Local-to-Global Aspects in Metric Graph Theory and Distributed Computing

Jérémie Chalopin

LIS, CNRS & Aix-Marseille Université

02/10/2020

02/10/2020

Local-to-Global Aspects in Metric Graph Theory and Distributed Computing 1/47

"Local-to-Global ?"

Distributed Computing

- Local observations/actions
- Detection of global properties/Performing a global computation

"Local-to-Global ?"

Metric Graph Theory

- Graphs defined by metric properties similar to existing properties of classical metric geometries
- When can we check these properties locally ?
- Similar results exist in geometry: Cartan-Hadamard theorem
- These classes of graphs appear in other fields: concurrency theory, learning theory, phylogeny, geometric group theory

"Local-to-Global ?"

Metric Graph Theory

- Graphs defined by metric properties similar to existing properties of classical metric geometries
- When can we check these properties locally ?
- Similar results exist in geometry: Cartan-Hadamard theorem
- These classes of graphs appear in other fields: concurrency theory, learning theory, phylogeny, geometric group theory

A common tool

The notion of coverings is fundamental in both cases

An agent is moving along the edges of a graph
Goal: visit all the nodes and stop

An agent is moving along the edges of a graph
Goal: visit all the nodes and stop

An agent is moving along the edges of a graph
Goal: visit all the nodes and stop

How to navigate in the graph?

- Anonymous graph
- Port-numbering
- The agent knows its incoming port number
- It has an infinite memory

Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question

What graphs can we explore without information?

Exploration without information

Exploration of a graph G

Visit every node of G and stop

Question

What graphs can we explore without information?

An algorithm \mathcal{A} is an exploration algorithm for a family \mathcal{F}

- for every graph G, if A stops, then the agent has visited all the nodes of G
- ▶ for every graph $G \in \mathcal{F}$, \mathcal{A} visits all nodes of G and stops

6/47

If nodes can be marked :

every graph is explorable by DFS in O(m) moves

If nodes cannot be marked :

- Trees can be explored by DFS in O(n) moves
- Non tree graphs: it is impossible to detect when all nodes have been visited

Graph Coverings

Definition

A graph covering is a locally bijective homomorphism $\varphi: G \rightarrow H$

Lifting Lemma

Lifting Lemma (from Angluin)

If G is a graph cover of H, then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$

Lifting Lemma

Lifting Lemma (from Angluin)

If G is a graph cover of H, then an agent cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$

Corollary

If an exploration algorithm A stops in r steps in $H, r \ge |V(G)|$

02/10/2020

Local-to-Global Aspects in Metric Graph Theory and Distributed Computing

Explorable graphs without global information

G is explorable

- \iff *G* has a unique graph cover (itself)
- \iff *G* has no infinite graph cover
- \iff *G* is a tree

Mobile Agent with Binoculars

the agent sees the subgraph induced by its neighbors

Mobile Agent with Binoculars

- the agent sees the subgraph induced by its neighbors
- One can detect triangles
- Graph covering is no longer the good notion

Clique complexes

Definition

The clique complex X(G) of G is a simplicial complex s.t. the simplices of X(G) are the cliques of G

G is the 1-skeleton of X(G)

Coverings of Simplicial Complexes

Definition

A covering is a locally bijective simplicial map $\psi: X \to X'$

Lifting Lemma

If X(G) is a cover of X(H), then an agent with binoculars cannot decide if it starts on $v \in V(G)$ or on $\varphi(v) \in V(H)$

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$
- ► X(G) is simply connected if all cycles of G are contractible
- a cycle is contractible if it can be contracted to a point by a sequence of elementary deformations:
 - Pushing across a triangle
 - Deleting a pending edge

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$
- ► X(G) is simply connected if all cycles of G are contractible
- a cycle is contractible if it can be contracted to a point by a sequence of elementary deformations:
 - Pushing across a triangle
 - Deleting a pending edge

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$
- ► X(G) is simply connected if all cycles of G are contractible
- a cycle is contractible if it can be contracted to a point by a sequence of elementary deformations:
 - Pushing across a triangle
 - Deleting a pending edge

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$
- ► X(G) is simply connected if all cycles of G are contractible
- a cycle is contractible if it can be contracted to a point by a sequence of elementary deformations:
 - Pushing across a triangle
 - Deleting a pending edge

- Any complex X has a universal cover X̃ such that if Y is a cover of X then X̃ is a cover of Y
- $\blacktriangleright \ \widetilde{X} = X \iff X \text{ is simply connected}$
- ► X(G) is simply connected if all cycles of G are contractible
- a cycle is contractible if it can be contracted to a point by a sequence of elementary deformations:
 - Pushing across a triangle
 - Deleting a pending edge

Exploration with binoculars: Characterization

Theorem (C., Godard, Naudin '15)

G is explorable with binoculars $\iff \widetilde{X}(G)$ is finite In particular, *G* is explorable if X(G) is simply connected

- a large family of graphs: chordal graphs, (weakly) bridged graphs, Helly graphs, cop-win graphs, triangulations of the (projective) plane, ...
- a Universal Exploration Algorithm
- No efficient universal exploration algorithm: the exploration time cannot be bounded by a computable function

Exploration with binoculars: Characterization

Theorem (C., Godard, Naudin '15)

G is explorable with binoculars $\iff \widetilde{X}(G)$ is finite In particular, *G* is explorable if X(G) is simply connected

- a large family of graphs: chordal graphs, (weakly) bridged graphs, Helly graphs, cop-win graphs, triangulations of the (projective) plane, ...
- a Universal Exploration Algorithm
- No efficient universal exploration algorithm: the exploration time cannot be bounded by a computable function

What subclasses can be explored efficiently ?

Theorem (C., Godard, Naudin '17)

Weetman graphs can be explored in linear time

chordal graphs, (weakly) bridged graphs, Helly graphs

15/47

Local-to-Global Characterizations of Classes of Graphs

Definition

A family \mathcal{F} of subsets of a ground set X has the Helly Property if for any $\mathcal{F}' \subseteq \mathcal{F}$,

$$orall {old S}, {old S}' \in {\mathcal F}', {old S} \cap {old S}'
eq \emptyset \iff igcap_{{old S} \in {\mathcal F}'} {old S}
eq \emptyset$$

Definition

A family \mathcal{F} of subsets of a ground set X has the Helly Property if for any $\mathcal{F}' \subseteq \mathcal{F}$,

$$orall {old S}, {old S}' \in {\mathcal F}', {old S} \cap {old S}'
eq \emptyset \iff igcap_{{old S} \in {\mathcal F}'} {old S}
eq \emptyset$$

Definition

A family \mathcal{F} of subsets of a ground set X has the Helly Property if for any $\mathcal{F}' \subseteq \mathcal{F}$,

$$orall oldsymbol{S}, oldsymbol{S}' \in \mathcal{F}', oldsymbol{S} \cap oldsymbol{S}'
eq \emptyset \iff igcap_{oldsymbol{S} \in \mathcal{F}'} oldsymbol{S}
eq \emptyset$$

02/10/2020

Definition

A family \mathcal{F} of subsets of a ground set X has the Helly Property if for any $\mathcal{F}' \subseteq \mathcal{F}$,

$$orall oldsymbol{S}, oldsymbol{S}' \in \mathcal{F}', oldsymbol{S} \cap oldsymbol{S}'
eq \emptyset \iff igcap_{oldsymbol{S} \in \mathcal{F}'} oldsymbol{S}
eq \emptyset$$

• Axis-parallel boxes in \mathbb{R}^d

Helly, 1-Helly and clique-Helly Graphs

Definitions

▶ A graph *G* is (ball-)Helly if its family of balls $\{B_r(v) \mid v \in V(G), r \in \mathbb{N}\}$ has the Helly property

Helly, 1-Helly and clique-Helly Graphs

Definitions

▶ A graph *G* is (ball-)Helly if its family of balls $\{B_r(v) \mid v \in V(G), r \in \mathbb{N}\}$ has the Helly property

Helly, 1-Helly and clique-Helly Graphs

Definitions

- ▶ A graph *G* is (ball-)Helly if its family of balls $\{B_r(v) \mid v \in V(G), r \in \mathbb{N}\}$ has the Helly property
- ► A graph *G* is 1-Helly if its family of unit balls $\{B_1(v) \mid v \in V(G)\}$ has the Helly property

Helly, 1-Helly and clique-Helly Graphs

Definitions

- ▶ A graph *G* is (ball-)Helly if its family of balls $\{B_r(v) \mid v \in V(G), r \in \mathbb{N}\}$ has the Helly property
- ► A graph *G* is 1-Helly if its family of unit balls $\{B_1(v) \mid v \in V(G)\}$ has the Helly property
- A graph G is clique-Helly if the family of maximal cliques of G has the Helly property

Helly, 1-Helly and clique-Helly Graphs

Definitions

- ▶ A graph *G* is (ball-)Helly if its family of balls $\{B_r(v) \mid v \in V(G), r \in \mathbb{N}\}$ has the Helly property
- ► A graph *G* is 1-Helly if its family of unit balls $\{B_1(v) \mid v \in V(G)\}$ has the Helly property
- A graph G is clique-Helly if the family of maximal cliques of G has the Helly property

Helly, 1-Helly and clique-Helly graphs

Remarks

- $\blacktriangleright \text{ Helly } \Longrightarrow \text{ 1-Helly}$
- \blacktriangleright 1-Helly \implies clique-Helly
- being 1-Helly or clique-Helly is a local property
- being Helly is a global property
- trees are Helly graphs
- ► cycles C_n are not Helly when n ≥ 4 but they are clique-Helly and even 1-Helly when n ≥ 7.

Local-to-Global Characterization

We cannot characterize Helly graphs using only local properties.

locally a cycle and a long path look the same

Local-to-Global Characterization

We cannot characterize Helly graphs using only local properties.

locally a cycle and a long path look the same

Theorem (C., Chepoi, Hirai, Osajda '17)

G is Helly \iff G is clique-Helly and X(G) is simply connected

We characterize a global metric condition by local conditions and a global topological condition

This answers a question of [Prisner '92; Larrión, Pizaña, Villarroel-Flores '10, Chepoi]

Characterization of Helly Graphs

Theorem

For a graph G, the followings are equivalent

- (1) G is Helly
- (2) G is 1-Helly and weakly modular
- (3) G is clique-Helly and cop-win

[Bandelt Pesch'89]

- [Bandelt-Prisner'91]
- (4) G is clique-Helly and X(G) is simply connected

Characterization of Helly Graphs

Theorem

For a graph G, the followings are equivalent

- (1) G is Helly
- (2) G is 1-Helly and weakly modular
- (3) G is clique-Helly and cop-win

[Bandelt Pesch'89] [Bandelt-Prisner'91]

(4) G is clique-Helly and X(G) is simply connected

The difficult part of the proof is (4) \implies (2)

Proposition

If G is a clique-Helly graph, the 1-skeleton \widetilde{G} of $\widetilde{X}(G)$ is weakly modular and 1-Helly

Proposition

If G is a clique-Helly graph, the 1-skeleton \widetilde{G} of $\widetilde{X}(G)$ is weakly modular and 1-Helly

We build inductively the universal cover $\widetilde{X}(G)$ of X(G) from a basepoint \widetilde{v}

We prove some properties w.r.t \tilde{v} and use the unicity of $\tilde{X}(G)$

Other Local-to-Global Characaterizations

Previous characterizations proved via disk diagrams:

- Median graphs
 [Chepoi '00]
- △ (Weakly) Bridged graphs [Chepoi '00; Chepoi, Osajda '15]

Characterizations proved via universal covers:

- △□ Basis graphs of matroids (conjectured by [Maurer '73])
- riangle (Weakly) modular graphs
 - \triangle Helly graphs
 - \triangle Prime pre-median graphs
- △□ Dual-Polar graphs

[C., Chepoi, Osajda '15]

- [C., Chepoi, Hirai, Osajda '17]
- △□ Bucolic graphs [Brešar, C., Chepoi, Gologranc, Osajda '13]

Median Graphs and Event Structures

Median graphs

Definition

A graph G = (V, E) is median if for all $u, v, w \in V$, there exists a unique $x \in V$ lying on a (u, v)-shortest path, a (u, w)-shortest path, and a (v, w)-shortest path

Hyperplanes [Sageev]

In a median graph G, the Djoković-Winkler relation Θ is defined as follows:

- $e_1 \Theta_1 e_2$ if e_1 and e_2 are two opposite edges of a square
- $\blacktriangleright \Theta = \Theta_1^*$
- a hyperplane of G is an equivalence class of Θ

Median Graphs and Event Structures

Event structures are a model of concurrent computation Theorem (Barthélémy and Constantin '93)

- the domain of an event structure is a pointed median graph
- Any pointed median graph is the domain of an event structure

Domains of Regular Event Structures

An event structure \mathcal{E} is regular if in its domain $D(\mathcal{E})$, the degree is bounded and there is a finite number of equivalence classes of futures

Idea: when considering the executions of a finite state system (like finite state automata or 1-safe Petri nets), there should be some regularity

Regular Nice Labelings

A nice labeling λ is a coloring of the edges of $D(\mathcal{E})$

- two edges with the same origin have distinct colors
- ► two opposite edges of a square have the same color A nice labeling is regular if in $D(\mathcal{E})$, there is a finite number of equivalence classes of labeled futures

Thiagarajan's regularity conjecture

Thiagarajan's regularity conjecture '96 (reworded)

Any regular event structure admits a regular nice labeling

Thiagarajan's regularity conjecture

Thiagarajan's regularity conjecture '96 (reworded)

Any regular event structure admits a regular nice labeling

Our results (C., Chepoi '17 & '19)

- The conjecture is false
- A characterization of event structures admitting a regular nice labeling
- We disprove another conjecture of Thiagarajan about the decidability of the MSO theory of regular labeled event structures

CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected

CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected

Theorem (Chepoi '00)

Median graphs are exactly the 1-skeletons of CAT(0) cube complexes

Constructing Event Structures from NPC complexes

- Starting from a finite NPC cube complex X, its universal cover X is a CAT(0) cube complex
- We have a finite number of equivalence classes of vertices in X up to isomorphism

Constructing Event Structures from NPC complexes

- Starting from a finite NPC cube complex X, its universal cover X is a CAT(0) cube complex
- We have a finite number of equivalence classes of vertices in X up to isomorphism
- Problem: we need to have some orientation on the edges to get the domain of an event structure

Directed NPC complexes

A directed NPC complex is a complex such that each edge is directed in such a way that two opposite edges of a square have the same direction

- Starting from a finite directed NPC complex X, we construct its universal cover X
- We have a finite number of classes of futures
- But vertices can have an infinite past ...

- Starting from a finite directed NPC complex X, we construct its universal cover \widetilde{X}
- We have a finite number of classes of futures
- We cut along hyperplanes

- Starting from a finite directed NPC complex X, we construct its universal cover X
- We have a finite number of classes of futures
- We cut along hyperplanes

- Starting from a finite directed NPC complex X, we construct its universal cover X
- We have a finite number of classes of futures
- We cut along hyperplanes
- We have constructed a pointed CAT(0) cube complex \widetilde{X}_{ν_0} , i.e., the domain of an event structure
- The number of classes of futures is bounded by |V(X)|

Wise's directed NPC complex X

A colored directed NPC complex with 1 vertex, 2 "horizontal" edges (x and y), 3 "vertical" edges (a, b, and c), 6 squares

- it is a directed NPC square complex
- Colors have nothing to do with a nice labeling
- We encode the colors by a trick to get a (colorless) directed NPC complex W
- We construct the domain \widetilde{W}_{ν} of a regular event structure

An aperiodic tiling in the universal cover \widetilde{X} of X

In the universal cover \widetilde{X} of X, the quarter of plane defined by y^{ω} and c^{ω} is aperiodic

Proposition (Wise '96)

All horizontal words starting on the side of the quarter of plane are distinct

An aperiodic tiling in the universal cover \widetilde{X} of X

In the universal cover \widetilde{X} of X, the quarter of plane defined by y^{ω} and c^{ω} is aperiodic

Theorem (C., Chepoi '17)

 \widetilde{W}_{v} does not admit a regular nice labeling

On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely [Haglund, Wise '08]

- (a) no self-intersection
- (b) no 1-sided hyperplane
- (c) no direct self-osculation
- (d) no interosculation

On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely [Haglund, Wise '08]

Theorem (C., Chepoi '19)

 If X is a finite special cube complex, then X
_v has a regular nice labeling

If a domain D(E) has a regular nice labeling, then D(E) ≃ X̃_v for some finite special cube complex X

Cop and Robber Game and Hyperbolicity

Cop & Robber Game with Speeds

A game between one cop C moving at speed s' and one robber R moving at speed s

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most s' edges
- R traverses at most s edges

Winning Condition:

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

- C has speed s' = 1
- R has speed s = 2

Cop & Robber Game with Speeds

A game between one cop C moving at speed s' and one robber R moving at speed s

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most s' edges
- R traverses at most s edges

Winning Condition:

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

- C has speed s' = 1
- R has speed s = 2

Cop & Robber Game with Speeds

A game between one cop C moving at speed s' and one robber R moving at speed s

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most s' edges
- R traverses at most s edges

Winning Condition:

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

- C has speed s' = 1
- R has speed s = 2
Cop & Robber Game with Speeds

A game between one cop C moving at speed s' and one robber R moving at speed s

Initialization:

- C chooses a vertex
- R chooses a vertex

Step-by-step:

- C traverses at most s' edges
- R traverses at most s edges

Winning Condition:

- C wins if it is on the same vertex as R
- R wins if it can avoid C forever

- C has speed s' = 1
- R has speed s = 2

(s, s')-Cop-win Graphs

A graph *G* is (s,s')-cop-win if **C** (moving at speed s') can win whatever **R** (moving at speed s) does

- If s = s' = 1, this is the classical Cop and Robber game [Nowakowski and Winkler '83; Quilliot '83]
 - cop-win graphs are exactly the dismantlable graphs
 - chordal, (weakly) bridged, Helly graphs are cop-win
- If s = s', this is the classical game played in G^s
- If s < s', every graph is (s,s')-cop-win</p>

Question

What are the (s, s')-cop-win graphs with s > s'?

(s, s')-Cop-win Graphs

A graph *G* is (s,s')-cop-win if **C** (moving at speed s') can win whatever **R** (moving at speed s) does

- If s = s' = 1, this is the classical Cop and Robber game [Nowakowski and Winkler '83; Quilliot '83]
 - cop-win graphs are exactly the dismantlable graphs
 - chordal, (weakly) bridged, Helly graphs are cop-win
- If s = s', this is the classical game played in G^s
- If s < s', every graph is (s,s')-cop-win</p>

Question

What are the (s, s')-cop-win graphs with s > s'?

A characterization of (s,s')-cop-win graphs
 [C., Chepoi, Nisse, Vaxès '11]
 (in the same spirit as the characterization of cop-win
 graphs when s = s' = 1)

δ -hyperbolic graphs [Gromov]

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$

The hyperbolicity $\delta^*(G)$ of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic

δ -hyperbolic graphs [Gromov]

A graph (or a metric space) is δ -hyperbolic if for every four points a, b, c, d,

 $d(a,b)+d(c,d) \leq \max\{d(a,c)+d(b,d),d(a,d)+d(b,c)\}+2\delta$

The hyperbolicity $\delta^*(G)$ of a graph *G* is the minimal value of δ such that *G* is δ -hyperbolic

Remark

Many definitions of δ -hyperbolicity; equivalent up to a multiplicative factor $\delta^*(G)$ measures how *G* is metrically close from a tree

Hyperbolic graphs are (**s**, **s**')-cop-win graphs

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s + 2\delta)$ -cop-win

Theorem (C., Chepoi, Papasoglu, Pecatte '14)

G is (s, s-1)-cop-win \implies G is $64s^2$ -hyperbolic

Hyperbolic graphs are (s, s')-cop-win graphs

Proposition (from Chepoi, Estellon '07)

Any δ -hyperbolic graph is $(2s, s + 2\delta)$ -cop-win

Theorem (C., Chepoi, Papasoglu, Pecatte '14)

G is (s, s - 1)-cop-win \implies G is $64s^2$ -hyperbolic

We use the following theorem

Theorem (Gromov)

Hyperbolic graphs are the graphs satisfying a linear isoperimetric inequality

If we consider the small cycles of G as 2-dimensional cells, each cycle of G can be contracted to a point with a linear number of elementary deformations

Approximating $\delta^*(G)$

Theorem (C., Chepoi, Papasoglu, Pecatte '14)

One can compute a O(1)-approximation of $\delta^*(G)$ in $O(n^2)$

- a "local" algorithm once a BFS has been computed
- the approximation factor is large (1569)
- existing algorithms had a better approximation factor, but a worse complexity

• a
$$(2 + \epsilon)$$
-approx. in $O(\frac{1}{\epsilon}n^{2.38})$ [Duan '14]

Approximating $\delta^*(G)$

Theorem (C., Chepoi, Papasoglu, Pecatte '14)

One can compute a O(1)-approximation of $\delta^*(G)$ in $O(n^2)$

- a "local" algorithm once a BFS has been computed
- the approximation factor is large (1569)
- existing algorithms had a better approximation factor, but a worse complexity

• a
$$(2 + \epsilon)$$
-approx. in $O(\frac{1}{\epsilon}n^{2.38})$ [Duan '14]

Theorem (C., Chepoi, Dragan, Ducoffe, Mohammed, Vaxès '18)

One can compute an 8-approximation of $\delta^*(G)$ in $O(n^2)$

a simple algorithm also based on a BFS, but not "local"

Open Questions

Distributed Computing

Graph Exploration with binoculars

- What happens if we enlarge the vision of the agent?
 - we believe the results would be qualitatively the same
- Find large subclasses that can be explored more efficiently (with a linear or polynomial number of moves)
 - Weakly modular graphs, basis graphs of matroids
 - \blacktriangleright δ -hyperbolic graphs

Distributed Computing

What properties can be computed locally with a BFS

- With a BFS at hand, one can distinguish 1569δ-hyperbolic graphs from non δ-hyperbolic graphs by looking at a O(δ)-ball around each node
- Can we approximate $\delta^*(G)$ in such a way ?
- What other global properties can we verify once a BFS has been computed?
 - recognition of Helly graphs and bridged graphs
 - What about other classes of graphs?

Metric classes of graphs

Can we find other local-to-global characterizations

For a class containing weakly modular graphs and basis graphs of matroids?

► For graphs with convex balls? (△△)

Metric classes of graphs

- Can we find other local-to-global characterizations
 - For a class containing weakly modular graphs and basis graphs of matroids?
 - ► For graphs with convex balls? (△△)
- For several classes, we can associate cell complexes of higher dimension and establish some nice properties
 - Can we associate a canonical cell complex of higher dimension to a weakly modular graph?
 - When are the cell complexes contractible?
 - When are the groups acting on such complexes (bi)automatic?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite special cube complexes correspond to event structures with a regular nice labeling
 - Do finite NPC complexes correspond to regular event structures?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite special cube complexes correspond to event structures with a regular nice labeling
 - Do finite NPC complexes correspond to regular event structures?
- Do event structures with hyperbolic domains admits a regular nice labeling?
 - true when the domain is context-free
 - [Badouel, Darondeau, Raoult '99]
 - true for the domains X
 v obtained from finite NPC complexes X with a hyperbolic universal cover X
 [Agol '13]

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite special cube complexes correspond to event structures with a regular nice labeling
 - Do finite NPC complexes correspond to regular event structures?
- Do event structures with hyperbolic domains admits a regular nice labeling?
 - true when the domain is context-free
 - [Badouel, Darondeau, Raoult '99]
 - true for the domains X
 v obtained from finite NPC complexes X with a hyperbolic universal cover X [Agol '13]
- Can we decide if a regular event structure admits a regular nice labelling?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite special cube complexes correspond to event structures with a regular nice labeling
 - Do finite NPC complexes correspond to regular event structures?
- Do event structures with hyperbolic domains admits a regular nice labeling?
 - true when the domain is context-free
 - [Badouel, Darondeau, Raoult '99]
 - true for the domains X
 ^v obtained from finite NPC complexes X with a hyperbolic universal cover X
 [×] [Agol '13]
- Can we decide if a regular event structure admits a regular nice labelling?

Thank you! Questions?