, i.e., all the processes havellyittle same name, the labelling will be
such thatvv, v € V(G), A(v) = A(v"). More generally, the labelling may encode any initial psse
knowledge. Examples of such knowledge include: no initiabwledge, the number of processors,
the diameter of the graph and the topology. Sometitg@socessors have a given label: there are
distinguished vertices. Thus this modelization enconmgrssopological restrictions (tree, complete
networks, ...), topological knowledges (size, diameter),.and local knowledges (identities, degrees,

).
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4.2.2. An Order on Local Views

The fundamental property of the algorithm is based on a totiér on the sePy, (N) of local views, as
defined by Mazurkiewicz [15]. The algorithm described belewuch that the local view of any vertex
cannot decrease during the computation.

Let N1, Ny € Psn(N), N1 # N,. ThenN; < N if the maximal element of the symmetric difference
Ny A Ny = (N7 \ N2)U (N2 \ Np) belongs taV,. Note that in particular the empty set is minimal fer

It can be helpful to note that the orderis just a reincarnation of the usual lexicographic ordet Le
ni,na,...,NnE andmsq, ms, ..., m; be all elements ofV; and N> respectively listed in the decreasing
order (decreasing for the usual order over integeng)> no > --- > ni andmy > mog > -+ > my.
ThenN; < Ns if and only if one of the following conditions hold:

o k<landforalli,1 <: <k, n; =m;,

e n; < m; wherei is the smallest index such thaf # m,.

If N(u) < N(v) then we say that the local view (v) of v is strongerthan the one of, (and N (u)
is weakerthan N (v)). We assume for the rest of the paper that the set of initiI&L is totally ordered
by <. We extend< to a total order ol x Pg,(N) : (I, N) < (', N') if eitherl < I, orl = I’ and
N < N'. Occasionally we shall use the reflexive closuref <.

4.2.3. The Relabelling Rules

We describe here the relabelling rules that define the eratroaralgorithm.

First of all, to launch the algorithm there is a special alitule M that just extends the initial label
A(v) of each vertex to (A(v), 0,0, 0).

The rulesM; and M., are close to the rules used by Mazurkiewicz [15].

The first rule M; enables a vertex to update its mailbox by looking at the mailbf one of its
neighbours:

M1:

(¢1,n1, N1, My)  (€2,n9,No, M)  (€1,n1, N1, M{) (€2,n2, No, Ms)
® O @ O

If My \ My # 0 thenM] := M; U My.

The second ruleMs does not involve any synchronization with a neighbour vertk enables a
vertexwv to change its identity if the current identity numbetv) is 0 or if the mailbox ofv contains a
message from a vertex with the same identity but with a seofabel or a stronger local view.

MQ:

(¢,n, N, M) (0, k, N, M)
e —— o
If (n=20)or(3(n,¢,N')e Mand(¢{,N) < (¢, N))
then k£ :=1+max{n'|3(n,¢,N')e M}and
M’ =M U{(k,¢,N)}.
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(In the formula above we assume thaix of an empty set i§.)

The third rule M3 allows to change the current identity for a vertexaving a neighbour’ with
exactly the same current label (all four components shoalddbntical). This relabelling step can be
applied only if the ruleM, cannot be applied by or v'. Moreover, at the same step, the identitfy’)
of the neighbour’ of v is inserted into the local viewV (v) and at the same time all the elementsof
N(v) such thatn < n(v’) are deleted from the local view. The rationale behind thigtien step is
explained in the ruleVi4 below.

Mg:
(¢,n, N, M) ((,n,N,M)  (L,k,N',M')  ({,n,N,M)
[ O ° O
If (n>0)and
(V(n, ', N") € M, (¢, N') < (¢, N))

then k:=1+max{n'|3(n,¢,N") € M},
N :=(N\{meN|m<n})U{n}and
M’ = M U{(k, ¢, N")}.

The fourth ruleM, enables a vertex to add the current identity numbexv’) of one of its neigh-
bours to its local viewV(v). As for the preceding rule, all the elememtsbelonging toN (v) such that
m < n(v') are deleted from the current view.

The intuitive justification for the deletion of all such is the following. Let us suppose that the
vertexv synchronizes with a neighbouf and observes that the current identity number’) of v’ does
not belong to its current view (v). Then, since the very purpose of the viéiyv) is to stock the identity
numbers of all the neighbours, we should ada’) to the view N (v) of v. But now two cases arise.
If v synchronizes with/ for the first time then adding.(v’) to the view ofuv is sufficient. However,
it can also be the case thatsynchronized with)’ in the past and in the meantimé has changed its
identity number. Themw should not only add the new identity numbe’) to its view but, to remain
in a consistent state, it should delete the old identity nemd v’ from its local view. The trouble is
thatv has no means to know which of the numbers present in its Wew) should be deleted and it
is even unable to decide which of the two cases holds (firsttepmization withv” or not). However,
since our algorithm assures the monotonicity of subsequentity numbers of each vertex, we know
that the eventual old identity number dfis less than the current identity(v’). Therefore, by deleting
all m < n(v’) from the local viewN (v) we are sure to delete all invalid information. Of course hist
way we risk to delete also the legitimate current identibésther neighbours of from its view N (v).
However, this is not a problem sineecan recover this information just by (re)synchronizing wll
such neighbours. The conditions of the if-part imply thate#aex has to update its local view and that
neither My nor M5 and norMs are applicable. This rule transmits the name of a vertexeoview of
an adjacent vertex and updates its mailbox.
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My:
(l1,n1, N1, M)  (lg,n9,No, M)  (¢1,n1, N7, M")  ({3,m2, No, M)
[ O > @ O
If (n1 > 0,n9 > 0,n1 # ng) and
V(nq, 0}, N{) € M, (¢}, N{) =< (¢1,N7) and
V(ne, ¥y, N3) € M, (¢4, N}) < (¢3, N2) and

(n2 ¢ N1)
then (V] := Ny \ {n' € Ny | n’ <ng})U{na}and
M :=MU {(nl,fl,N{)}.

0,0, 0,0, 1,0, M 1,0, My
00,0 M2, l>@o,@,@ Ma bo,@,@ M, I>00,®,M1
0,0,0 1,0, My 1,0, My 1,0, My
iMQMI
1,0, Ms 1,0, M, 1,0, My 1,0, My
e P s i AT
5 4 3
3,{1,2},M5 3,{2},M4 3,{1},M3 1,®,M2
lM4MT
1,0, Mg 1,0, My, 1,{3}, Mg 1,{2,3}, My
b_z,{a}, MMy I>@2,{1,3},M >2’{1’3}’M b@g,{m},
Mg M- Msg My
3,{1,2},M6 3,{1,2},M7 3,{1,2},M8 3,{1,2},Mg

Figure 4. An execution of the algorithrivt on K3 where all the vertices have the same initial label (that is no
mentioned, for sake of clarity). At each step, the vertegdilith black is active and apply the ruld; along the
thick edge that labels the following relabelling step. Ifedabelling step is called1; M3, it means that we first
apply the ruleM; on the active vertex and then, we apply the & as many times as possible. For sake of
clarity, we do not have explicit the content of the mailbfs at each step: it contains all tiie, V) that appears
on any vertex of the graph earlier in the execution.

An example of an execution of the algorithwl on the complete grapks with three vertices is
presented in Figure 4.
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4.3. Correctness of the Enumeration Algorithm

Let G be a simple labelled graph. In the followingjs an integer denoting a computation step. Let
(A(v), (n;(v), N;(v), M;(v)) be the label of the vertex after theith step of the computation of the
algorithm M given above. We present here some properties satisfied hyegacution of the algorithm.

The following lemma, which can be proved easily by inductionthe number of steps, recapitulates
basic labelling properties.

Lemma 4.1. For each vertex and each stef
1. ni(v) #0 = (ni(v), A(v), N;(v)) € M;(v),
2. Vn' € Nij(v),n #0and3¢' € L,3N’ € Pan(N), (0, ¢/, N") € M;(v),
3. ni(v) ¢ N;(v).

The algorithm has some remarkable monotonicity propetties are described in the following
lemma.

Lemma 4.2. For each step and each vertex:
e ni(v) < nit1(v),
 Ni(v) = Nit1(v),
o M;(v) C Miyq1(v).

Moreover, there exists at least one vertesuch that at least one of these inequalities/inclusionsiet s
for v.

Proof:
The property is obviously true for the vertices that are ngoived in the rule applied at stéplt is easy
to see that, for each vertex we always havé/;(v) C M;yi(v).

For each vertex and each stepsuch that; (v) # n;11(v), nir1(v) = 1+ max{nq; (n1, 41, N1) €
M;(v)} and eithem;(v) = 0 < n;11(v) or (n;(v), A(v), N;(v)) € M;(v) as shown in Lemma 4.1 and
thereforen;(v) < n;y1(v).

For each vertex such thatN;(v) # N;y1(v), the rule M3 or M, has been applied between
and one of its neighbours’. For everyn € N;(v), if n > n;11(v'), n € N;y1(v) andn;1(v) €
Niy1(v) \ N;(v). ConsequentlyN;(v) < Nit1(v).

For each step, the rule applied at this step modifies the label of one vestard therefore one of
these inequalities is strict far. O

The local knowledge of a vertexreflects to some extent some real properties of the curreritgzo
uration. The two following lemmas enable us to prove thatvegexv knows a numberm (i.e., there
exist¢, N such thaim, ¢, N) € M;(v)), then for eachn’ < m, there exists a vertex in the graph such
thatn;(v") = m’. We first show that iy knowsm there exists/’ such that;(v') = m.

Lemma 4.3. For everyv € V(G) and(m,¢,N) € M;(v), there exists a vertew € V(G) such that
ni(w) = m.
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Proof:
Assume that the numben is known byv and letU = {(u,j) € V(G) x N | j < i,nj(u) = m}.
Consider the set/’ = {(u,j) € U | V(v/,j") € U, Ny (u') < Nj(u )orN (v) = Nj(u) andj’ < j}.
It is easy to see that there existssuch that for eaclju, j) € U’,j = ig. Since(m, ¢, N) € M;(v),
neitherU nor U’ are empty.

If ip < 1, there is at most one elemefnt, i) in U’ because at each step the number of at most one
vertex can change. The numbefu) of the vertexu must have therefore changed at sigg- 1 but since
at stepiy + 1 vertexu has no neighbour with the same number, the yg cannot be applied and by
maximality, the ruleM, cannot be applied either. Consequently, there exists awertc V(G) such
thatn;(w) = m. 0

In the following lemma, we show that if a vertexknows an identity number, then it knows all
the numbers smaller than.

Lemma 4.4. For every vertexo € V(G) and every step such thatn;(v) # 0, given (m/, ¢/, N') €
M;(v), for everyl < m < m/, there exist§m, ¢, N) € M;(v).

Proof:
We show this claim by induction oin At the initial step the assertion is true. Suppose that lid$éor
i > 0.

If the rule M, is applied and it modifies the label of a vertexXor every(m, ¢, N) € M;1(v), there
exists(m, ¢, N") € M;(v) and the property holds. If the rulét; is applied to a vertex, depending on
the label of one of its neighbours, thenM; ;1 (v) = M;(v) U M;(v") and by induction, the property
holds. If the ruleM, is applied to a vertex, M1 (v) = M;(v)U{(ni+1(v) = 1+max{m | (m,¢,N) €

M;(v)}, A(v), N;(v))}, and consequently for eaech € M, (v), the property is still true. For the same
reasons, the property holds when the rg; is applied. O

From Lemmas 4.3 and 4.4, we can deduce that for each steglethity numbers of all the vertices
form either a sefl, k| or a set0, k] with k£ < V(G).

For each step and each vertex, if there existsn’ € N;(v), from Lemma 4.1, there exists such
thatn;(v') = n’ and thereforeV(v) can only have a finite number of values and the same holds for
M (v). During the algorithm, the consecutive labellings of eaehtaxv form an increasing sequence,
(ni(v), N;(v), M;(v)), i =1,2,... and, for eachi, at least one label strictly increases. Since the number
of possible accessible labels is finite (but dependent ositlesof the graph) the relatioi is noetherian:
the algorithm always terminates.

In the following lemma, it is shown that if a vertexhas an identity number in its local view then
eitherv has a neighbouy’ such that:(v") = n or the ruleM, can be applied te and a neighbour’.

Lemma 4.5. For every step, for every vertex € V(G) and everyng € N;(v), there exists’ € Ng(v)
such that eithen;(v') = ng orn;(v') > max{n € N;(v)}.

Proof:
Let iy be the last step in which, has been added W (v) : Vj > i9,n9 € N;j(v) andng ¢ Nj,—1(v).
There exists a vertexX such that at the step, the ruleM 3 or M, is applied taw andv” and consequently,



100 J. Chalopin et al./Election, Naming and Cellular Edge Lo€aimputations

n;, (V') = no and from Lemma 4.1, there existso, ¢, N) € M;,(v"). If n;(v") = n;,(v), the property
is satisfied.

Otherwise, for every step, we definem;(v) = max{n € N;(v)}. Clearly,m;,(v) > ny and there
exists(m;, (v), 4, N) € M,,(v"). Suppose that an elementhas been added 19 (v) ata steg; € [ig, 7.
The rule M3 or M, has been applied and therefarg < ng, sinceny € N;, (v). Consequently,
mi,(v) = m;(v). Sincen;(v') # n;,(v'), the rule Mz or M3 has been applied to the nodéat a
stepia > iy and thereforen;(v') > n;,(v') > my,(v) = m;(v) since there existém;,(v),¢, N) €
M;,(v") C M;,—1(v"). Consequently, the property is also satisfied. O

Since we can ensure that the algorithm always terminatesaweaive some properties of the final
labelling:

Lemma 4.6. Any executionp of the enumeration algorithm on a connected labelled g@ph (G, \)
terminates and yields to a final labelling, »,, IV, M,) satisfying the following conditions:

1. there exists an integér< |V (G)| such that{n,(v) | v € V(G)} = [1, k],
and for all vertices, v':

2. M,(v) = M,(v/),

3. (np(v), A(v), N (v)) € M,(v'),

4. ny(v) = n,(v') implies that\(v) = A(v') and N, (v) = N,(v'),

5. n € Ny(v) if and only if there existav € Ng(v) such thatn,(w) = n; in this casen,(v) €
Ny(w).

Proof:

1. By Lemma 4.3 and Lemma 4.4 applied to the final labelling sinde the ruleM, cannot be
applied.

Otherwise, the ruléV1; could be applied.
A direct corollary of the previous property using Lemma.4.

Otherwise, the rulé1; could be applied t@ or v'.

a  w DN

By Lemma 4.5 and since no relabelling step can be perfoamgthore.
0

We can therefore prove that there exists a gripassociated to the final labelling & such thalG
is a submersion oH.

Proposition 4.2. Given a graphG, we can associate with the final labelling of any execuparf the
enumeration algorithm o+, a graphH such that there exists a locally surjective homomorphissmfr
G ontoH.
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Proof:
We use the notation of Lemma 4.6. L@&t= (G, \).

Consider the graplf/ defined byV(H) = {m € N | v € V(G),n,(v) = m} andE(H) =
{{m,m'} | Jv,v' € V(G);n,(v) = m,n,(v") = m' and{v,v'} € E(G)}.

From Lemma 4.6{m,m'} € E(H) if and only if there existr,v’ € V(G) such thatn,(v) =
m,ny(v') =m/,m' € N,(v) andm € N,(v'). From Lemma 4.1, we can conclude that there does not
exist any{n,n} € E(H): the graphH does not contain self-loop. From the definition6{H ), we
deduce that{ does not contain multiple edges.

From Lemma 4.6;n € Ny (n,(v)) if and only if there existsy € N¢(v) such thatr,(w) = m and
thereforen,, is a locally surjective homomorphism of unlabelled grapiesfG onto H.

It remains to define the labelling;; on H. This is natural, just seXy (n) = A(v) for v € n; ! (n).
From Lemma 4.6, if two nodes, v’ are such that,(v) = n,(v’), thenA(v) = A(v"). Consequently, this
labelling is well-defined and obviousl§ is a submersion ol = (H, Ay) via the homomorphism,.

O

Consider a graplix that is submersion-minimal. For every ryrof the enumeration algorithm, the
graph associated to the final labelling is isomorphi&Gtand therefore the set of numbers of the vertices
is exactly{1,...,|V(G)|}. The termination detection of the algorithm is possibleGonindeed, once a
vertex gets the identity numbéy (G)|, from Lemma 4.3 and Lemma 4.4, it knows that all the vertices
have different identity numbers that will not change any enand it can conclude that the computation
iS over.

Furthermore, it has been shown in Lemma 4.1 that for evengtg@that is not submersion-minimal,
there exists no algorithm using cellular edge local comiparta to solve the naming problem or the
enumeration problem o@. Thus we have proven the following theorem.

Theorem 4.1. For every graphG, the following statements are equivalent:
1. there exists a naming algorithm Ghusing cellular edge local computations,

2. there exists a naming algorithm with termination detectoinG using cellular edge local compu-
tations,

3. there exists an enumeration algorithm@rusing cellular edge local computations,

4. there exists an enumeration algorithm with terminatietedtion onG using cellular edge local
computations,

5. the graphG is a submersion-minimal graph.

5. Election Problem

If we can solve the enumeration problem @nthen we can solve the election problem @n once a
vertex gets the identity numbé¥ (G)| we declare ielected

Nevertheless, in our model, the enumeration and the efeptioblems are not equivalent. The graph
G in Figure 5 is not submersion-minimal, since the homomaphromG to H induced by the labelling
of G is locally surjective and therefore neither the enumenatior the naming problem can be solved
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Figure 5. A graph for which we can solve the election problernrot the enumeration problem.

on G. But let us execute the preceding algorithm@nAt the end, the vertex labelletlin G will know
that it is unique with at least three different neighbourd #drerefore it can declare itself as elected.

5.1. Necessary Conditions to Solve the Election Problem

We would like to give here necessary conditions characdteyithe graphs that admits an election algo-
rithm. Given a graphG, we denote bySc the set of graph#I such that there exists a submersion from
G ontoH. From Lemma 3.1, any algorithtd that solves the election problem @husing cellular edge
local computations will solve the election problem on evgrgphH € Sc.

Remark 5.1. Consider an algorithrd that solves the election problem @h Suppose that there exists
a subgraphG’ of G that is a submersion of a grafii € Sg via a homomorphisnp. If there exists
an execution of4 on H that elects a vertex € V(H) such thatjo~!(v)| > 1, then there exists an
execution of A on G’ such that the labetlectedappears at least twice. Since each executiotd of
on G’ can be extended to an execution.&fon G, there exists an execution of over G that leads
to the election of at least two vertices, this is in contradic with the choice ofd. We can therefore
define Pa(G’,p) = {v € V(H) | |¢~'(v)| > 1} and each execution o on H cannot elect a vertex
RS PH(G,, QO).

Consider a grapfH € Sg. Let Py (G) be the union of allPg(G/, ) for ¢ ranging over all
submersions of subgraplis’ of G to H and let us se€u(G) = V(H) \ Pu(G) (the elements of this
set are called the candidateskffor G). From Remark 5.1, every election algorithihover G must be
such that each execution gf over H should elect a vertex i (G). Consequently, if there exists an
election algorithmA on G then for every grapH € Sg, Cu(G) # 0.

Suppose that there exist two disjoint subgraghs and G, of G such thatG; (resp. G») is a
submersion of a grapH; € Sq (resp. Ho € Sg). Then there does not exist any election algorithm
using cellular edge local computations. Indeed, in thig ¢hsre exists an execution of the algorithm on
G such that the labatlectedappears once ix; and once inGe, contradicting the election principle.
Recapitulating:

Proposition 5.1. Let G be a labelled graph such that there exists an election gigorfor G using
cellular edge local computations. Then the following ctinds are satisfied:

1. foreveryH € Sg, Cu(G) # 0,

2. there do not exist two disjoint subgrapBls andG-, of G such thaiG, (resp.G-) is a submersion
of agraphH; € Sg (resp.Hs € Sg).
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5.2. Election Algorithm

We now consider a grap@ satisfying the conditions of Proposition 5.1.

Our aim is to present an algorithm such that each executien@wvill detect a graptH € Sg such
that there exists a subgragi’' of G that is a submersion dl. To this end we adapt the enumeration
algorithm from the preceding section and the terminatiotecteon algorithm of Szymansky, Shi and
Prywes [17].

The idea is to execute the enumeration algorithm given faiaplgand to reconstruct a graph from
the contents of the vertices mailboxes. If the reconstdigtaph is an element &g, the vertices check
if they all agree on this graph.

5.2.1. The SSP Algorithm

This algorithm was originally devised to detect the terrtioraof an algorithm in the message passing
model. We consider a distributed algorithm which termisaténen all processes reach their local ter-
mination conditions. Each process is able to determine tslgwn termination condition. The SSP
algorithm detects an instant in which the entire computaiscachieved.

Let G be a graph, to each nodes associated a predicaf®(v) and an integeu(v), its confidence
level. Initially P(v) is false andu(v) is equal to—1. If a vertexv has finished its computation of the
initial algorithm, then it changes its valug(v) to true. Each time a vertex changes the valu@(f) or
a(v) then it informs its neighbours.

Transformations of the value efv) are defined by the following rules. Each computation step act
on the integer(vy) associated to the vertex; the new value ofi(vg) depends on the informatiom
have about the valuggi(vy), ..., a(vq)} of its neighbours. More precisely,

o If P(vy) = falsethena(vg) = —1,;
e if P(vy) = truethena(vy) =1+ Min{a(vg) | 0 < k < d}.

We will adapt this algorithm using the ideas of the algorit@8PP [10]. For every vertex, the
value of P(v), instead of being boolean, will be a graph reconstructenh filee contents of the mailbox
of v. An important property of the functio® is that it is constant between two moments where it has
the same value.

In our model, a vertex cannot distinguish its neighboursrdfore, we will use the numbers that
appear in the local view: a vertexwill increase its confidence levelv) only if for each number. in
its local view, it has a neighbourt such that(v') = n anda(v’) > a(v).

5.2.2. Labels

As in Section 4.2, we start with a labelled graGh= (G, \). During the computation verticaswill
get new labels of the forr\ (v), n(v), N (v), M (v), a(v), H(v)) representing the following information
(again the first component(v) remains fixed) :

e n(v) € Nis theidentity numbeof the vertexv computed by the algorithm,

e a(v) € Nis theconfidence levedf the vertexv,
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e N(v) is thelocal viewof v. If the vertexv has a neighbour’, relabelling rules will allowv to
add the ordered paimn(v'),a(v’)) to N(v). ThusN (v) is always a finite set of ordered pairs of
integers. ForN € Pg,(N?), we notell; (N) = {n | 3(n,a) € N} the projection on the first
component.

e M(v) C N x L x Psp(N) is themailboxof v and contains the information received byabout
the identity numbers existing in the graph and the local siessociated with these numbers.

e H(v) is thehistory of the vertexv. If at some computation step, N, M,a) € H(v) then it
means that at some previous step the vertbad a confidence level equalddor the valueM.

5.2.3. The Relabelling Rules

The first computation stef, replaces just the initial label(v) by (A(v),0,0,0,—1,0). The following
four rules mimic the rules of the enumeration algorithm:

Sli

(élvnlleaMla_laHl) (éQanQaN%MQvafaHQ) (élvnlleaM{a_laHl) (éQanQaN%MQaavHQ)
@ O @ O

If My \ My # 0 thenM] := M; U M.

SQZ
(¢,n,N,M,—1,H) (L,k,N,M’',—1,H)
e ——> o
If n = 0 or there existgn, ¢', K') € M such that¢,I1, (N)) < (¢, K')

then k£ :=1+max{n'|3(n,¢,K’) € M} and
M’ := M U {(k,0,II;(N))}.

Sz
(évnavaMv_LHl) (éanvNQaMaavHQ) (éa ka]/_vM/v_lle) (évnaNQaMaavHQ)
@ O @ O
If n > 0and

IT; (Ny) = 111 (N2) and
V(n,t/, K"y e M, (¢',K") < (£,T1;(Ny))
then k:=1+ max{n'|3(n',¢',K') € M},
N{ =N \{(n,d) € Ny |n’ <n}U{(n,—1)} and
M= MU {(k,¢,II;(N7))}.
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V(ny, 0}, K}) € M, (¢}, K}) < (¢1,11; (V7)) and
V(n2, by, K3) € M, (£3, K3) = (£2,111(N2)) and
(n2,—1) € Ny

then N := N\ {(n',d') € Ny | n' <na}U{(n2,—1)} and
M := M U{(n1,¢,N])}.

542
(élvnlleaMa_laHl) (éQanQaN%Mva‘aHQ) (élvnlvN{aM/a_laHl) (éQanQaN%Mva‘aHQ)
@ O > [
If ny > 0,n9 > 0,n1 # ny and

O

The fifth rule says that if a vertex detects that all the neighbours it knows have a confidenad lev

a > a(v) then it can increment its own confidence level.

To define this rule we need some additional notations. Givexaitbox contents\/, for eachn > 0
we definer, (M) as the set of all tripleén, ¢, N') € M with the first component. For each non empty
setm, (M) we conserve in the mailbox only the triple, ¢, N') with the greatest ordered pdit, V) for

the order<. This operation gives a new mailbox contents that we shalbtiebyu (M ).

The next step consists in defining a gra@hy,. If there exist(nq, 1, N1), (ng, 2, No) € u(M)
such thatng,€ Ny andny; ¢ N, then we setGy, = (0,0). Otherwise,G ), is the graph such
thatV(GM) = {n | (n,E,N) S U(M)} andE(GM) = {{nl,’IZQ} | 3(721,51,]\71),(712,52,]\72) S
u(M),ng € Ny andn; € No}. The labelling ofG ), is inherited from the set/: for (n, ¢, N) € u(M),

A (n) = £. We will denote byG; = (G, Ayr) the corresponding labelled graph.

Sy
(¢,n,N,M,a,H) (¢,n,N,M,a+1,H)
° —_ °
Applicable whenever n > 0and
V(n, /K"y e M, (¢, K") < (¢,1I;(N)) and
Gy € Sg and
V(n',a’) € N,a < o and
a<|V(G)|+1.

The sixth rule enables a nodeto update its knowledge of the confidence level of one of itgne

bours if the confidence level of this neighbour has increased

863

@ O > @

(‘glantha]\/[aalaHl) (827n27N27M7a'27H2) (Zl,nl,N{,M,a]_,Hl) (‘€27n27N27M7a27H2)

O

If a; > 0and
V(na, 05, N3) € M, (€5, N3) < (2,111 (N2)) and
d(ng,a) € Nijas > a

then Ny := Ny \ {(n2,a)} U{(ne,a2)}.
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The rulesSy, Sg, Sy are designed to avoid deadlock in the execution of the dhlgari If one of
these rules is applied on a vertexthen the mailbox of is modified and therefore, we have to reset its
confidence level. The rul§; enables a vertex to change the value of its mailba¥ whenever there
exists a neighbous’ that used to have a confidence lewelccording toM such thatz > a(v) — 1 and
such that its mailbox has changed. If a vertex changes therisnof its mailbox, then it modifies also

its history H (v), so as to remember its former confidence level.

eithera; = 0 or (a; > 0and3(n, N, M;,a) € Hy,3(n,d’) € N1,a > o)
then Nj:={(n,—1)|3(n,a) € N1},

M’ := M; UM, and

H{ := HyU{(n1, N1, M1,a1)}.

873

(¢1,m1, N1, My,a1,Hy) (l2,n2, Nay Mo, ag, Hy)  (€1,n1, N1, M', =1, Hy) ({3,n2, N2, My, as, Ha)
[ g O _— ®

If Ms\ My # 0 and

O

The ruleSg enables a vertex whose confidence level is equal@do modify its state if it discovers
the existence of a neighbour that has the same number asatsu€h vertex changes its state, then it

modifies also its history? (v), so as to remember its former confidence level.

T4 (N7) = 1 (NV2) and
V(n,t/,K'ye M, (¢',K'’) < (¢,11;(N1))

then k:=1+max{n'|3(n,¢,K') e M},
N{:={(n,-1) | 3(n',d') € Ny;n' >n}U{(n,-1)},
M’ = M U{(k,¢,11;(N7))} and
H! := Hy U {(n, Ny, M,0)}.

883
(Z,TL,Nl,M,O,H]_) (£7n7N27M7a7H2) (éakaNiaMla_]-aH{) (£7n7N27M7a7H2)
@ O _— [ 4 O
If n > 0 and

The ruleSy enables a vertex whose confidence level is equaldo modify its state if it discovers
the existence of a neighbour it didn’t know, i.e., the numiifieits neighbour does not appear in its local
view. If a such vertex changes its state, then it modifies #dsbistory H(v), so as to remember its

former confidence level.
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Sy :
(€17n17N13M307H1) (éQanQaN%Mva‘aHQ) (élvnlvN{aM/a_laHi) (éQanQaN%Mva‘aHQ)
@ O > [ O
If ny > 0,n9 > 0,n1 # ny and

V(ny, 0}, K}) € M, (¢}, K}) < (¢1,11; (V7)) and
V(ng, £y, K3) € M, (€3, K3) = (2,111 (Nz)) and
B(ng,a’) € Ny

then N{:={(n,—1)|3(n,a’) € Ni;n>n2} U{(n2,—-1)},
M’ := M U {(n1,4,N7)} and
H{ := Hy U{(ny,Ny,M,0)}.

The ruleS;o enables a node that has a confidence level equél (t6)| + 2 to get the labeklected

if and only if its identity number is the greatest number Ipging to the candidates of the reconstructed

graph forG.

810 .

(¢,n,N,M,a, H) elected
[ ] _— o

Applicable whenever n = max{n € Cg,,(G)} and
a=|V(G)| + 2.

The last rules enable to propagate the information, oncela got the final labetlectedit informs
all the other nodes of the graphs that theymwa-elected

811 .
(¢,n,N,M,a,H) elected non-elected elected
@ O > ® O
512 .
(¢,n,N,M,a,H) non-elected non-elected non-elected
@ O > ® O

5.3. Correctness of the Election Algorithm

We will denote the algorithm described above$wnd we will first consider the algorith&’ described
by the rulesSy, ..., Sq. If we can ensure the termination 8f, we can prove thaf always terminates,
since the rulesso, S11, S12 can modify the label of each vertex only once. Clearly thelablectedand
non-electedare terminal. Moreover, if we show that exactly one vertax apply the ruleS; then it will
prove the correctness of the algorithm. Indeed, there \eikkkactly one vertex with the labelectedin
the final configuration whereas all the other vertices willdnthe labehon-elected
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In the following (A(v), n;(v), N;(v), M;(v),a;(v), H;(v)) will stand for the label of the vertex
after theith computation step of the algorith&1. As for the precedent algorithm, we can show that the
algorithm has interesting monotonicity properties.

Lemma 5.1. For each step, for each vertex,
1. ni(v) < nig1(v),
2. M;(v) € Miyq(v),
3. Hi(v) € Hiy1(v),
4

. if HZ(U) = Hi+1(7)) thenHl(Ni(v)) = Hl(Ni_;,_l(U)), CLZ'(U) < ai+1(7)) andV(n,al) S Ni(v),
(TL,CZQ) S NZ'_H(’U),(M < as.

And for each step, there exists at least one vertexsuch that one of the inequalities is strict for

As in the preceding algorithm, we can show that for everyesertand for every step, the value of
n;(v) is always lower or equal tg/(G)|, and since the value af; (v) is bounded byV (G)| + 2, we can
easily deduce that the values f(v), M;(v) and H;(v) are also bounded. From Lemma 5.1, we can
therefore conclude that each execution of the algoriffirterminates.

In the following lemma, we prove that if at a stgpa vertexv knows the confidence level of one
of its neighbours then > a;(v) — 1,

Lemma 5.2. For every vertex and step, for every(n,a) € N;(v), a > a;(v) — 1.

Proof:
In the initial configuration, this result is obviously tru€onsider now a stepsuch that this property is
true after this step. Suppose that at step 1, one of the rulesS;, S2, S3, Sy, S7, Sg, Sy is applied to a
vertexv, thena; ;1 (v) = —1 and the property holds.

If the rule Ss is applied at step + 1, for all (n,a) € N;(v) = Nijt1(v), a > a;(v) = a;41(v) — 1:
the property holds.

If the rule Sg is applied tov according to the label of one of its neighboursthen (n;(v'),a1) is
replaced by(n;(v'), az) in N;(v) to obtain N;;1(v). Consequentlyg;yi(v) = a;(v) andag > a; >
a;+1(v) — 1, the property holds again. 0

In the following lemma, we show that if the rul; is applied at a step + 1 to a vertexv whose
confidence level;(v) was greater tham then there exists a neighbourof v such that the rul&; was
applied tov’ at a step’ + 1 < j, whereM;(v) = M (v') anda;: (v') > a;(v) — 1.

Lemma 5.3. For every vertexw € V(G) and every stepg such thaia;j(v) > k+ 1 > 1 andM;(v) C
M1 (v), there exists a verteX € N (v) and a step’ < j such thath;(v') = M;(v) C Mj4q(v')
andaj (v') > k.

Proof:
Sincea;(v) > k + 1 andM;(v) € M;41(v), it means that;;(v) = —1 and that the ruleS; has been
applied tov according to the label of one of its neighboufsat the steg + 1.
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Thus there existén, N, M;(v),a) € H;(v") suchthai > a;(v) —1 > k. If a > 1, then there exists
astepj’ + 1 < j such that the rul&; has been applied td at this step and thereforg, (v') = a > k
ande/(v’) = Mj(v) - Mj/+1(v’).

If « = 0, thenk = 0 and there exists a stef) + 1 such that one of the ruleS;, Sg, Sy has been
applied tov’ at this step. Consequently;/(v') = 0 > k and M/ (v') = M;(v) € My (v'). 0

In the following proposition, we prove that each executifthe algorithmS’ on a graphG does not
stop before at least one vertex gets a confidence level equaisG)| + 2.

Proposition 5.2. For each execution &$’ on G, there exists a vertex € V(G) and a step such that
ai(v) = [V(G)| + 2.

Proof:
We already know that each execution&fterminates. Consider an executiprof S’ that yields to a
final labelling (X, n,, N,, M,,a,, H,). Suppose that for each vertexa,(v) < |V (G)| + 1.

Suppose that for each vertexa,(v) = —1, then using the results of the preceding section, the final
numberingn,, induces a grapll such thatG is a submersion dff vian,, i.e.,H € Sg. Consequently,
for each vertex, Gy, () = H € Sg, and since the rul&, cannot be applied on, one can apply the
rule S; onv: the computation is not finished.

Consider now a vertex such that,(v) > 1. Since we cannot apply the rufg on v, from Lemma
5.2, there exists som@/, a,(v) — 1) € N,(v). Consider the last stepwhere the ruleSs has been
applied byv according to the label of a neighboufsuch thatr;(v') = n’. Thena;(v') = a,(v) — 1,
M,(v) = M;(v) = M;(v") and if M;(v") € M,(v"), then the vertex can apply the rules; according
to the label ofv’. Consequently);(v') = M,(v'), nj(v") = n,(v") andIl; (N;(v')) = I (N, (v)).
Since we cannot apply the rul& on v according to the label of , it implies thata,(v') = a,(v) — 1.
Consequently, for each such thata,(v) > 1, there exists some vertex such that\/,(v) = M,(v')
anda,(v') = 0.

Consider now a vertex such thatu,(v) = 0 and such that for each vertex, if a,(v") > 0, then
either M, (v) = M,(v") or M,(v") \ M,(v) # 0. Since we cannot apply the rul& onv, from Lemma
5.2, there exists some’, —1) € N,(v). Consider the last stepwhere the ruleSs has been applied by
v according to the label of a neighboursuch that:;(v') = n’. Thena;(v') = —1.

If a,(v') = —1, then since the rul&; andS; cannot be applied ot or v, M,(v) = M,(v") and
G,y € Sa - Since the ruleS; cannot be applied or, it means that there exis{s.,(v'), ¢, K) €
M,(v") such that A(v"), N, (v")) < (¢, K) and therefore, the rul§, can be applied: the computation is
not finished.

If a,(v") > 0, then since the rul&; cannot be applied on according to the state of, M,(v) =
M,(v"). Suppose that,(v) = n,(v"), thenll; (N,(v)) = II;(N,(v")) and therefore, one can apply the
rule Sg on v according to the label of’. Consequentlyn,(v) # n,(v") and from Lemma 4.5, either
n,(v') = nj(v") orn,(v') € I (N,(v)). In the first case, one can apply the rdlgon v according to
the label ofv’; in the second case, one can apply the &j®n v according to the label af .

Consequently, there does not exists any execytiohS’ that terminates, such that in the final state,
for each vertew € V(G), a,(v) < |V(G)| + 1. 0

The most important property of the algorithm is given in tbkdwing proposition. Roughly speaking
it states that if the confidence level of a verteis |V (G)| + 2 thenG contains a submersion @ ).
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Proposition 5.3. If there exists a vertex, € V(G) and a step, such that;,(vo) = |V(G)| + 2 then
G contains a submersioH of GMZ.O(UO) and for every step > iy and for every vertew € V(H),
M;(v) = M,;,(vo). Moreover, there exists a stép> i, such that the labedlectedappears on one vertex
veV(H).

Proof:
Consider a vertexy € V(G) and a stepy such thata;, (vo) = |V(G)| + 2; we will considerM, =
M;,(vo). We will define recursively a sequence of sets of vertidés jcn and we will need a partial
functioni overV (G) defined as follows: given a vertexe V(G), if there exists a step < iy such that
M;(v) = My, theni(v) = max{j < ig | M;(v) = My}, otherwisei(v) is not defined.

Let Vo = {vo} andVi 1 = Vi U{w | v € Ng(w) N Vi; aj (W) > ;) (v) — 1}

Let H = (H,v) be the subgraph oG defined byV(H) = JV; = Vjy(g) and E(H) =

jEN

{{v.v'} € B(G) | v,v' € V(H); 3(ni()(v),a) € Niwry(v'); ai)(v) > a}. We define the labelling of
H as follows: for everyy € V(H), v(v) = A(v). Let~y the homomorphism front onto G, defined
by 1(v) = 1i(u) (1),

For each vertex € V, \ V,_1, there exists a simple path of lengttfrom v to vy. Therefore, for
each vertew € V(H) such thata,,(v) = [V(G)| + 2 — p, there exists a simple path fromto vy of
length greater or equal t@ since such a vertex belongs#® \ V;_1 with £ > p. Moreover, for every
veV(H), ajw(v) = |V(G)|+2—|V(H)| > 2.

Consider a vertew € V(H) such thata;.,)(v) > 1. If (n,a) € Ny,)(v) then it means that
a > a;,)(v) — 1 > 0 and therefore the rul§s has been applied at a stgp< i(v) betweerw and one of
its neighboursw such that;(w) = n, M;(w) = M;,)(v) = My anda;(w) = a. Consequentlyi(w) is
defined andi; () (w) > a;j(w) = a > a;,)(v) — 1. Thereforeqw € V(H) and the homomorphism is
locally surjective for every vertex € V(H) such that,,)(v) > 1. Since for every vertex € V(H),
aiv)(v) > 1, the graphH is a submersion o6 yy, .

Suppose that there exists a vertexc V(H) and a stepj such thatd/;(v) = My € Mj1(v).
Consider a vertex; € V(H ) and a steg; such thatV/;, (vi) = My € Mj,+1(vi) andforallv € V(H),
there existg > j; such that)M;(v) = My(v).

Sincea;j, (v1) > |V(G)| + 2 — |V(H)|, we can apply Lemma 5.3 to find a sequence of vertices
(v1,...,vr) and a decreasing sequence of stgps. . ., ji) such thatc = |V (G)| — |V (H)|+ 1 and for
everyl <p <k, Mj (v,) = My € M;,1(vp) anda;,(v,) > k + 1 — p. From the definition ob; we
know that for everyp > 2, v, ¢ V(H). Thus, sincé = |V (G)| — |V (H)| + 1, there exist® > ¢ such
thatv, = v,. Butitimplies thatMy = M;, (v,) C M;,11(v,) € M;, (vq) = Mo, which is impossible.
Then, for every step > i, for every vertexv € V(H), M;(v) = M.

We will now show that the rul&;, can be applied on a vertexc V(H) at a step; > ig. Clearly,
if for eachv € V(H), a(v) = |V(G)| + 2, then there exists one vertexc V(H) such thatw(v) =
max{n € Cg,,(G)} and we can apply the rul;, on this vertex.

Suppose now that for each step- i, there exists some € V(H) such that(v) < |V(G)| + 2.
Since the execution &’ terminates orG, we will now consider the final labelling\, n,, N,,, M,, a,,,
H,). In the final configuration},(vy) = M;,(vo), anda,(vo) = ai,(vo) = |V(G)| + 2. We can
therefore redefine the grajh as before by considering the final computation step instéagl o

Consider now a vertex € V(H) such that for each verteX € V(H), a,(v) < a,(v"). Since the
rule S5 cannot be applied on, it implies that there exists sonfe, a,(v) — 1) € N,(v). Consider the
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last stepj such that the ruleSs has been applied betweerand a vertexy’ such thatn;(v') = n. As
explained beforey’ € V(H) and{v,v'} € E(H). Consequentlya;(v') = a,(v) — 1 andM,(v) =
M;(v) = M;(v") = M,(v'). Thereforen,(v') = n;(v') anda,(v') > a,(v) > a,(v) — 1. The ruleSg
can then be applied byaccording to the label af’: the computation is not terminated.
This implies that there exists a stép> iy such that one can apply the rufg, on some vertex and
this vertex gets the labelected
O

From Proposition 5.3, if a vertex, has a level of confidence greater thHan(G)| + 2 at a stepiy,
there exists a subgrag of G that is a submersion c(ﬂMiO(vO) € Sg such that for every € V(H)
and for every step > i, Gy, v) = GMZ_O(UO) anda;(v) > 1.

We know that there do not exist two disjoint subgra@sandG, of G such thaiG; (resp.Gs) is
a submersion of a grapl; € Sg (resp.Hs € Sg). And so we can choose to elect one candidaf jn
which is possible a6’ (G) # 0 : there will be at most one vertex that will take the lablctedby the
rule S1p and therefore the algorithis is an election algorithm foé.

Consequently, for each grajgh that satisfies the necessary conditions of Propositionherktexists
an algorithm that solves the election problem oter

Theorem 5.1. There exists an election algorithm over a given gré&phising cellular edge local compu-
tations if and only if the following conditions are satisfied

1. foreveryH € Sg, Cu(G) # 0,

2. there do not exist two disjoint subgrap@s andG- of G such thatz; (resp.Gs) is a submersion
of agraphH; € Sg (resp.Hs € Sg).

6. Examples

If we assume that each vertex of a gra@tas a unique identifier the@ is a submersion-minimal and
the knowledge of its size allows the election.

6.1. Trees, Grids and Complete graphs

Consider a grapld with at least three vertices that can be coloured with twowd. Such a colouring
yields a submersion off onto the graphKs with two vertices and one edge between them. Such a
submersion is non trivial it7 has at least three vertices and therefore there does nataexriaming
algorithm using cellular edge local computations ¢ar

Moreover, ifp; : G — Ko is a submersion (colouring) d& then exchanging the two colours we
get another submersiap, and if G has at least three vertices then for each vektex V' (K>) at least
one of the set&;l(k), i = 1,2, has cardinality> 2. Thus, the election problem cannot be solved with
cellular edge local computations for graphs with at leasealvertices that admit a 2-coloring.

In particular, in our model, we cannot solve either naminglection for trees or grids that have at
least three vertices, as they can be coloured with only tiarso

But complete graphs, since they are submersion-minimatjtdzbth naming and election algorithms
in our model.
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6.2. Rings with a Prime Size

It is well known that it is impossible to solve the naming ahé election problems on a ring in the
asynchronous message passing model [18]. And consequestyve these problems on rings, we need
synchronization. Unfortunately, even in the powerful moaleMazurkiewicz, we cannot solve these
problems if the size of the ring is not a prime number (excepttifie ring with four vertices). In the
following we will show that in our model, even if it is much neoweaker than Mazurkiewicz’s model,
we can still solve both problems for the rings of prime size.

First note the following fact:

Proposition 6.1. An unlabelled ring of size is submersion-minimal if and only jf is prime.

Proof:
Consider a ringR,, of sizep: V(R,) = {0,1,...,p— 1}, E(R,) = {(i,: +1 mod p) | 0 <i < p}.

If u dividesp then the mapping (i) = 7 mod w is obviously a submersion froit, onto the ring
R, of sizeu. To be more precise, for the particular caseuof 2, R, will denote here the graph with
two vertices0, 1 and an edg€0, 1} rather than a ring.

On the other hand, suppose now that R — H is a non trivial submersion. Since the image of any
vertex of degre@ under a submersion has either degtrem 2 the graphH is either a ring or a chaif
(C hasl verticesV (C;) = {co,...,c—1} andl — 1 edgesE(C)) = {(¢i, ci+1) | 0 <i <1 —1}). Inthe
first case the size off divides the size of?, and the corresponding submersion is essentially the one
described already in the first part of the proof. In the seotasky maps one vertex, say, of R, into
cp and next the two vertices at the distarideom v are mapped to;, 1 < i < p/2. At the distance /2
from v there can be only one vertex i, that is mapped te;_;. Therefore in this casg is a multiple
of 2. O

Therefore, prime size rings allow both naming and electidhis is a quite interesting corollary of
our general conditions since our model is the weakest ameaagghgelabelling systems, with the bare
minimal synchronization power. Moreover, contrary to sastteer algorithms on rings, our enumeration
algorithm does not need any sense of direction.

7. Conclusion

In this work, we have characterized the graphs where we daa #te naming and the election problems.
As for message passing systems, unique identities and tveléaige of the size of the networks enable
both election and naming in our model.

The characterization of graphs that admit a naming algoritha nice characterization of the same
kind as other results existing for different models [3, 415]. For all these models, one can find a
particular type of locally constrained homomorphisms éhere deal with submersions) such that the
graphs where we can solve the naming problem are the grapharthminimal according to this type of
locally constrained homomorphisms.

Moreover, one can note that for every submersion-minimaplyr our algorithmM terminates. If
the vertices know the size of the network, then they can tétedermination of the algorithm. We have
a naming algorithm (without termination detection) for ttlass of submersion-minimal graphs, and a
naming algorithm with termination detection for the classubmersion-minimal graphs of size
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The characterization of graphs that admit an election dlyaris quite involved, and one can note
that the processes have to know the grépm order to compute&S: for two different graphs, one need
a different initial knowledge. In the model of Mazurkiewjdhere exists a characterization of classes of
graph that admits an election algorithm [11, 12], an intimgsproblem is to find such a characterization
in our model.

In Section 6, we have proved that there is no election algritor trees or grids with cellular edge
local computations. A natural problem is to know what minlimétial knowledge enables election for
these graphs. More generally, another interesting prolddmcompare the power of cellular edge local
computations with initial knowledge (the degree of the ices, the size of the network, a bound on the
size of the network, ...) with the different models of locahtputations.
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