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ML Revolutionizes Industry 

	
	
	
	

Machine 
Learning 

Applications Smart eCommerce 
Product recommendations, 
demand forecasting, search, 
classification, matching, etc. Digital Marketing 

User conversion prediction, 
 Ad scoring, customer 
targeting, brand tracking, viral 
marketing analysis, etc. 

Manufacturing 
optimizing fab operations, automating 
quality testing, inventory, asset, and supply 
chain management, predictive 
maintenance, etc. 

Security and Surveillance 
Facial and character recognition, automatic 
fraud detection, plagiarism detection, 
DDoS detection, etc. 

Personal assistant 
Predictive help, automatic 
speech recognition, dialog 
management, etc. 

Autonomous vehicles 

eHealth 
Automate screening tool for 
medical imagery diagnostics, 
bio-augmentation, etc. 
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Hot Topic for DB community 

 
 

ICDE	2016	
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[VLDB’17 Keynote ] 

[workshop@SIGMOD] 

[SIGMOD’17 Tutorial] 

[SIGMOD Record 2016] 

[SIGMOD’15 Panel] 

[SIGMOD Blog, Feb. 2018] 



Introduction 
Many problems in data management need precise 
knowledge and reasoning about information content 
and linkage for tasks as: 

–  Information and structure extraction 
–  Data curation 
–  Data integration 
–  Querying & DB administration 
–  Privacy preservation 
–  Data storage 

Many DM tasks can be reformulated as a classification 
or an optimization problem. 
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Our focus 



Tutorial Goals 

•  Offer a comprehensive review of ML applications to 
specific areas of data management: data curation, 
integration, querying, and DB tuning 

•  Analyze when and how ML might be leveraged for 
developing new areas of data management  

•  Analyze how data management could help ML 
workflows and data pipelines and contribute to ML 
advances 
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Our Tutorial is NOT 

	
	
	
	

•  A tutorial on ML pipelines, systems or techniques 
         è  [Kumar, Boehm, Yang, Tutorial SIGMOD’17]  
          [Polyzotis et al., Tutorial SIGMOD’17] 

 

•  Not trying to cover all domain-specific methods 

•  Not specific to data integration or curation
       è[Dong, Rekatsinas,  coming Tutorial SIGMOD’18]  

 

•  Not specific to Deep Learning 

•  Not exhaustive for the sake of conciseness 
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Our Focus: ML applications to DM	

LINKAGE 

REPAIR 

FUSION 

DATA MANAGEMENT TASKS 

Tutorial Part I 
(morning) 
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20	mn	

20	mn	

20	mn	

DATA	

SCHEMA MAPPING & 
TRANSFORMATION 

Tutorial Part 1I 
(afternoon) 

SCHEMA	&	SYSTEM	

30		mn	

40	mn	
QUERYING & 

SYSTEM-ORIENTED 
TASKS 



Main Takeaways 

	
	
	
	

•  Roadmap of existing ML-powered data 
management solutions 

•  Overview of open research problems 

•  Directions for cross-fertilization in ML and DB 
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ML for Data Management: 

 A Round Trip 
 

PART I 
Laure Berti-Equille 

  
 



Outline 
Introduction 

• Motivations 
•  SWOT Analysis 

Part 1- ML-Powered Data Curation 
•  Record Linkage, Deduplication, Entity Resolution 
•  Error Repair and Pattern Enforcement 
• Data and Knowledge Fusion   
•  Concluding Remarks and Open Issues 
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SWOT Analysis (1) 
 

STRENGTHS 

13 

WEAKNESSES 

THREATS 

 

OPPORTUNITIES 
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SWOT Analysis (2) 

STRENGTHS 
 
1. Leverage diverse signals/

data with semantically 
rich representations 

 
 
 
 
 
 

2. Various techniques for 
learning representations 

EXAMPLES 
 
To manage multimedia and cross-modal data: 
•  Information extraction, Slot Filling, KB Construction 

[Shin et al., 2015][Wu et al., SIGMOD’18] 
•  Cross-modal information retrieval  
•  Complex event summarization 
•  Cross-modal synthesis of medical images  
•  Automatic image/video labeling 
 
 
 
Embeddings, multiple views,  hierarchical 
representations  
•  Large-scale networks representation 

•  Text representation and classification  
•  Recommendation 
•  Link prediction 
•  Visualization 
 14 

[Tang, KDD’17 tutorial] 
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SWOT Analysis (3) 

STRENGTHS 
 
3. Optimization 

4. Cost reduction 

5. Good alternative to 
heuristics 

EXAMPLES 
 
To deduplicate, repair, or fuse data: 
•  SCARE [Yakout et al., 2013] 
•  HoloClean [Rekatsinas et al., 2017] 
•  SLiMFast [Jogleakr et al., 2017] 

To build large-scale knowledge graph:  
•  ML-based relation extraction can automatically 

generate large amount of annotated data and 
extract features via distant supervision [Mintz 
et al., 2009] reducing annotating cost 

 

To optimize queries & tune DB: 
•  Complicated heuristics for estimating 

selectivity and query plan cost could be 
replaced and learn dynamically 

•  Regression-based automatic profiling/tuning 
(demo Dione [Zacheilas et al., ICDE’18] 

15 

 (cf.  Part II) 
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SWOT Analysis (4) 

16 

WEAKNESSES 
 
1.  Obtaining training data is costly 
 

https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale  

EXAMPLES 
 
•  Data annotation and preprocessing 

bottlenecks: For self-driving cars, 3 million 
miles of driving data have to be annotated.  



17 17 

SWOT Analysis (5) 

17 

WEAKNESSES 
 
1.  Obtaining training data is costly 

2.  Finding or coding evidences into 
features is hard 

 

EXAMPLES 
 
•  Data annotation and preprocessing 

bottlenecks 
Ø  Training data generation: Snorkel [Ratner et al., 

NIPS’17] 
Ø  Crowdsourcing automation for labeling training data 

suffers from inconsistent quality because expertise is 
hard to get. 

Ø  Data integration and curation are required but 
generally ad-hoc to get clean training data with well-
defined features relevant for the ML models.  

•  Deep model training is computationally-
expensive. Techniques  for “Learning to learn”, 
and hyper-parameter optimization can multiply 
training computation by 5-1000X. [Marcus, Arxiv, 
2018] 

•  Understand the decisions of Convolutional 
Neural Network is not straightforward 

Human beings usually cannot fully trust a network, 
unless it can explain its logic for decisions (NIPS 2017 
Interpretable ML Symposium: http://interpretable.ml/ ) 

 

 
4.  Model interpretability is limited 

 
 

3.  Scaling to Terabytes-size datasets 
with millions of variables is not easy 

 (cf.  Part II) 
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SWOT Analysis (6) 

18 

OPPORTUNITIES 
 
1.  Revisit DBMS design, techniques 

and the whole “DBMS 
abstraction” [Dittrich, Keynote VLDB’17] 

 

 
 
2.  Apply core-DB technologies to 

ML workloads 

 
   

EXAMPLES 
 

 To improve components of a DB system:  
•  Learned Index structure [Kraska et al., 2017] 
•  NoDBA project [Sharma et al., 2018]           

using reinforcement learning to tune a 
database as a virtual database administrator 

       
 Automated testing of DB applications:  

 ETL regression testing [Dzakovic, XLDB’18]  
 When releasing ETL upgrades, the stakes are high: a 
single defect can spoil the data in the DB, and the 
worst-case recovery from a backup would take days 

 
Principled data curation and preprocessing for 
ML 

“ML hardware is at its infancy.”  
[Dean, NIPS 2017]  

http://learningsys.org/nips17/assets/slides/dean-nips17.pdf  
What about ML DBMS? 
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SWOT Analysis (7) 

19 

THREATS 
 

1.  Learning from dirty data is risky  

 

Garbage  
Out 

Garbage 
In 

èPrincipled data curation  
èFeature importance evaluation 
èGood preprocessing : Under/over-sampling, SMOTE or boosting  
 
 

  
 
 
 

2. Bad feature engineering 
3. Minority class problem in unbalanced dataset 
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SWOT Analysis (8) 

20 

Learning from noisy labels is a hot topic in ML 
 [Natarajan et al., NIPS’13] 

corrupted data ρ=.2    ρ=.4 rate par class 
 
 
 
 
 
 
 

noise-free data  

 
     C-SVM Results    98.5% Accuracy 
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SWOT Analysis (9) 
 

21 

           
4.  Adversarial Learning 
[Xiao et al., Neurocomputing 2014][Biggio et al., ICML’12] 

Label flip attacks 
Poisoning Attacks on SVM 

THREATS 
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SWOT Analysis:  A Summary (10) 
 

STRENGTHS 

1.  Leverage diverse signals/data with 
semantically rich representations  

2.  Various techniques for learning 
representations 

3.  Good alternative to heuristics 
4.  Optimization with objective functions 
5.  Reduction of annotating cost 

22 

WEAKNESSES 
 
1.  Training data annotation and preprocessing  is 

costly 
2.  Finding/coding evidences into features is hard 
3.  Scaling to TB-size datasets with millions of 

variables is challenging 
4.  Model interpretability can be limited 

THREATS 

1.  Learning from dirty data is risky 
2.  Bad feature engineering 
3.  Minority class problem in unbalanced dataset 
4.  Adversarial Learning 

OPPORTUNITIES 

1.  Revisit design, techniques, and “DBMS 
abstraction” 

2.  Apply core-DB technologies to ML 
workloads 
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Outline 
Introduction 

• Motivations 
•  SWOT Analysis 

Part 1- ML-Powered Data Curation 
•  Record Linkage, Entity Resolution, Deduplication  
•  Error Repair and Pattern Enforcement 
• Data and Knowledge Fusion   
•  Concluding Remarks and Open Issues 
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Record Linkage (RL): Generic Workflow 

Database R 

Database S 

Cleaning 
Standardization 

Blocking 

Record pair 
comparison 

Attribute selection 

Decision Model 

Match Potential Match Non Match 

L U

Name	 SSN	 Addr	

Jack Khan 435-223-129 Marple St 

Hans Ford 354-564-339 Clover Bd 

Tom Hack 235-557-689 Main St 

… … … 

Name	 SSN	 Addr	

Will Forth 354-564-339 Ada Bd 

Jacky Khan 435-232-129 Marple Street 

Dom Hack 235-575-689 Main Street 

… … … 

[Fellegi, Sunter, 1969] 
[Christen, 2012] 

R X S 

RL(pair) 

{pairs}  

{comparison vectors }  

Linkage decision: RL(pair) = ---------------------------------------------- P(vector I pair � Match)  
P(vector I pair � Non Match)  

•  Hashing 
•  Sorted keys 
•  Sorted NN 
•  (Multiple) Windowing 
•  Clustering 

•  Token-based : N-grams… 
•  Distance-based: Jaro, Edit, 

Levenshtein, Soundex 
•  Domain-dependent 

24 
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ML for Entity Resolution (ER) 
 

[Getoor, Machanavajjhala, Tutorial VLDB’12]   

25 

[Christen, 2012] 

Blocking Decision Model 

Supervised Learning Unsupervised Learning Active Learning 
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ML-based ER approaches (1) 
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Attribute-clustering blocking  [Papadakis et al., TKDE 2013] 

Block-clustering       [Fisher et al., KDD’15] 
 
 
Learning blockers          [Bilenko et al., ICDM’06] 
 
 
 
Crowdsourcing   [Wang et al., VLDB’12][Gokhale et al., SIGMOD’14] 

 

Supervised 

Unsuper- 
vised 

Active 

Blocking 
[Papadakis, Palpanas, Tutorial ICDE’16] 
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ML-based ER approaches (2) 

ML Variants of the Fellegi-Sunter model 
Clustering  [Chaudhuri et al., ICDE’05][Hassanzadeh et al., PVLDB’09] 

Collective ER     [Battacharya, Getoor, TKDD’07] 

 
Regression Classification   [Hu et al, 2017] 

Support Vector Machines  [Bilenko, Mooney, KDD’03] 

Decision Trees      [Chaudhuri et al., VLDB’07] 

Conditional Random Fields  [Singla, Domingos, PKDD’05] 
         [Gupta, Sarawagi, VLDB’09] 

 

Committee of classifiers   [Sarawagi, Bhamidipaty, KDD’02] 

Ensemble of classifiers   [Chen et al.,  SIGMOD’09] 

           [Bilenko, Mooney, KDD’03] 
           [Tejada et al. KDD’02] 

Decision Model 

Supervised 

Unsuper- 
vised 

Active 

27 
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Duplicate detection 

0.0  0.1  … 0.3   0 
1.0  0.4  … 0.2   1 
0.6  0.2  … 0.5   0 
0.7  0.1  … 0.6   0 
0.3  0.4  … 0.4   1 
0.0  0.1  … 0.1   0 

Pioneer ML-based Deduplication 

f1    f2 … fn     
Customer 1   D  
Customer 2 
 
Customer 1   N 
Customer 3 
 
Customer 4   D 
Customer 5 

1.0  0.4  … 0.2   1 
 
 
0.0  0.1  … 0.3   0 
 
 
0.3  0.4  … 0.4   1 
 

Training examples 

 
Customer 6   
Customer 7 
Customer 8  
Customer 9 
Customer 10 
Customer 11 
 

Unlabeled list 
0.0  0.1  … 0.3   ? 
1.0  0.4  … 0.2   ? 
0.6  0.2  … 0.5   ? 
0.7  0.1  … 0.6   ? 
0.3  0.4  … 0.4   ? 
0.0  0.1  … 0.1   ? 

CustomerAddressNgrams ≤ 0.4 

CustomerNameEditDist ≤ 0.8 

EnrollYearDifference > 1 

All-Ngrams ≤ 0.48 Non Duplicate  

Non Duplicate  

Duplicate  NumberOfAccountsMatch ≤ 0.5 

Non Duplicate  

Duplicate  

Duplicate  

 
Learnt Rule: All-Ngrams*0.4  
        + CustomerAddressNgrams*0.2 
        – 0.3EnrollYearDifference  
        + 1.0*CustomerNameEditDist 
        + 0.2*NumberOfAccountsMatch – 3 > 0 
 
Learners: 
 SVMs: high accuracy with limited data [Christen, 2008] 
 Decision trees: interpretable, efficient to apply 
 Perceptrons: efficient incremental training  

     [Bilenko et al., 2005] 
 

Classifier 

Similarity distance functions 
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[Sarawagi, Bhamidipaty, KDD’02] 
[Koudas, Srivastava, Sarawagi, Tutorial SIGMOD’06] 
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ML-based ER approaches (3) 

29 

 
 

      Learning similarity functions and thresholds    
         

     Sampling and labeling 
o  Active sampling/learning  [Qian et al., CIKM’17] 

             [Arasu et al., SIGMOD’10] 
      [Bellare et al., KDD’12] 

Crowdsourced ER 
o  Crowdsourcing algorithms for ER [Vesdapunt et al., VLDB’14] 

o  CrowdER  [Wang et al., VLDB’12] [Wang et al., SIGMOD’13’] 

o  Corleone  [Gokhale, et al., SIGMOD’14] 

     
 

 

Active 

Decision Model 
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Human-In-The Loop for Entity Matching 
 
[Doan et al.,  HILDA@SIGMOD’17] 

30 

Magellan project: Lessons learnt for How-to Guide for EM 
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Human-In-The Loop for Entity Matching 
 
[Doan et al.,  HILDA@SIGMOD’17] 

31 

Magellan project: Lessons learnt for How-to Guide for EM 
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ERBlox with ML and Matching 
Dependencies  

[Bahmani et al., SUM’15] 

32 

Matching	dependency	φ	for	R1	and	R2	:	
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Two assumptions:  
•  A pre-trained word embeddings for all words in the 

dataset already exists;  
•  The pre-trained word embeddings that were trained in a 

task-agnostic manner are sufficient for the ER task.  
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Deep learning for ER (1) 
Record 
pair 

Relevant word 
extraction 

Word 
embedding 

FastText 
GloVE 
Word2Vec 

DNN 

MLP,  LSTM, CNN 
LSTM-RNN 
etc. 

Binary 
classification 

Match 
 
UnMatch 

[Kooli et al.,  ACIIDS’18] 
https://www.pagesjaunes.fr/  
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DeepER [Ebraheem et al. , Arxiv 2017] 

Deep learning for ER (2) 
Record 
pair 

Relevant word 
extraction 

Word 
embedding 

GloVE 
 

DNN 

LSTM-RNN 
 

Binary 
classification 

Match 
 
UnMatch 
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Recent Results 

•  Evaluation of ER with adaptive importance sampling         
[Marchand, Rubinstein, VLDB’17] 

•  Outside the DB sphere: 
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Outline 
Introduction 

• Motivations 
•  SWOT Analysis 

Part 1- ML-Powered Data Curation 
•  Record Linkage, Entity Resolution, Deduplication,  
•  Error Repair and Pattern Enforcement 
• Data and Knowledge Fusion   
•  Concluding Remarks and Open Issues 
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ML-Based Repairing 

37 

[Ilyas, Chu, 2015] 

Semi-automatic techniques for: 
•  Pattern enforcement 

o  Syntactic patterns (date formatting) 
o  Semantic patterns (name/address) 

•  Value update to satisfy a set of rules, constraints, FDs, 
CFDs, Denial Constraints (DCs), Matching Dependencies 
(MDs) with minimal number of changes. 

•  Value imputation with statistical methods to replace 
outliers or missing values 

•  Data fusion 
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Febrl: Data standardization with HMM 

38 
http://users.cecs.anu.edu.au/~Peter.Christen/Febrl/febrl-0.3/febrldoc-0.3/node24.html#chapter:hmm-standard  

HMM for Name standardization  HMM for Address Standardization   

Frequency-based	Maximum	Likelihood	Estimates	
86 = 262,144 possible combinations of hidden states 

	
•  Start	->	Wayfare	Name	(NU)	->	Locality	Name	(LN)	->	Postal	Code	(WT)	->	

Territory	(LN)	->	Postal	Code	(TR)	->	Territory	(PC)	->End		
0.08	×	0.01	×	0.02	×	0.8	×	0.4	×	0.01	×	0.1	×	0.01	×	0.8	×	0.01	×	0.1	×	0.01	×	0.2	=	8.19	×	10

-17
		

	

•  Start	->	Wayfare	Number	(NU)	->	Wayfare	Name	(LN)	->	Wayfare	Type	(WT)	-

>	Locality	(LN)	->	Territory	(TR)	->	Postal	Code	(PC)	->End		
0.9	×	0.9	×	0.95	×	0.1	×	0.95	×	0.92	×	0.95	×	0.8	×	0.4	×	0.94	×	0.8	×	0.85	×	0.9	=	1.18	×	10

-2
		

Selection of representative training data 
"17 Epping St Smithfield New South Wales 2987” 

 
Tokenization based on Look-up Tables 

['17', 'epping', 'street', 'smithfield', 'nsw', '2987' ] 
 

Tagging 
['NU', 'LN', 'WT', 'LN', 'TR', 'PC' ] 

number-locality name-wayfare type-locality name-territory-postal code 

[Churches et al., 2002] 
[Christen et al., 2002] 
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SCARE: SCalable Automatic Repair 

39 

1.  Modeling	Dependency	and	

Predicting	Updates	

[Yakout, Berti-Equille, Elmagarmid, SIGMOD’13] 

3.			Tuple	Repair	Selection	

	

2.			Data	Partitioning	

Reliable Attributes 

Value predictions for Flexible Attributes E1, E2, E3 

Reliable         Flexible 

Goal: Find the repair that would maximize the sum of the probabilities 
of the values co-occurrence (i.e., association strength between 
predicted and reliable values) under a certain update cost budget. 
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Continuous Data Cleaning  

Goal:  Using a logistic classifier to 
-  learn  from  past  user  repair  preferences  to  recommend next 

more accurate  repairs;   
-  predict the  type  of  repair  needed  to  resolve  an inconsistency. 
 
 

[Volkovs et al., ICDE’14] 

40 
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On-demand ETL with Lenses 

 
 
 

Specification of Lens with classifiers from the massive online analysis 
(MOA) framework for Domain Constraint Repair (DCR). 

[Yang et al. , VLDB’15] 

41 



42 

HoloClean 
42 

HoloClean generates a factor graph capturing co-occurrences, 
correlations based on a set of constraints and external evidences. It 
uses SGD to learn parameters and infer the marginal distribution of 
unknown variables with Gibbs sampling. 

42 

[Rekatsinas et al., VLDB 2017] 
https://github.com/HoloClean/HoloClean  

Denial constraints: 
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BoostClean 
   
 
 

43 

[Krishnan et al., 2017] 

BoostClean selects an ensemble of methods (statistical and logic 
rules) for error detection and for repair combinations using 
statistical boosting.  
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A Condensed View 
44 Repair 

System 
ML  

Approach Goal 

Febrl 
[Churches et al., 2002] 

HMM and MLE Standardizing	loosely	structured	texts	(e.g.,	name/

address)	based	on	the	probabilistic	model	learnt	

from	training	data	

SCARE 
[Yakout, Berti-Equille, 
Elmagarmid, 
SIGMOD’13] 

 

Multiple ML models used	
to	capture	data	

dependencies	across	

multiple	data	partitions 

Find	the	candidate	repair	that	maximizes	the	

likelihood	repair	benefit	under	a	cost	threshold	of	

the	update	

Continuous 
Cleaning 
[Volkovs et al., 

ICDE’14] 

Logistic classifiers Learning  from  past  user  repair  preferences  to  
recommend next more accurate  repairs	

Lens 
[Yang et al. , VLDB’15] 
 

Various ML models 
encoded in Domain 

Constraints 

Declarative	on-Demand	ETL	with	prioritized	

curation	tasks	based	on	probabilistic	query	

processing	and	PC-Tables	

HoloClean 
[Rekatsinas et al., 

VLDB 2017] 

Probabilistic inference on 
factor graphs with SGD 

and Gibbs sampling 

Mixing statistical and logical rules, DCs, MDs, etc. to 
infer candidate repairs in a scalable way with 
domain pruning and constraint relaxation 

BoostClean 
[Krishnan et al., 2017] 
 

AdaBoost Mixing statistical and logical rules, domain 
constraints for detection and repair combinations 
to maximize the predictive accuracy over test data 44 
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Shortcomings of ML-based cleaning 
Problem 
-  No knowledge of ground truth (the “minimal” change may not be the 

correct one) 
-  When data is missing (what data should be added?) 
 
Solution:  
- Use the crowd (of experts) to assist 
- But… since data is large, focus of “hot” spots 
 
QOCO [Bergman, Milo, Novgorodov, SIGMOD’15] 
Uses the crowd to identify wrong query answers, and corrects the cause 
 
DANCE [Assadi, Milo, Novgorodov ICDE’17, WebDB’18] 
When identifying integrity constraints violation, uses the crowd to 
correct the cause  
 45 
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Optimizing crowd usage 
Goal: minimize the number of questions to the crowd 
 
General heuristic: 
Identify (and ask first about) data items whose update may potentially 
eliminate the maximal number of violations. 
 
Implementation of the heuristic in QOCO:  
- Tracking the provenance of wrong query answers 
- Asking about tuples that participate to maximal number of assignments 
 
Implementation of the heuristic in DANCE:  
- Tracking (recursively) the provenance of constraints violation 
- Building a dependency graph for the tuples 
- Running “page-rank” on the graph to identify potentially influential tuples   
 

46 
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Taxonomy of Data Fusion Techniques 

48 

Physical	models	
Feature-based	

inference	models	

Cognitive-based	

models	

Data	fusion	

[Hall, 1992] (Not limited to what data fusion means for DB community) 
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Taxonomy of Data Fusion Techniques 

49 

Physical	models	
Feature-based	

inference	models	

Cognitive-based	

models	

Ø  Simulation 

Ø  Estimation 
•  Kalman filtering 
•  MLE 
•  Least Squares 

Data	fusion	

[Hall, 1992] 
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Taxonomy of Data Fusion Techniques 

50 

Ø  Parametric 
•  Statistical-based algorithms 
o  Classical inference 
o  Bayesian 
o  Dempster-Schafer 
 

•  Cluster algorithms 
o  Hierarchical Agglomerative (k= Ward’s method) 
o  Hierarchical Divisive 
o  Iterative Partitioning (k=Hill climbing) 
o  Density search 
o  Factor analytic 
o  Clumping 
o  Graph theoretic 

Ø  Non-Parametric 
•  Adaptive neural nets 
o  Binary input nets (Hopfield) 
o  Continuous valued input (perception) 

•  Entropic techniques 
•  Pattern matching / templating 
•  Figure of merit 
•  Measure of correlation 
•  Thresholding logic 
•  Heuristic methods : voting, scoring,  

ranking, consensus methods for conflict 
resolution [Dong, Naumann, Tutorial VLDB’09] 

Physical	models	
Feature-based	

inference	models	

Cognitive-based	

models	

Data	fusion	

[Hall, 1992] (Not limited to what data fusion means for DB community) 

SLiMFast 
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Taxonomy of Data Fusion Techniques 

51 

Ø  Logical templates Ø  Fuzzy set theory Ø  Knowledge-based systems 
•  Knowledge representation 
o  Scripts, Rules 
o  Semantic frames, ontologies 

•  Inference methods 
o  Production rules 
o  Blackboard 
o  Causal/neural nets 

•  Search techniques 
•  Uncertainty representation 
o  Dempster-Schafer 
o  Probability 
o  Confidence factor 
 

Physical	models	
Feature-based	

inference	models	

Cognitive-based	

models	

Data	fusion	

[Hall, 1992] (Not limited to what data fusion means for DB community) 

DCNN for  
multi-sensored data fusion 
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52 
SLiMFast: Probabilistic Models for 

Data Fusion [Joglekar et al., SIGMOD’17] 

52 
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53 
SLiMFast: Probabilistic Models for 

Data Fusion [Joglekar et al., SIGMOD’17] 

53 

To solve data fusion, SLiMFast :  
-  learns the parameters w of the logistic regression model by optimizing the likelihood 

l(w) = log P(T |Ω; w) where T corresponds to the set of all variables To,  
-  infer the maximum a posteriori (MAP) assignments to variables To using ERM (ground 

truth) or EM (source observation overlap, avg accuracy of sources) 
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Data fusion and truth finding evolution 

ICDE	2016	 55	
55 

[Berti-Equille, Encyclopedia 2018] 
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Multi-Sensor Data Fusion for Fault 
Diagnosis using DCNN [Luyang et al., Sensors’17] 
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Feature 
maps 

subsampling 
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Outline 
Introduction 

• Motivations 
•  SWOT Analysis 

Part 1- ML-Powered Data Curation 
•  Record Linkage, Deduplication, Entity Resolution 
•  Error Repair and Pattern Enforcement 
• Data and Knowledge Fusion   
•  Concluding Remarks and Open Issues 
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Concluding Remarks – Part 1 
•  ML provides a principled framework and efficient tools 

for optimizing many DM tasks  
•  ML crucially needs principled data curation 
•  However, some tasks require Humans in the loop 
•  There are many opportunities for: 

– Cool ML applications to data management 
– Revisiting DB technology with and for ML 
– Managing and orchestrating human/machine 

resources 
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Open Issues  �� Part I  
•  Usability: 

– To consider Humans as resources  
– To be understood, interpreted, and trusted by Humans 
– To ease/self-adapt the design, tuning, and use 

•  Efficiency: 
– Runtime 
–  Incremental 

•  Accuracy: 
– Reduce impact of dirty data 
– Augmenting the training set 
– Ensembling 
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Usability (1): Humans as Resources 
59 

Challenge 1: Adjusting “Human-in-the-Loop” 
–  Seamless integration of humans as resources for ML-

powered DM 
–  “Taskify” and minimize the amount of interactions with the 

users while, at the same time, maximize the potential “ML 
benefit” for selecting/cleaning/labeling training data and 
other data management tasks 

•  Current efforts: Crowdsourcing and active learning 
–  Data cleaning with oracle crowds [Bergman et al., SIGMOD’15] 

–  Entity resolution: CrowdER [Wang et al., VLDB’12], Corleone 
 [Gokhale, et al., SIGMOD’14] 

–  Data fusion and truth inference [Zheng et al., VLDB’17]  

•  Direction:  
–  Adaptive and quality-driven orchestration of Humans and 

Tools for ML-powered DM 59 
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Usability (2): Building trust 
60 

–  Improve the interpretability of ML-based decisions 
–  Build the trust:  ML-based decisions should be interpretable, explainable, 

reproducible to be trusted 
–  Adapt ML-based DM to on-demand, incremental, progressive tasks 

•  Current efforts:  
–  Trusted Machine Learning [Ghosh et al., AAAI’17] 
–  Model-Agnostic Explanations [Ribeiro et al., KDD’16] 
–  On-demand ETL [Yang et al., VLDB’15] 
–  ActiveClean [Krishnan et al., VLDB’16] 
–  Continuous cleaning for considering incremental changes          

to the data and to the constraints [Volkovs et al., ICDE’14] 

•  Directions:  
–  Causality and explanations in ML-based DM and their effective representation 
–  Reversibility and repeatability 
–  Data privacy/security:  What if adversarial learning is applied ? 

Challenge 2: Open the “Black-Box” and customize it 
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Usability (3) :  Easy to build, tune, and test 
61 

–  Model building and feature selection 
–  Model interoperability and model selection 

•  Current efforts:  
–  Systematizing/optimizing model selection         

 [Kumar, Boehm, Yang, SIGMOD’17 Tutorial],           
 MSMS [Kumar et al., SIGMODRec’15],  Zombie [Anderson et al., 2016] 

–  Declarative ML tasks 
–  Interactive model building:  Ava [John et al., CIDR’17],  Vizdom [Crotty et al., VLDB’15] 
–  Meta-learning, bandit techniques 
–  PMML, ONNX, PFA for model interoperability  

•  Directions:  
–  Analysis of dependability of models 
–  Model debugging, versioning,  and management (e.g., for large models) 
–  Managing ML model provenance and elicitation 
–  Transfer pre-trained models from task-/domain-agnostic to *-specific DM 

Challenge 3: Engineering ML-based DM applications 
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Efficiency  
62 

•  Challenge 4: Incremental ML application to DM 
– When we have more training data or refresh/delete some 

data (obsolete), shall we retrain ML model 
    from scratch?  Can we do incremental  
    training/learning? For what cost/trade-off? 

•  Challenge 5: Runtime ML-based DM 
– Could we orchestrate and optimize data 
   annotation and preprocessing tasks? Design  
   cost models, candidate plans? 
– To what extent could we use transfer learning to          

reduce training data collection/preprocessing cost ? 
62 
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Accuracy (1)  
63 

•  Challenge 6: Reduce the impact of dirty data  
Glitch types and their distributions can be very different 
in the datasets used for training, testing, and validation 
and they affect accuracy of ML models in different ways:  

• How could we capture the good, the bad and the 
ugly combinations?  

•  Should we robustify the ML algorithms or/and the 
data curation? Would both be inevitably better/
necessary? 

– Find optimal data cleaning strategies for a 
given ML-based DM application  
• Can we predict the ±delta in ML accuracy that a 

given data curation strategy brings to the model? 
 63 
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Accuracy (2)  
64 •  Challenge 7: Synthetic training data generation   

Copy/Transform existing labeled data to augment the training set 
[Ratner et al., NIPS’17] 
  

•  Challenge 8: Model/Feature recommendation and 
ensembling  
Many ML models can be parameterized, applied and combined in 
different ways leading to various quality performance:  

• Could we define a predictive scoring of the   
 models and their ensembles ?  

• Would ensembling be (inevitably) better? 
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Schema Matching and ML 
•  Schema matching is the process of identifying 

semantic correspondences between schema elements 
(a common problem to DB, AI, KR)  

•  Such correspondences can be arbitrarily complex 
(1-1, 1-m, n-m) and have a confidence value [0..1] 

•  Representative ML-based schema matching 
approaches include:  
–  LSD [Doan et al. Sigmod01] 
– GLUE [Doan et al.WWW02] 
–  SemInt [Li & Clifton, DKE00] 
– Automatch/Autoplex [Berlin et al. Caise02]  
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The LSD Approach 

•  Multi-strategy learning with 
 different base learners (one for  
schema elements, one for instances) 
•  Combines them in a Meta- 
Learner 
•  Leverages ‘stacking’ to learn  
weights of the different learners 
in the Meta-Learner 
•  Training involves  
a few data sources 
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Stacking as a multi-learning technique 
•  Training 

–  uses training data to learn weights 
–  one weight for each (base-learner,mediated-schema element) pair 
–  E.g. weight (Name-Learner,address) = 0.2 (on schema-element 

name) 
–  E.g. weight (Naive-Bayes,address) = 0.8 (on schema-element 

value) 

•  Matching: combine predictions of base learners  
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GLUE: Learning to find similar 
ontological concepts 

•  Glue applies ML technique to find, for each concept 
node in a taxonomy, the most similar concept in the 
other taxonomy 

•  It leverages the joint probability distribution:  
–  P(A,B), P(A,not(B)),P(not(A),B), P(not(A),not(B)) 

•  ML is used to infer whether P(A,B) can be 
approximated with P (A intersect B) 
–  By defining a classifier for instances containing concept A 

(B) and using it to classify instances of B (A) 
•  It applies the multi-learning approach of LSD  

9 
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SEMINT 
•  It leverages the DBMS specific parsers to extract 

metadata (schema elements, constraints etc. ) 
•  Such metadata is given as input to neural networks in 

order to feed the learning process 
•  Matching is done during the training process 

10 
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AutoMatch 
•  It leverages probabilistic knowledge from schema examples 

“mapped” by domain experts into an attribute dictionary 
(based on Bayesian learning) 

•  Given a pair of “client” schemas that need to be matched, 
Automatch matches them “through” its dictionary and uses 
the Minimum Cost Maximum Flow network algorithm to 
find the optimal matching 

•  Automatch employs statistical feature selection techniques 
to learn an efficient representation of the examples (as few 
as 10% of the initial values are employed). 

Motro et al. “Automatch Revisited”. Seminal Contributions to Information Systems Engineering 2013:  
Domingos et al. “ Conditions for the optimality of the simple bayesian classifier” ICDM96 
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Schema Mapping and ML 

•  Schema mapping is the process of identifying schema 
transformations expressed in fragments of FO logics and 
to use them to compute the solution of the 
transformation 

•  The transformations are expressed as source-to-target 
dependencies (logical assertions with CQs on both sides 
and existential variables in the RHS) 

•  Recent ML-based schema mapping approaches include:  
– CMD [Kimmig et al., ICDE’17] 
– GAV Learn [ten Cate et al. , PODS’18] 
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CMD: Probabilistic Schema Mapping 

•  Probabilistic approaches to schema mapping rely on 
probabilistic modeling and statistical relational learning 
(SRL) 2.  

•  Specifically, Collective Mapping Discovery1 encodes the 
mapping selection objective as a program in probabilistic 
soft logic (PSL)  

•  It uses as input metadata (under the form of a set of 
candidate s-t tgds) and potentially imperfect evidence (in the 
form of a data example) to select an optimal mapping 

1 Kimmig et al. “Collective, Probabilistic Approach to Schema Mapping”, ICDE17 
2 L. Getoor and B. Taskar, Eds., An Introduction to Statistical Relational Learning. MIT Press, 2007.  
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CMD Objective function 
–  The	goal	is	to	minimize	a	cost	function	containing	the	size	
(#atoms	of	M,	the	#	of	unexplained	atoms	in	the	target,	and	the	
#	of	erroneous	tuples)	

–  Providing	a	discrete	solution	to	the	CMD	optimization	problem	is	
NP-hard,	thus	an	approximate	solution	with	theoretical	
guarantees	is	proposed	

14 
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GAV Learn  
(Active Learning for GAV Mappings) 

•  The goal is to derive a syntactic specification of a GAV 
mapping from a given set of data examples and from a 
“black-box" implementation (i.e. the oracle, a special type 
of user).  

•  GAVLearn relies on the following fact: 
–  GAV mappings are polynomial-time learnable in Angluin’s model 

of exact learning with membership/equivalence queries. 

•  GAVLearn is an active learning algorithm 
–  it accomplishes its task by “actively doing experiments (tests) on 

the software" 
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A Condensed View 
TOOL NAME ML APPROACH GOAL 

LSD Multi-strategy Learning  Schema Matching  

Glue 
 

Multi-strategy Learning  
 

Ontology Matching 

Automatch 
 

Bayesian networks Schema Matching  

SemInt 
 

Neural networks Schema Matching  

CMD 
 

Statistical Relational 
Learning 

Schema Mapping  

GAV Learn 
 

Active Learning Schema Mapping  
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Part II- ML-Powered Querying and System-
oriented Data Management Tasks 
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• ML in System-oriented DM Tasks 
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Constraint Discovery with ILP 
•  [Flach et al.,AIComm00] focus on the problem of using 

Inductive Logic Programming to FD/MVD discovery in 
relational databases 
–  Bottom-up ILP algorithms: take the instances for hypothesis 

construction  
–  Top-down ILP algorithms: adhere to a generate-and-test approach 

•  They rely on generality ordering on the space of all possible 
definitions: 
–  a predicate definition is more general than another if the least 

Herbrand model of the first is a model of the second (i.e. the first 
entails the second) 

•  Three dependency induction algorithms: TD, Bidirectional, BU   

18 
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Top-Down Algorithm and pros of ILP 
•  An agenda-based search algorithm 

–  Input: a relation r 
–  Output: a cover of DEP(r)   
–  Initialise: set of  
the most general 
dependencies (from 
most general to  
most specific) 

•  ILP leads to obtain: 
–  interpretable results 
–  in-DBMS implementation and scalable execution (QuickFoil 

[Zeng et Al., PVLDB14])  
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A ML Approach to FK Discovery 

•  Underlying assumption [Rostin et al, WebDB’09]:  
– choice of features is more influential on the achievable 

performance than the choice of classification method 
– extensive manual study to find meaningful features by 

using common sense and by carefully studying positive 
and negative examples. 

– Feature derivation for INDs (10 different features 
among which coverage, columnName, OutOfRange, 
ValueLengthDiff etc.) 

20 
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Practical Study on FKs 

•  Given some real-world biological datasets (SCOP, 
MSD, UniProt), two movie datasets and the TPC-H 
benchmark 

•  Given four ML algorithms in the Weka ML tool 
(Naive Bayes, SVM, J48 and DT)  
–  the study tackles the comparison of  

•  Results of different feature selection methods (Ranked 
search, InfoGain, Randomized Search, X2-statistics)  
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F-measures of the classifiers 

•  J48 and DecisionTab 
obtain the best results 
in the majority of the 
cases 

•  For UniProt, SVM 
works better than the 
others  
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The Regex Learning Problem 

•  It consists of learning a regex expression (on 
arbitrary size of the alphabet and with no 
restrictions on the use of Kleene-star and 
disjunction)  
–  Input: a set of positive and negative examples + an 

initial regular expression (from domain knowledge) 
– Output: the regex with highest F-measure  

23 

23 



24 

The ReLIE Algorithm 
•  ReLIE [Li et al., EMNLP08] is a greedy hill climbing search 

procedure that chooses, at every iteration, the regex with the 
highest F-measure.  

•  An iteration in ReLIE consists of:  
–  Applying every transformation on the current regex Rnew to obtain a 

set of candidate regexes  
–  From the candidates, choosing the regex R’ whose F-measure over the 

training dataset is maximum  
•  To avoid overfitting, ReLIE terminates when either of the 

following conditions is true: (i) there is no improvement in F-
measure over the training set; (ii) there is a drop in F-measure 
when applying R’ on the validation set.  

•  ReLIE compared with MinorThird (an implementation of CRF) is 
proved to be superior in most of the cases except a few 
exceptions (larger training dataset)  
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A Condensed View  

Authors  ML/AI APPROACH GOAL 

Flach et al. 99 Inductive Logic Programming FD/IND Discovery  

Rostin et al. 
09 
 

Naive Bayes, SVM, J48 and 
DT 

FD Discovery 

Li et al. 08 
 

Hill-Climbing Algorithm Regex Expressions 
Discovery 
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Foofah: Synthetising a Data 
Transformation 

•  Given as user input a pair E=(ei, eo ) of sample raw data ei 
and transformed view eo of ei 
–  synthetize a program P that takes E as input   

•  Leverages program synthesis as a search problem [Jin et 
al. SIGMOD17]  
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A* Search Algorithm 

•  A* search algorithm keeps exploring the most promising node - 
smallest f(n)  

•  g(n) nr. of Potter’s Wheel operations [Hellerstein, 2001] 
•  h(n) estimate of the latter, or estimate of the nr. of columns or 

table-edit distance heuristic 
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From raw tuples to complex mappings 
(with the user in the loop) 

 •  Mapping design: from data curators to ordinary users [Bonifati et 
al. SIGMOD17] 

•  Allows a user to provide arbitrary exemplar tuples. 
•  (Minimally) Interacts with the user via simple boolean questions in 

order to discover the mapping that the user has in mind. 
.  

29 

29 



30 

Interactive Lattice Exploration 
•  The user is interactively exploring a lattice of possibilities in which 

the different reductions of the LHS of the mappings are reported:  

30 
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Effectiveness of the Interactive Method 

•  All exploration strategies keep the number of questions (per tgd) 
low along atom refinement.  
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A Condensed View  

Tool Name/
Authors  

ML/AI 
APPROACH 

GOAL 

Foofah/Jin et al. 
2017 

A* Search Raw table 
transformation 
discovery 

Bonifati et al. 2017 
 

Lattice-based 
Exploration 

Schema mapping 
discovery 
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•  Concluding Remarks and Open Issues 
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Relational Query Inference 

•  Problem of interest: query  
    inference via simple tuple  
    labeling (positive or negative) 
•  Setting: large amount of denor- 
    malized data coming from dis- 
    parate data sources  
•  Informative tuples that 
    participate to the inference 
    are retained, non-informative 
    ones are pruned 
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Join Inference Machine (JIM) 
•  Tuples are labeled as positive or negative by the user [Bonifati et 

al., ACM TODS16] 
•  Some strategies are better than others, and the system outputs a 

comparison among strategies 
•  The benefit of using a strategy can be presented to the user 
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Learning Path Queries 
•  Input: Positive and Negative Examples  
•  Output: The path query that the user has ‘in mind’ 

•  Compute consistent queries wrt. 
the set of input examples 

–  (tram+bus)* cinema 
–  bus 
–  …. 

•  One can learn in PTIME  
the query that the user has 
in mind [Bonifati et al.,EDBT15]  
by using grammar induction on 
Regular Path Queries - RPQs 
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Learning Algorithm1 for Path Queries 

•  For each positive node, select its smallest consistent path (SCP).  
Since the nr. of consistent paths can be infinite, bound by k.  

•  Generalize SCPs by state merge in the automaton corresponding 
to the RPQ  

•  Assuming that k is fixed, the algorithm is polynomial: 
–  It returns a consistent query or it abstains from answering.  

•  Main proved result: For every path query q, there exists a graph 
and a polynomial set of examples (characteristic sample) that 
guarantees that the algorithm learns q in polynomial time. 

 
1 E. M. Gold. Complexity of automaton identification from given data. Information and Control, 1978.  
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A Condensed View  

Tool Name/
Authors  

ML/AI 
APPROACH 

GOAL 

JIM/Bonifati et al. 
2016 

Lattice-based 
Exploration 

 

Join Query Inference 

Bonifati et al. 2015  
 

Grammar Induction 
Techniques 

Path Query Inference 
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Part II- ML-Powered Data Integration  
•  ML in Schema-based Transformations 
•  ML in Schema Constraint Discovery 
•  ML in Schema Transformation Specification 

Part II- ML-Powered Querying and System-
oriented Data Management Tasks 
• Query Learning 
• ML in System-oriented DM Tasks 
•  Concluding Remarks and Open Issues 
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Recent line of work on DB systems/ML 

Disclaimer (borrowed from C. Jermaine’s Keynote@EDBT18) 

•  The ML community has mainly focused on defining models and 
on application-oriented ML tasks and not on the principles of 
designing an ML system 

 
•  The Database community can provide insights in that direction 

(given the experience in query optimization, tuning, distributed 
query evaluation etc.)  
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Recent line of work on DB systems/ML 

We will (non-exhaustively) focus on the following DB 
contributions:  

•  ML techniques to improve Approximate Query Processing (AQP)  
–  relevant for data science/massive data analysis 

•  ML techniques for DB tuning 
–  Interesting problem in the DM stack 

•  DB techniques to improve feature extraction/labeling training data 
–  Relevant for ML 
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Learning From Past Queries (AQP) 

•  Intelli1 is an AQP system that lets improve a raw 
answer of a classic AQP by using a query synopsis and 
a model  

•  When a new query arrives, it goes in the query 
synopsis as a triple (q, ans, �) 

•  The learning module allows to improve the previous 
triple by leveraging the history in the query synopsis, 
thus leading to an improved triple (qi, ansi, �i) 

•  Where �i is shown to be not larger than � 
(Theorem proved in the paper) 

1 Park et al. “Database Learning: Toward a Database that Becomes Smarter Every Time”, 
SIGMOD17 
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Intelli: Architecture 
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Intelli: Underlying Principles 

•  Queries may still benefit one another even if they access different columns of 
the data. 

•  Query answers mutually depend on the underlying distribution of the data 
•  The more queries are processed, the closer is the estimated data distribution to 

the true data (a-1 query; b- 2 queries; c- 5 queries etc.)  
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Intelli: Limitations 

•  Bound by the underlying AQP engine’s error estimate  
•  Can evaluate only AVG, COUNT, SUM (no MIN/

MAX, no arbitrary joins) 
•  The rapidity of the inference depends on the 

smoothness of the aggregated values’ pdf (probability 
distribution function). 

•  However, even for non-smooth pdfs, Intelli never 
worsens the original raw answers (Theorem 1).  

•  Empirically tested on different data and query 
    distributions 
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OtterTune: Learning How to Tune a DBMS 
•  Manually tuning a DBMS is expensive and time-

consuming 
–  Several knobs need to be adjusted and they are not 

standardized, not universal and not independent; moreover, 
their default configuration is notoriously bad  

•  OtterTune2 proposes to leverage supervised and 
unsupervised learning to automatically tune a DBMS 

•  It empirically proves that the obtained configurations 
are as good/better than the ones generated by DBAs 

 

2 Van Aken et al. “Automatic Database Management 
System Tuning Through Large-scale Machine Learning ” 
Sigmod 2017 
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OtterTune Architecture 

•  The DBA chooses the metric (latency, throughput etc.) he wants to work on and 
the controller connects to the DBMS and gets the knob configuration  

•  Then, it enters an observation period in which one metric is observed and the 
DBA can optionally choose to run a set of queries or a workload trace; the 
result is given to the tuner manager 

•  OtterTune then matches the target workload to a past workload of the same 
kind  

•  It then recommends a knob  
     configuration that is optimi- 
     zed to tune a given metric 

•  It also provides the controller  
     with an estimate of how close  
     the obtained knob configuration 
     is to the best configuration seen so far 
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OtterTune Automatic Tuning 

•  Workload Characterization: model discovery starts by collecting DBMS statistics 
and identifying the smallest set of metrics (with no redundancy) 

•  Knob Identification: uses a popular feature selection technique called Lasso to 
expose the most influential knobs (on the system performances)  

•  Automatic Tuner: (1) Mapping the current workload to a previous one with 
similar characteristics; (2) recommend configurations by using Gaussian Process 
(GPs) regression 
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Zombie: Input Selection for Fast Feature 
Engineering 

•  Feature Engineering and Extraction are the most time-
consuming operations in ML  

•  How can we leverage results in query optimization 
and database indexing techniques in order to reduce 
the amount of raw data for feature extraction and 
minimize the size of the training set used to train a 
model?  

•  In Zombie3, index groups are created out of raw data 
with k-means clustering; then, it learns (with multi-
armed bandit strategy) which groups are more likely 
to contain the most interesting features.  

3 Anderson et al. “Runtime Support for Human-in-the-Loop Feature Engineering Systems” IEEE Data 
Engineering Bulletin 2016 

 49 

49 



50 

Zombie versus Bulk Scan 

•  Idea: you can stop earlier if you are satisfied 
with the output of a quality function q thus 
saving user time 

•  The dots indicate the ‘plateauing of the 
learning curve’, where the processing can 
be stopped at any time 
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Snorkel: speeding up ML training 
•  Massive labeling datasets is oftentimes a bottleneck 

and not always feasible for any real-world dataset 
•  In Snorkel [Ratner et al., PVLDB17], labeling functions 

are specified via the data programming paradigm: 
accuracy of one function over the other is 
automatically established and the selected functions 
are then used to train an end model 

•  Even low-accurate labeling functions defined by users 
may turn to be apt to obtain high-quality models with 
weak supervision 

51 

51 



52 

Classification of the needs of ML 
areas in terms of labeled training data 

 https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html 
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F: Linear Regression over Factorized 
Databases 

•  F3: A unified framework to express and solve optimization 
problems for in-database analytics 

•  Let Q be a feature extraction join query and D a database 
that defines the training dataset Q(D) for an optimization 
problem. 

•  Training dataset computed as join of database tables 

3 Schleich et al. “Learning Linear Regression Models over Factorized Joins” ACM Sigmod 2016 
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•  The goal is to learn the parameters � of the following 
linear function (that approximates the label y of unseen 
tuples (x1,…..,xn))  

•  The least squares regression model with a cost function is 
considered  

•  The Batch Gradient Descent (BGD) Algorithm is applied 
to learn the � 

F: Linear Regression over Factorized 
Databases 
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•  The rough idea is to decouple the computation of � 
from the computation of co-factors, the latter being 
dependent on input data and executed on the factorized 
(compressed) version of the database 

F: Linear Regression over Factorized 
Databases 
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A Condensed View* 

TOOL NAME ML APPROACH GOAL 

Intelli Statistical Inference Approximate Query 
Processing(AQP) 

Ottertune 
 

GP Regression 
 

DB Tuning 

Zombie 
 

Multi-armed bandit 
strategy 

Improve Feature 
Extraction 

Snorkel 
 

a new programming 
model for weakly-
supervised ML 

Accelerate ML 
training 

F 
 

Linear Regression In-database analytics 
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* not including open-source libraries 

56 



57 

Outline 

57 

Part II- ML-Powered Data Integration  
•  ML in Schema-based Transformations 
•  ML in Schema Constraint Discovery 
•  ML in Schema Transformation Specification 

Part II- ML-Powered Querying and System-
oriented Data Management Tasks 
• Query Learning 
• ML in System-oriented DM Tasks 
•  Concluding Remarks and Open Issues 
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Concluding Remarks – Part 1I 
•  ML	provides	a	principled	framework	and	efficient	tools	for	

inferring	database	queries	and	complex	transformation	
abstractions,	and	for	optimizing	core	system-oriented	DM	
tasks	(tuning,	join	and	query	evaluation/optimization)			

•  There	are	many	opportunities	for:	
–  Studying	the	interplay	and	the	fine-grained	combination	
of	DM/ML	tasks		

–  Using	DBMS	technology	to	generalize	ML	tasks	(the	latter	
being	data-dependent	as	opposed	to	the	former)	

–  Thoroughly	understanding	the	system	requirements	of	ML	
tools	and	their	modeling/optimization	tasks		

–  Orientating	our	attention	to	ML	techniques	that	lead	to	
interpretable/explainable	results	
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Open Issues (1)  �� Part II  
•  Data Transformation and Constraint Discovery: 

–  Long-lasting wave of adoption of ML techniques over the last two 
decades; do they evolve with evolution of ML?  

–  Understanding the ‘ML community’ needs for data/schema 
transformation and constraint inference 

–  Transformation and constraints are ‘knowledge’ about the data and 
they declarative; do ML tasks need declarativeness?  

•  Transformation/Query Specification: 
–  Users have a principal role, as in labeling tasks for ML; user 

supervision in ML can be a useful resource for us 
–  Looking at the cases in which no gold standard transformation is 

given  
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Open Issues (1I)  �� Part II  
•  System-oriented DM Tasks: 

– Many tasks benefit from one particular ML techniques; 
others have not been yet under scrutiny: which ML 
techniques best suit (or not) a given DM task?  

– Are computational costs, performances important for ML 
tasks in DM?  

– Are the ML tasks embeddable in a DBMS?  

•  Other DM tasks (not considered in this tutorial): 
– Distributed/Parallel computation in DM/ML tasks 
– Towards “online ML” in the spirit of “online querying” 
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ML to Data Management: 

 A Round Trip 
 

Thanks and Questions. 
(a pdf of the tutorial will be soon available on our homepages 

and ICDE18 website) 
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OtterTune: Possible Improvements 

•  Input from the DBA still needed to guide the process 
•  No means to automatically detect (learn?) the 

hardware profile 
•  Not all the costs are taken into account (for instance 

restarting the DBMS and then identifying knobs that 
can become bottlenecks in that case) 

•  An initial assumption is that the DBA has followed the 
guidelines for a well-specified physical design (indexes, 
materialized views are already in place…) 

•  Check the behavior with different regression models  
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The MADLib Library 
http://madlib.apache.org/ 

•  Provides (open source) 
methods for supervised/
unsupervised learning, 
descriptive statistics and 
support models 

•  The methods are designed for 
in-and out-of-core execution, 
and for parallel DBMS as well 
(uses SQL + Python) 

•  Designed by GreenPlum/UC 
Berkeley/Wisconsin/Florida 
and published in PVLDB17; 
now part of Apache software 
suite 
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Google’s TensorFlow 
https://github.com/tensorflow/tensorflow 

•  A distributed ML System 
–  providing an API for forward model (represented as a 

function f(x,�), where x is problem-specific input and � is 
external knowledge) 

•  f can be any model (Linear Regression, Neural Networks etc.) 

–  an automatic differentiation engine 
•  Programmer specifies model and loss in a declarative manner; no 

need to understand math 

–  a compute engine  
•  Intrinsic parallel execution and use of the ‘compute graph’ to be 

replicated on several compute servers 
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