
Election in the Qualitative World

Jérémie Chalopin

chalopin@labri.fr

LaBRI, Université Bordeaux 1
351 cours de la Libération

33405 Talence, France

Abstract. In [3], Barrière et al. consider a qualitative model of dis-
tributed computing, where the labels of the entities are distinct but
mutually incomparable. They study the leader election problem in a
distributed mobile environment and they wonder whether there exists
an algorithm such that for each distributed mobile environment, it ei-
ther states that the problem cannot be solved in this environment, or it
successfully elects a leader. In this paper, we give a positive answer to
this question. We also give a characterization of the distributed mobile
environments where the election problem can be solved.

1 Introduction

Consider an intercontinental highway network linking different cities in different
countries. In each city, the directions to the other cities are written in the lan-
guage that is locally spoken. Consider now a set of different drivers coming from
different countries. Initially, each driver starts in his town and all the drivers
want to meet at a single place. The only mean they have to communicate is
to leave messages in each city they reach, but each driver can only speak his
mother tongue: he can see that another driver left some message, but he cannot
understand it. Moreover, each driver can consistently distinguish the different
directions in each city, but the drivers cannot agree on an alphabetical order on
these directions: a French driver would not be able to figure out how to order
Chinese words in the Chinese way, for example. We wonder whether there exists
a procedure that enables them to meet at a single point in a finite time.

In distributed computing, the links incident to each process are usually la-
belled by distinct numbers in order to allow each process (or each mobile agent)
to consistently distinguish its neighbours; this labelling is usually called a ports-
numbering. In fact, these numbers allow not only to distinguish the links, but
also to order them. Many distributed algorithms assume also that all the pro-
cesses can be unambiguously identified, and therefore the processes are given
numbers. Again, one can see that this allows to order the different processes
according to their labels. This usual setting is a quantitative model, since each
label can be seen as a number.

Nevertheless, as in the example presented above, one may be able to dis-
tinguish labels without being able to order them. In this paper, we consider

distributed mobile environments where mobile agents are scattered all over a
network. All the agents have distinct colors (their labels), which are mutually
incomparable: each agent can just check whether two colors are equal or not.
The links incident to each vertex are also given distinct incomparable colors.
This model is close to the one introduced by Barrière et al. in [3]; it is qual-

itative, in the sense that there is no a priori order between the labels. As in
[3], we study the impact of the lack of a total order on the set of labels in a
distributed mobile environment. In this way, we investigate the leader election
problem, that is a classical problem to highlight the differences between various
models of distributed computing.

In usual models, there is always an implicit order over the set of labels, since
for each agent, each information is just a sequence of bits. Nevertheless, consider
an algorithm designed to be executed by mobile agents over a network. If the
agents have been implemented by different companies, and if the specifications of
the algorithm do not specify how the integers must be represented, some agents
can for instance store numbers with most significant bit first whereas other agents
store numbers with least significant bit first; in this case, the agents would not
agree on the meaning of the sequence 01101. Moreover, it is always interesting to
deal with algorithms that need less specifications, since they are generally more
robust, and easier to implement in different models of distributed computing.

The Model. In this paper, an agent is an entity which executes an algorithm: it
can move from place to place (with some data and its algorithm) through com-
munication links, it can make local computations on a place (a place provides
tools for local computations: data, memories and process) and leave messages
on a place. In our model, the environment is represented by a simple undirected
connected graph G = (V (G), E(G)) and a set E of mobile agents is scattered
over G. Communications between agents is achieved through writing messages
on whiteboards, where agents can read, write, and erase messages. There is one
whiteboard on each vertex of G, and access to a whiteboard is in mutual exclu-
sion. Initially, all the whiteboards are empty. Let p : E → V (G) be the injection
describing the initial placement of the agents in G. The vertex p(r) is called
the homebase of the agent r ∈ E . We will denote such a distributed mobile
environment by (G, E , p).

We consider a set of colors C and a function color : E → C that associates to
each agent a unique color. There is no a priori order on the set of colors: each
agent can give its own order on the set of colors, but the agents do not agree
on a particular order. Each agent can understand a message it has written, but
it cannot understand a message written by another agent, it can just know the
color of the message. We also suppose that initially, the homebases are marked:
they contain a marker that enables each agent to know that a place is a homebase
and to detect the color of this homebase. In each place, the incident links are
labelled by different colors that enable each agent to consistently distinguish the
neighbours of the place: for each vertex u, there exists an injective function δu

that associates a color from a new set C′ (i.e., C′ ∩C = ∅) to each edge incident
to u. The set δ = {δu : u ∈ V (G)} constitutes the ports-labelling of G. Thanks

to this labelling δ, each agent can make a distinction between the incident edges
of each vertex. Such a distributed colored mobile environment will be denoted
by (G, δ, E , p, color).

The agents are asynchronous, in the sense that every action they perform
(computing, moving, etc.) takes a finite but otherwise unpredictable amount of
time. Moreover, we suppose that an agent has not an initial knowledge of the
network topology, neither of its size nor of the number of agents in the system.
The actions an agent a located at a node v can perform depends on the current
state of a, the current state of the whiteboard at v, and the color of the port
through which a entered v. According to these informations, a can decide to
write a message on the whiteboard of v, to leave v (through a port whose color
may result from some computation), or to stay at v (for example, to wait that
another agent leaves a message on the whiteboard).

This model is more restrictive than the one presented in [3], since in the
model of Barrière et al. the agents cannot agree on an order on the set of colors,
but they fully understand the symbols written by the other agents. However, the
necessary condition presented in our model is the same as the one presented in
[3]: the results presented in this paper remain true in the model of [3].

The Election Problem. The election problem is one of the paradigms of the
theory of distributed computing. In the distributed mobile setting, the aim of
a leader election algorithm is to distinguish one agent among the others. All
the agents execute the same protocol, i.e., the only initial difference between
two agents is their colors. At the end of the execution of the algorithm, there
is exactly one agent in the state elected, whereas all the other agents enter the
state non-elected. Moreover, it is supposed that once an agent enters in the state
elected or non-elected, it remains in such a state until the end of the compu-
tation. Another important problem in this setting is the rendez-vous problem.
The aim of a rendez-vous algorithm is to reach a configuration where all the
mobile agents gather in the same vertex of the graph. These two problems are
equivalent, since once an agent has been elected, if all the agents agree on the
label elected, all the agents can gather in the homebase of the elected agent.
Reversely, once all the agents have gathered in some place, the first agent that
writes on the whiteboard of this place is elected, whereas all the others become
non-elected. There exists a large variety of results for these problems in the mo-
bile agent setting assuming different properties of the environment [2, 4, 5, 10,
11]. The election problem has also been extensively studied in the distributed
setting, and particularly in anonymous networks, where the processes do not
have distinct labels [1, 6, 9, 13].

Consider a graph G and a set of agents E scattered over the network according
to a function p. We say that we can solve the election problem on (G, E , p) if
the problem can be solved on (G, δ, E , p, color) for all ports-labellings δ and all
agent-coloring functions color. This implies that an election algorithm in the
distributed mobile environment (G, E , p) must not use some particularity of the
ports-labelling or make any assumption on the set of colors (for example, if one
know that there is always a red agent, one can design an algorithm that elects

the red agent). Note that, as for anonymous networks in the distributed setting
[9, 13], the protocols must not depend on the ports-labelling. Indeed, the role of
the ports-labelling is just to enable an agent to make a distinction between the
different neighbours of a vertex.

As in [3], we say that an algorithm A is an effective election algorithm if for
each distributed mobile environment (G, E , p), each ports-labelling δ and each
coloring function color, for all the executions of A on (G, δ, E , p, color), either all
the agents detect that the election problem cannot be solved in (G, E , p), or the
agents successfully elect one of them. In particular, note that such an algorithm
does not need any initial knowledge about the topology, the size, the diameter
of the network or about the number of agents.

Main Results. In this work, we give a characterization (Theorem 1) of dis-
tributed mobile environments, where the election problem can be solved.

In [3], Barrière et al. wonder whether there exists an effective algorithm for
the qualitative world. The algorithm we describe gives a positive answer to this
question (Theorem 2).

To obtain a necessary condition (Proposition 2), we use well-balanced auto-
morphisms that have been introduced by Bougé in [8].

Then, we show that this necessary condition is also sufficient: we use some
links between fibrations and automorphisms presented in [7] to describe an effec-
tive algorithm in Section 4.2 that solves the election problem when the necessary
condition is satisfied.

2 Preliminaries

Labelled Digraphs. In the following, we will consider directed graphs (di-
graphs) with multiple arcs and self-loops. A digraph D = (V (D), A(D), sD, tD)
is defined by a set V (D) of vertices, a set A(D) of arcs and by two maps sD

and tD that assign to each arc two elements of V (D) : a source and a target
(in general, the subscripts will be omitted); if a is an arc, the arc a is said to
be going out of s(a) and coming into t(a). We say that s(a) is a predecessor of
t(a) and that t(a) is a successor of s(a). A digraph D is strongly connected if for
all vertices u, v ∈ V (D), there exists a sequence of arcs a1, a2, . . . ap such that
s(a1) = u, ∀i ∈ [1, p − 1], t(ai) = s(ai+1) and t(ap) = v. In the following, we will
only consider strongly connected digraphs. A symmetric digraph D is a digraph
endowed with a symmetry, that is, an involution Sym : A(D) → A(D) such that
for every a ∈ A(D), s(a) = t(Sym(a)).

A digraph homomorphism γ between the digraph D and the digraph D′ is
a mapping γ : V (D) ∪ A(D) → V (D′) ∪ A(D′) such that if u, v are vertices of
D and a is an arc such that u = s(a) and v = t(a) then γ(u) = s(γ(a)) and
γ(v) = t(γ(a)). We say that γ is an isomorphism if γ is bijective and γ−1 is a
homomorphism, too.

Throughout the paper we will consider digraphs where the vertices and the
arcs are labelled with labels from a recursive label set L. A digraph G labelled
over L will be denoted by (D, λ), where λ : V (D) ∪ A(D) → L is the labelling

function. The digraph D is called the underlying digraph and the mapping λ is a
labelling of D. A mapping γ : V (D)∪A(D) → V (D′)∪A(D′) is a homomorphism
from (D, λ) to (D′, λ′) if γ is a digraph homomorphism from D to D′ which
preserves the labelling, i.e., such that λ′(γ(x)) = λ(x) for every x ∈ V (D)∪A(D).
Labelled digraphs will be designated by bold letters like D,G, . . . If D is a
labelled digraph, then D denotes the underlying digraph.

Let G = (V (G), E(G)) be a connected simple graph. The symmetric strongly
connected digraph associated to G and denoted by Dir(G) is (V, A) defined by:
there is an arc a1 from v1 to v2 and an arc a2 from v2 to v1 in A if {v1, v2} ∈ E(G)
and Sym(a1) = a2. Note that this digraph does not contain multiple arcs or self-
loops. Given a mobile environment (G, E , p), we define the labelling function χp

of the vertices by χp(v) = 1 if there exists an agent a such that p(a) = v, and
χp(v) = 0 otherwise. A distributed mobile environment (G, E , p) can therefore
be represented by the labelled digraph (Dir(G), χp).

For any set S, |S| denotes the cardinality of S. For any integer q, we denote
by [1, q] the set of integers {1, 2, . . . , q}.

Fibrations and Coverings. The notions of fibrations and coverings are fun-
damental in this work; definitions and main properties are presented in [7].

A fibration between the digraphs D and D′ is a homomorphism ϕ from D to
D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such that
ϕ(v) = v′ = t(a′) there exists a unique arc a in A(D) such that t(a) = v and
ϕ(a) = a′. The arc a is called the lifting of a′ at v, D is called the total digraph
and D′ the base of ϕ. We shall also say that D is fibred (over D′). The fibre over
a vertex v′ (resp. an arc a′) of D′ is the set ϕ−1(v′) of vertices of D (resp. the
set ϕ−1(a′) of arcs of D).

An opfibration between the digraphs D and D′ is a homomorphism ϕ from
D to D′ such that for each arc a′ of A(D′) and for each vertex v of V (D) such
that ϕ(v) = v′ = s(a′) there exists a unique arc a in A(D) such that s(a) = v
and ϕ(a) = a′.

A covering projection is a fibration that is also an opfibration. If a covering
projection ϕ : D → D′ exists, D is said to be a covering of D′ via ϕ. A symmetric
digraph D is a symmetric covering of a symmetric digraph D′ via a homomor-
phism ϕ if D is a covering of D′ via ϕ such that ∀a ∈ A(D), ϕ(Sym(a)) =
Sym(ϕ(a)). A digraph D is symmetric-covering-minimal if there does not exist
any digraph D′ not isomorphic to D such that D is a symmetric covering of D′.

Given two strongly connected digraphs D and D′, an interesting property
satisfied by any covering projection ϕ from D to D′ is that there exists q ∈ N

such that ∀x′ ∈ V (D′) ∪ A(D′), |ϕ−1(x′)| = q.

The notions of fibrations and coverings extend to labelled digraphs in a natu-
ral way: the homomorphisms must preserve the labelling. Examples of fibrations
and coverings are given in Figure 1.

Fibrations, Coverings and Automorphisms. We now describe some prop-
erties of the relations that exist between fibrations and the automorphisms of a
digraph. These results are described and proved in [7].

G/Γ (G)
1 2

BΓ (G)(G)
1 2

G
1 2 1

H/Γ (H)
1 2

BΓ (H)(H)
1 2

H

1 2

2 1

Fig. 1. The digraph G is fibred over BΓ (G)(G) via the homomorphism ϕG that maps
each vertex of G labelled i to the unique vertex labelled i of BΓ (G)(G). The digraph
H is a covering of BΓ (H)(H) via the homomorphism ϕH defined in the same way. The
digraph G/Γ (G) (resp. H/Γ (H)) is the digraph whose vertices and arcs correspond to
equivalence classes of vertices and arcs of G (resp. H) under the action of Γ (G) (resp.
Γ (H)).

An automorphism σ of a digraph G is an isomorphism from the digraph
G onto itself. Consider a subgroup Γ of the group Γ (G) = Aut(G) of the
automorphisms of a digraph G = (G, λ); we will denote by Id the identity
automorphism of G. The action of this group on G induces an equivalence
relation over the vertices and the arcs of G: for each x, x′ ∈ V (G)∪A(G), x ∼Γ x′

if there exists σ ∈ Γ such that σ(x) = x′. The equivalence class of x is called the
orbit of x and is denoted by [x]Γ . Recall that an automorphism of (G, λ) must
preserve the labelling, and therefore for all elements x1, x2 ∈ [x]Γ , λ(x1) = λ(x2).
If Γ = Γ (G), we will note x ∼ x′ (resp. [x]) for x ∼Γ x′ (resp. [x]Γ).

Remark 1. For all vertices v, v′ ∈ V (G), if v ∼Γ v′, then there is a bijection
between the incoming arcs of v and the incoming arcs of v′.

We will now describe two kinds of constructions. The first one allows us to
build a digraph BΓ (G) from a digraph G such that G is fibred over BΓ (G). The
second one allows to build the quotient-graph G/Γ . Examples are presented in
Figure 1 where Γ = Γ (G).

From the relation ∼Γ , we construct the directed graph BΓ (G) defined as
follows: V (BΓ (G)) is the set of the equivalence classes of V (G) under the action
of Γ and there are as many arcs from [v]Γ to [w]Γ as each vertex in [w]Γ has
predecessors in [v]Γ . Due to Remark 1, this does not depend on the choice of
the element of [w]Γ . We define the labelling ν of BΓ (G) by ν([v]Γ) = λ(v) for
each v ∈ V (G). We label the arcs from [v] to [w] with the labels of the arcs from
the elements of [v] to w in G. By Remark 1, there exists a fibration ϕ from G
to (BΓ (G), ν).

We consider also the quotient-graph G/Γ whose vertices and arcs are the
equivalence classes of the vertices and the arcs of G under the action of Γ and
whose labelling µ is defined by µ([x]Γ) = λ(x) for each x ∈ V (G)∪A(G). There
exists a natural surjective homomorphism from (BΓ (G), ν) to G/Γ which is the

identity on the vertices and which maps an arc a to [a]Γ (a can be seen as an
arc of G).

We say that a subgroup Γ of Γ (G) acts freely on G if for each x, y ∈ V (G)∪
A(G), there is at most one σ ∈ Γ such that σ(x) = y. Equivalently, Γ acts freely
on G if and only if for each σ ∈ Γ \ {Id}, σ has no fixpoint.

In the following, we will use a particular class of automorphisms: the class
of well-balanced automorphisms. These automorphisms have been introduced by
Bougé in [8] to study the importance of the guards in CSP through the symmetric
election problem. In [12], Palamidessi uses also well-balanced automorphisms to
study the same problem in order to give a hierarchy between different subsets
of the π-calculus. An automorphism σ of a digraph G is well-balanced if there
exists an integer q such that for each vertex or arc x of G, |{σk(x) | k ∈ N}| = q.
Equivalently, σ is well-balanced if and only if the subgroup Γσ generated by σ
acts freely on G.

The group Γ contains only well-balanced automorphisms if and only if Γ
acts freely on G. Thanks to this equivalence and the results of Boldi and Vigna
[7], we have the following property.

Proposition 1. Given any strongly connected digraph G, the quotient projec-

tion Γ : G → G/Γ is a covering projection if and only if for each σ ∈ Γ , σ is

well-balanced.

3 Impossibility Result

The following proposition gives a necessary condition that the distributed mo-
bile environment (G, E , p) must verify if there exists an election algorithm for
(G, E , p). This necessary condition is equivalent to the one presented in [3].

Proposition 2. Consider a graph G and an initial placement of the agents p.
If there exists a non-trivial well-balanced automorphism σ of the digraph G′ =
(Dir(G), χp), then there is no election algorithm over the graph G with the initial

placement of the agents p.

Using known results in distributed computing [6, 9, 13], we can show that in
the anonymous setting, i.e., when the agents can understand each other but do
not have distinct labels, there exists an election algorithm for an environment
(G, E , p) if and only if the labelled digraph G′ = (Dir(G), χp) is symmetric-
covering-minimal. Moreover, from Proposition 1, we know that if the symmetric
digraph G′ = (Dir(G), χp) admits a non-trivial well-balanced automorphism σ,
then G′ is a symmetric covering of G′/Γσ that is not isomorphic to G′.

Consequently, an interesting corollary of Proposition 2 is that if the election
problem cannot be solved on (G, E , p) in the qualitative setting, then it cannot be
solved on (G, E , p) in the anonymous setting. On the other hand, we will show in
the following that this necessary condition is also sufficient. Note that there exist
symmetric digraphs that are not symmetric-covering-minimal and that does not
admit any non-trivial well-balanced automorphism. It means that one can solve
the election problem in strictly more environments in the qualitative setting than
in the anonymous one.

4 An Effective Election Algorithm

4.1 How to order the equivalence classes?

We use the same ideas as Barrière et al. [3] to define a total order between
the different equivalent classes. The idea is to construct an ordering on the
unlabelled digraphs of size n; we extend it to digraphs labelled by elements of a
totally ordered set.

Consider a labelled digraph G = (G, λ) without multiple arcs where λ is a
labelling function from V (G) ∪ A(G) to a totally ordered set L with a minimal
element ⊥. We suppose that ∀x ∈ V (G) ∪ A(G), λ(x) ∈ L \ {⊥}.

Let n = |V (G)| and consider an enumeration function num of the vertices
(i.e., num is a one-to-one mapping from V (G) onto [1, n]). We say that num
is an increasing enumeration of the vertices if for all vertices v, v′ ∈ V (G),
if num(v) ≤ num(v′), then λ(v) ≤L λ(v′). Given an increasing enumeration
num, we define the adjacency matrix Mnum as follows: for all vertices v, v′,
Mnum[num(v), num(v′)] = ℓ, if there is an arc from v to v′ labelled by ℓ, and
Mnum[num(v), num(v′)] = ⊥ otherwise. To this matrix, we associate the word
w(Mnum) obtained by the concatenation of the n rows of Mnum.

To each vertex v ∈ V (G) (resp. arc a ∈ A(G)), we choose num such that
(num(v), w(Mnum)) (resp. (num(s(a)), num(t(a)), w(Mnum))) is minimum for
the lexicographic order and associate this value, denoted by π(v) (resp. π(a)), to
v (resp. a). Note that there exists an automorphism σ of G such that σ(x) = x′

if and only if π(x) = π(x′). Consequently, this induces a total ordering of the
equivalence classes of vertices and arcs: we will write [x′] ≺ [x] if π(x) is greater
than π(x′) in the lexicographic order.

Remark 2. In the following, we will show that all the agents agree on a total
order of the classes and all the agents use the same order. Actually, as it was
already explained in [3], even if the agents cannot agree on an a priori order over
the set of colors, they can agree on an order on the different classes, provided that
all the agents have the same representation of the graph (up to isomorphism).

In fact, we suppose that each agent has its own totally ordered set isomorphic
to (N,≤) and each agent can use its own way to compute its order: the algorithm
does not make any assumption on the way the order is implemented by each
agent.

4.2 An Election Algorithm

In this subsection, we describe our effective election algorithm. In a first phase
all the agents reconstruct the digraph (Dir(G), χp) and check that the election
problem can be solved on (G, E , p). Then, using its knowledge of the graph, each
agent constructs the equivalence classes induced by Γ ((Dir(G), χp)). During suc-
cessive rounds, using the order between the different classes defined above, some
agents become passive and get the label non-elected, whereas the active agents
mark some vertices and some arcs of the digraph to obtain a new labelling µ of
the digraph on which all the active agents agree. At the end of the computation,

the automorphism group of (Dir(G), µ) consists only of the identity and each
vertex has a unique label. At this point, there is exactly one active agent that
is elected. A high level description of the algorithm is presented in Algorithm 1.

Algorithm 1: The Election Algorithm

Every agent builds a map of the graph;
Synchronization;
if there exists a non-trivial well-balanced automorphism of G′ = (Dir(G), χp)
then

Every agent knows that it is impossible to solve the election problem;
else

Every agent marks as many vertices as possible;
Synchronization;
/* Initially, all the agents are active */
repeat

The active agents compute the classes of all the vertices and all the arcs;
The active agents give different numbers to different classes of vertices
and arcs;
if All the active agents are not in the same class then

Select active agents;
The passive agents take the label non-elected ;
The active agents mark the homebases of the passive agents;
Synchronization;

else if G′ is not a covering of BΓ (G′)(G
′) then

The active agents mark a class of vertices;
Synchronization;

else if G′ is not a covering of G′/Γ (G′) then
The active agents mark a class of arcs;
Synchronization;

else
/* In this case, there is exactly one active agent */
The active agent takes the label elected ;

until An agent is elected ;

A Synchronization Procedure. In the algorithm we describe below, we dis-
tinguish different rounds. An important point is that an active agent does not
enter in a new round if another active agent has not finished the previous one.
To be able to avoid this kind of situation, we synchronize the active agents.

Each agent can consistently distinguish its homebase; therefore, we can con-
struct an algorithm such that no agent needs to write anything on its homebase.
Moreover, we suppose that each agent has already built its own map of the graph
and does not need to write anything on any whiteboard in order to perform a
traversal of the graph.

In the following, the active agents will do some traversals of the network and
they will store the colors of the marks that appear on each vertex to construct
what we will call a colored map of the network. The marks that appear in a
colored map of an active agent will correspond to marks that have been put
by other active agents during the round (but it will not necessary contain all

the marks the active agents should put during this round). In the algorithm
described below, each active agent can know from a colored map if any other
active agent has marked all the vertices it should have marked during the round.
Furthermore, in each round of the algorithm, each agent will mark at least one
vertex (which is not its homebase).

In the synchronization procedure described below, some active agents will
have to wait on some particular vertices for other agents to put (resp. remove)
some marks. Each time an agent arrives on a place where it has to wait for
a mark to be put (resp. removed), it can immediately continue to execute the
procedure if this mark is present (resp. not present).

To synchronize the agents, we proceed as follows. During each round, each
active agent r executes the following instructions.

(1) The agent r marks some vertices (but not its homebase) according to the
computation rules of the round.

(2) The agent r does a traversal of the network and stores all the colors of the
marks that appear on each vertex to construct a colored map of the network.

(3) If there exists another active agent r′ that has not finished Step (1) (the
agent r can detect it from the colored map it has of the network), then the
agent r goes to the homebase of r′ and waits until the agent r′ puts a mark
on its homebase. Then the agent r does a traversal of the network and stores
all the colors of the marks that appear on each vertex in order to update its
colored map of the network.

(4) The agent r puts a mark on its homebase.
(5) The agent r does a traversal of the network and each time it arrives on the

homebase of another agent r′, it waits until the agent r′ marks its homebase.
(6) The agent r does a traversal of the network and it removes the marks it puts

during Step (1), but not the mark on its homebase.
(7) The agent r does a traversal of the network. Each time it arrives on a vertex

that has been marked by another active agent r′ during this round (but that
is not the homebase of r′), it waits until the agent r′ removes its mark.

(8) The agent r removes the mark it puts on its homebase.
(9) The agent r does a traversal of the network. Each time it arrives on the

homebase of an active agent r′, it waits until the agent r′ removes its mark
on its homebase.

We can note that the synchronization procedure enables also to erase all
the marks that have been put on the vertices during the round, i.e., when one
agent has finished Step (9) of a round, then all the marks that have been left by
the active agents during this round have been erased. The following proposition
ensures that the procedure is indeed a synchronization procedure.

Proposition 3. Each time an agent starts executing Step (1) of the i + 1th
round, then each active agent knows what vertices have been marked by the other

active agents during Step (1) of the ith round and all the marks that have been put

during the ith round have been removed. Moreover, the synchronization procedure

avoids any deadlock.

Initialization. During the first phase of the algorithm, each agent reconstructs
the graph with the position and the colors of the different homebases. Using the
whiteboards, each agent performs a depth first traversal of the graph.

Since each agent can distinguish all the homebases, we suppose that during
this traversal, the agents do not write anything on the whiteboard of any of
the homebases. Once an agent has reconstructed the whole graph, it performs
a traversal of the network using the information it has stored to erase what it
has written on the whiteboards. At this point, each agent puts a mark on the
homebase of another agent.

During this first phase, no agent has written anything on its homebase. Fur-
thermore, an agent has finished to perform this phase if and only if it has marked
the homebase of another agent and this can be checked from a colored map of
the network. Moreover, at the end of this phase, each agent has reconstructed
a map of the network and it knows the position of all the homebases. We can
therefore use the synchronization procedure defined above at this point.

If the digraph (Dir(G), χp) admits a well-balanced automorphism σ different
from Id, then each agent detects it and declares that the election problem is
unsolvable in this environment. We will now suppose that (Dir(G), χp) does not
admit such an automorphism.

Once the graph is known by all the agents, each agent tries to mark as many
vertices of the networks as possible. It does a traversal of the network and each
time it arrives on a vertex that is not a homebase, it performs one of the two
following actions. Either the whiteboard is blank and it puts a mark with its color
on the whiteboard, or there is already a mark on the whiteboard and it stores
the color of the mark. Once an agent has finished this traversal, it puts a mark
on the homebase of another agent. Again we use the synchronization procedure
at this point. Then each agent is aware of the different vertices marked by the
other agents during this round.

At the end of this phase, each agent reconstructs a graph where all the
vertices are colored (they belong to the agent that has this color) and it knows
the position and the color of the homebases of all the other agents.

How can the agents increase their territory? During the different phases
of the algorithm, some agents become passive whereas the others continue to
execute the protocol in order to elect one of them. In our algorithm, in order
to break the symmetry between the agents, all the vertices must belong to one
active agent, and all the active agents must agree on which agent a vertex belongs
to. During the initialization, each vertex is marked by one agent and we say that
it belongs to this agent. Once an agent becomes passive, the vertices that were
belonging to this agent must be given to another agent.

Once a selection between agents is done, the agents that become passive
take the label non-elected and become passive until the end of the algorithm,
whereas the others try to mark the homebases of these agents that have just
become passive. Each active agent knows what are the colors of the other active
agents. From its representation of the graph, each active agent can reach the
homebases of the passive agents.

The first agent that reaches such a homebase during this round puts a mark
with its color on the vertex. The other agents (there is already a mark on the
homebase when they reach it) store the color of the agent that owns this vertex
(i.e., the color of the mark). Again, at the end of its traversal of the graph, each
agent puts a mark on the homebase of another active agent. Therefore, each
active agent can detect from a colored map if another active agent has finished
this phase. Then the active agents apply the synchronization procedure.

If an agent has marked the homebase of a passive agent, then all the vertices
that were belonging to this passive agent belong now to this active agent. For
each vertex of the graph, all the active agents agree on the color of the agent
that owns this vertex.

How to refine the labelling µ? During the execution of the algorithm, the
agents mark vertices and arcs to break the symmetry that may exist in the
network. In this way, at each round, numbers will be associated to some vertices
and arcs and we will obtain a labelling of the graph µ. Initially, all the homebases
have the label 1 whereas all the other vertices have the label 0 and all the arcs
are labelled 0.

At the beginning of each round, from its representation (Dir(G), µ) of the
graph, each agent computes the value π(v) (resp. π(a)) for each vertex v ∈
V (Dir(G)) (resp. for each arc a ∈ A(Dir(G))). We say that two agents are
equivalent if their homebases are in the same equivalence class, and we use the
order ≺ on the homebases of the agents to order the classes of agents.

Since all the agents agree on the order to compare the equivalence classes,
we can use the following procedure. If there exist two vertices v, v′ such that
µ(v) = µ(v′) and π(v) 6= π(v′), then let m be the lowest number such that there
exist v, v′ with µ(v) = µ(v′) = m and [v] ≺ [v′]. Suppose that there exist exactly
j classes {[vi]|i ∈ [1, j]} such that µ(vi) = m and [v1] ≺ [v2] ≺ · · · ≺ [vj]. For
each vertex v ∈ [vi] with i < j, we define µ′(v) = q + i, where q is the greatest
label that appears on a vertex in (G, µ). The labels of the other vertices are not
changed.

We apply the same method to arcs using the order we have on the classes
of arcs, i.e., the lexicographic order over the π(a). Thanks to this procedure,
two arcs that are not in the same class are given distinct labels. We repeat this
procedure, until all the vertices (resp. all the arcs) that have the same label are
in the same equivalence class.

If some active agents do not own the same number of vertices in a given class.

We consider now a configuration such that two vertices (resp. arcs) in different
classes have different numbers. Consider a class of agents [r] and a class of
vertices [v]. We define NotBalanced([r], [v]) to be false if all the agents of [r]
own the same number of vertices in [v], and true otherwise. If there exist [r], [v]
such that NotBalanced([r], [v]) is true, then we apply the following technique
to split some class of vertices.

Consider the minimum class [r] of agents, according to ≺, such that there
exists a class [v] of vertices satisfying NotBalanced([r], [v]). Consider the mini-
mum class of vertices [v] such that NotBalanced([r], [v]) is true. In this case, we

give different numbers to the homebases of the agents that do not own the same
number of vertices in [v]. We subdivide the class [r] into a partition R1, . . . , Rj

such that the agents in Ri own strictly more vertices in [v] than the agents in
Ri′ when i < i′. Using the same technique as before, we give different numbers
to the homebases of the agents that are not in the same Ri and then obtain a
new representation of the digraph (Dir(G), µ′). Then, the agents try to refine
again this new labelling.

How to split the arc classes thanks to the colors of their ends? We will say that
an arc a belongs to an agent r, if r owns s(a) and t(a). Otherwise, the arc is
such that s(a) belongs to an agent r1 and t(a) to a distinct agent r2. We will
say that this arc is shared by r1 and r2. If there exists a class of arcs [a] such
that some arcs of [a] belong to some agents, whereas the other arcs are shared
by distinct agents, then we apply the following technique.

Consider a class of arcs a such that for each class [a′] ≺ [a], either [a′]
contains only arcs that belong to some agents or [a′] contains only arcs shared
by different agents. We suppose also that [a] contains arcs that belong to some
agents and arcs that are shared. All the arcs in [a] that are shared by distinct
agents are relabelled q + 1, where q is the greatest label that appears on an arc
in (Dir(G), µ). Then, the agents try to refine again this new labelling.

If some active agents are in different classes. At this point, if the active
agents are not in the same equivalence class, we are able to select some agents.
Consider all the equivalence classes of active agents that contains a minimal
number of agents. Among these classes, we select the class [r] such that π(v) is
minimal, where v is the homebase of r. The agents that do not belong to this
class take the label non-elected and become passive. The agents of the class [r]
remain active and try to increase their territory as explained above. Then they
try to refine again the labelling µ.

If G′ = (Dir(G), µ) is not a covering of BΓ (G′)(G
′). There exist some

configurations where it is impossible to select some agents just by using the
representation the agents have of the graph, because there is too much symmetry
in the graph. Nevertheless, we now explain how active agents can break these
symmetries by marking some vertices or arcs.

All the active agents agree on the graph G′ = (Dir(G), µ). All these agents
consider the automorphism group Γ (G′) and construct the graphs BΓ (G′)(G

′)
and G′/Γ (G′). We already know that G′ is fibred over BΓ (G′)(G

′). If G′ is not
a covering of BΓ (G′)(G

′), it implies that there exist two classes of vertices [v]
and [v′] such that |[v]| 6= |[v′]|. Let [r] be the class of the homebases of the active
agents.

Consider a class [v] such that for each class [v′] ≺ [v], |[v′]| = |[r]| and
|[v]| 6= |[r]|. We already know that each active agent owns the same number of
vertices in [v] and therefore |[r]| divides |[v]|. Each active agent then marks a
vertex it owns that is in [v]. An agent has finished this round if and only if it
has marked exactly one vertex in [v]: it can be detected from a colored map of
the graph. Then, the agents synchronize.

At the end of this round, all the agents give the number q + 1 to the vertices
that have just been marked, where q is the greatest label that appears on a
vertex in (Dir(G), µ). Using this new labelling µ′, the active agents try to refine
the labelling µ′, as explained above.

If G′ = (Dir(G), µ) is not a covering of G′/Γ (G′). We suppose now
that G′ is a covering of BΓ (G′)(G

′) but not of G′/Γ (G′). It means that all
the equivalence classes of vertices have the same size s, but there exists an
equivalence class of arcs [a] such that |[a]| > s. Instead of marking vertices, we
mark arcs in this round.

Each class [a] of arcs of G′ corresponds to exactly one arc in G′/Γ (G′).
Consider the class of arcs [a] such that for each class [a′] ≺ [a], |[a′]| = s but
|[a]| > s. We already know that each active agent owns exactly one vertex in
[s(a)] and one vertex in [t(a)]. Since |[a]| > s and since two arcs in the same
class are either both owned by an agent or both shared by distinct agents, we
know that each arc in [a] is shared.

To select arcs from [a], each agent r just chooses one arc ar in [a] such that
s(ar) belongs to r and then puts a mark with its color on t(ar). An agent has
finished this round if and only if it has marked exactly one vertex: it can be
detected from a colored map of the graph. Then, the agents synchronize. Once
an agent knows what vertices have been marked by the other agents, it knows
what are the arcs that have been marked.

At the end of this round, all the agents give the number q + 1 to the arcs
that have just been marked, where q is the greatest label that appears on an arc
in (Dir(G), µ). Using this new labelling µ′, the active agents try to refine again
the labelling µ′, as explained above.

If G′ is a covering of G′/Γ (G′). At this point, G′ = (Dir(G), µ) is a
covering of G′/Γ (G′). From Proposition 1, it implies that Γ (G′) contains only
well-balanced automorphisms, and since we already know that there is no well-
balanced isomorphism of (Dir(G), χp) different from Id, we have Γ (G′) = {Id}.
Consequently, there is exactly one active agent, since the set of active agents is
an equivalence class of the relation induced by Γ (G′) and this agent takes the
label elected.

4.3 The Characterization

In Section 3, we have shown that if the graph (Dir(G), χp) admits a well-
balanced automorphism, then it is impossible to solve the election problem on
(G, E , p). The algorithm described in Section 4.2 is an algorithm that answers
that it is impossible to solve the problem if the graph (Dir(G), χp) admits a
well-balanced automorphism, and otherwise it successfully elects an agent: it is
an effective algorithm. We have therefore proved the following theorems.

Theorem 1. There exists an election algorithm for a distributed mobile envi-

ronment (G, E , p) if and only if (Dir(G), χp) does not admit a non-trivial well-

balanced automorphism.

Theorem 2. Algorithm 1 is an effective election algorithm in the qualitative

world.

The traditional complexity measures for mobile agents are the number of
agents moves and the amount of time of a synchronous execution of the algo-
rithm, where in each round, each active agent traverses an edge.

In a distributed mobile environment (G, E , p) with |V (G)| = n, |E(G)| = m
and |E| = k, when executing Algorithm 1, the agents detect with O(mk) moves in
time O(m) if the election problem can be solved; if it is possible, they successfully
elects a leader with O(mn log k) moves in time O(mn).

References

1. D. Angluin. Local and global properties in networks of processors. In Proceedings

of the 12th Symposium on Theory of Computing, STOC’80, pages 82–93, 1980.
2. B. Awerbuch, M. Betke, R. Rivest, and M. Singh. Piecemeal graph exploration

by a mobile robot (extended abstract). In Proc. of the 8th annual conference on

Computational Learning Theory, COLT’95, pages 321–328. ACM Press, 1995.
3. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Can we elect if we cannot

compare? In Proc. of the 15th annual ACM Symposium on Parallel Algorithms

and Architectures, SPAA’03, pages 324–332. ACM Press, 2003.
4. L. Barrière, P. Flocchini, P. Fraigniaud, and N. Santoro. Rendezvous and election

of mobile agents: Impact of sense of direction. Theory of Computing Systems, to
appear.

5. M. Bender and D. Slonim. The power of team exploration: Two robots can learn
unlabeled directed graphs. In Proc. of the 35th annual Symposium on Foundations

of Computer Science, FOCS’94, pages 75–85, 1994.
6. P. Boldi, B. Codenotti, P. Gemmell, S. Shammah, J. Simon, and S. Vigna. Sym-

metry breaking in anonymous networks: Characterizations. In Proc. 4th Israeli

Symposium on Theory of Computing and Systems, pages 16–26. IEEE Press, 1996.
7. P. Boldi and S. Vigna. Fibrations of graphs. Discrete Math., 243:21–66, 2002.
8. L. Bougé. On the existence of symmetric algorithms to find leaders in networks of

communicating sequential processes. Acta Informatica, 25(2):179–201, 1988.
9. J. Chalopin and Y. Métivier. A bridge between the asynchronous message passing

model and local computations in graphs (extended abstract). In Proc. of Mathe-

matical Foundations of Computer Science, MFCS’05, volume 3618 of LNCS, pages
212–223, 2005.

10. S. Das, P. Flocchini, A.Nayak, and N. Santoro. Distributed exploration of an
unknown graph. In Proc. of the 12th international colloquium on Structural In-

formation and Communication Complexity, SIROCCO’05, volume 3499 of LNCS,
pages 99–114, 2005.

11. A. Dessmark, P. Fraigniaud, and A. Pelc. Deterministic rendezvous in graphs.
In Proc. of the 11th annual European Symposium on Algorithms, ESA’03, volume
2832 of LNCS, pages 184–195, 2003.

12. C. Palamidessi. Comparing the expressive power of the synchronous and the asyn-
chronous π-calculus. Mathematical Structures in Computer Science, 13(5):685–719,
2003.

13. M. Yamashita and T. Kameda. Computing on anonymous networks: Part i -
characterizing the solvable cases. IEEE Transactions on parallel and distributed

systems, 7(1):69–89, 1996.

