ML-Based Knowledge Graph Curation: Current Solutions and Challenges

Laure Berti-Equille

IRD Montpellier Aix-Marseille University, CNRS, LIS, DIAMS France

laure.berti@ird.fr

http://pageperso.lif.univ-mrs.fr/~laure.berti/

MEPDAW'19

5th Workshop on Managing the Evolution and Preservation of the Data Web

Data Quality Problems in KBs

What can go wrong ?

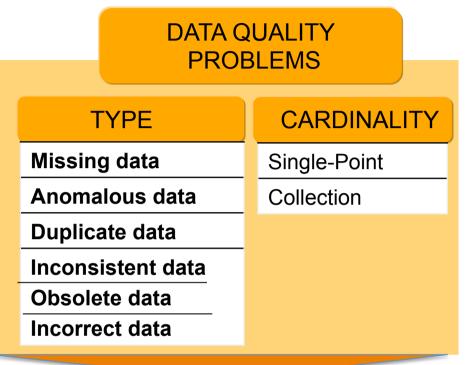
In DL:

- Invalid ABox: Class (concept), Property (role), Constant (individual)
- Invalid TBox: Set of axioms (Bad ontology design defining relationships: hierarchies, domains, ranges, etc.)

In RDF:

Invalid Triple:

<subject, property, object>


In KG:

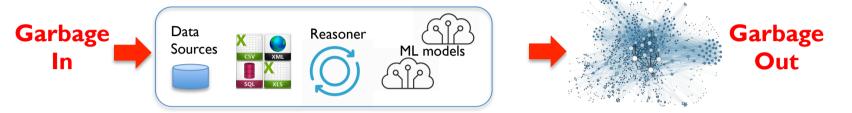
Invalid Fact:

< head , relation , tail >

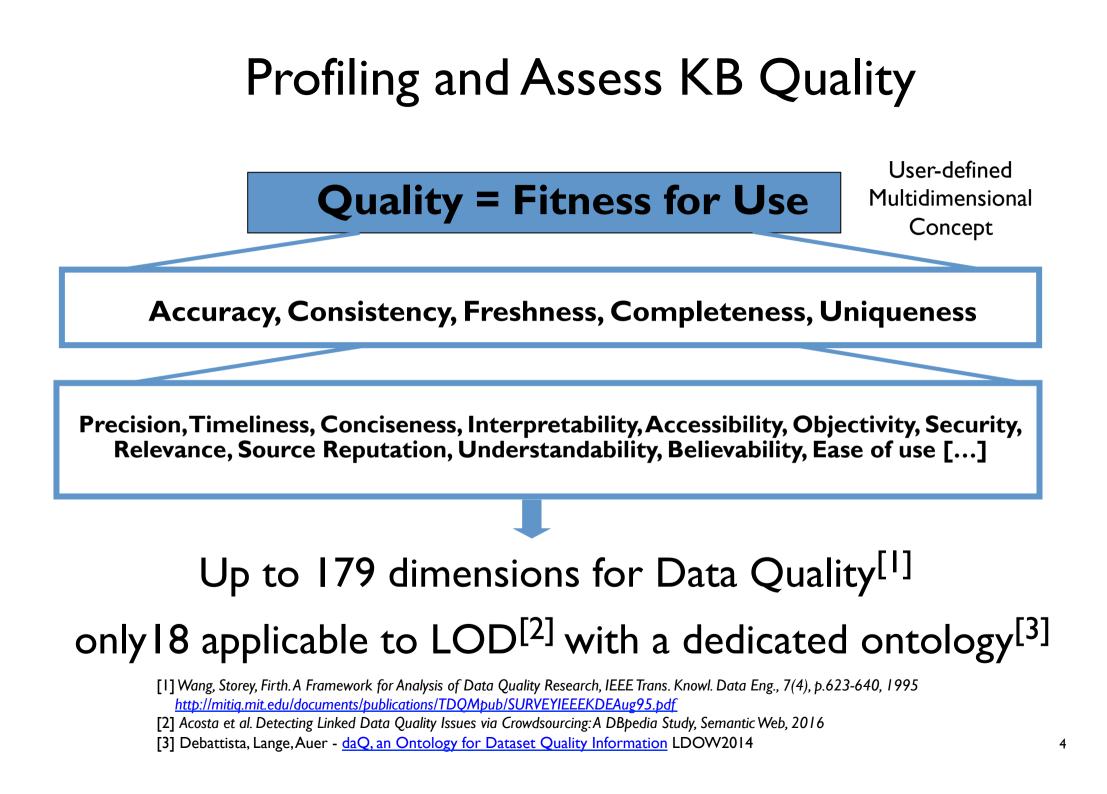
Invalid Reference to Extra-Information

- Mismatch of entity description
- Ambiguities in context mention

DETECTION/CORRECTION MODE

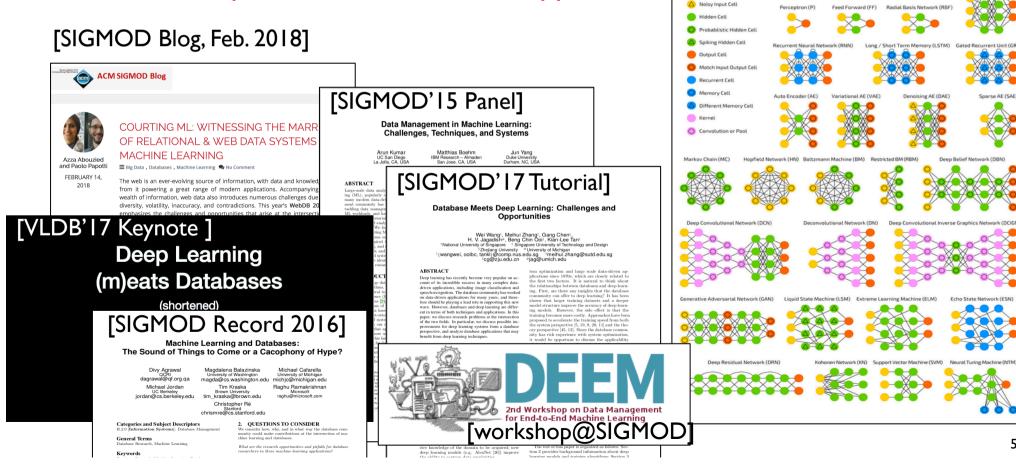

Manual Inspection:

- Expert and Human-In-the-Loop
- Find-Fix-Verify Crowdsourcing


Semi- or unsupervised techniques:

- Constraints, Rules, and Patterns
- Descriptive Statistics
- Model Inference and Machine Learning

Sources of errors in KB Construction/Population



Data Extraction	 Errors in unsupervised knowledge extraction from unstructured texts in open domain Multi-lingual and cultural difficulties in information extraction Identity problem due to context/description mismatch
Entity Linking	 Obsolescence Accuracy of automatic data linking approaches and large-scale entity disambiguation
Knowledge Inference	 Inadequate knowledge representations (information loss) Inadequacy of KG semantic embedding techniques for 1-N, N-1, and N-N relations
Knowledge Publishing	 Lack of automated large-scale knowledge verification and curation Lack of KG completion explainability (provenance), comprehensiveness, and interpretability

Research Context

- 1. Designing ML-based solutions for Data and Knowledge engineering is a very hot topic in DB community
- 2. Tsunami of Deep NN architectures and applications

[ICDE' 18 Tutorial]

Deep Feed Feeward (DEE)

A mostly complete chart of Neural Networks

O Backfed Input Cell

Input Cell

Outline

Introduction

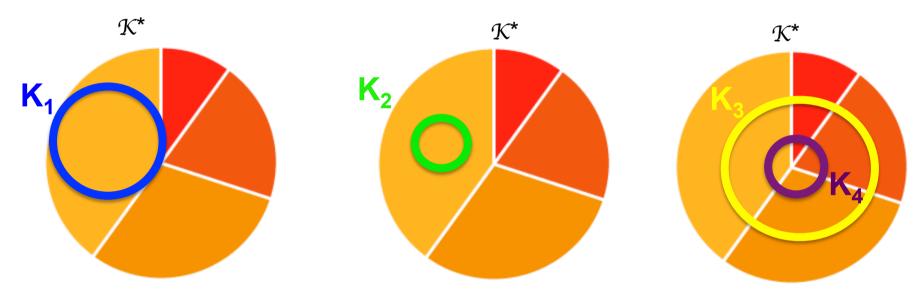

- Motivations
- Context
- Examples illustrating some relevant work

ML-based KG Curation

- KG refinement and ontology learning
- KG embedding
- KG completion
- Consistency checking and KG repairing

Concluding Remarks & Perspectives

Are all resources and KBs equally complete, accurate, up-to-date, and trustworthy?

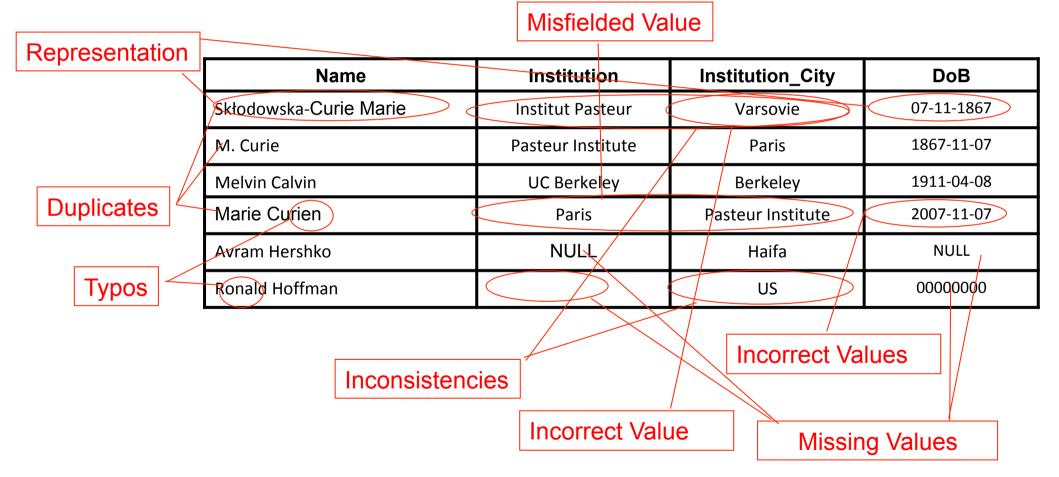

Example I. Completeness

	Home Analyti	ics Query A	bout	donal	S
	The co fo	omplet or Wik	eness tool idata		
COL-WIL	Analyti 🔒		About	donald trump	S,
Q22686 - Donald Trum 45th and current president of the U	the shalytine the shalyting the second seco	ics 2 Query 32%		donald trump	Show
Q22686 - Donald Trum	Home In Analyting P Inited States	ics 2 Query 32%	About Completeness rating	donald trump	show .
Q22686 - Donald Trum	Home In Analyting P Inited States	ics P Query 32% 15 out of 46 kn	About Completeness rating own non-functional properties are complete	donald trump S all properties	show .
Q22686 - Donald Trum	Home In Analyti	ics P Query 32% 15 out of 46 kn	About Completeness rating own non-functional properties are complete #Properties	donald trump S all properties Class completeness	show .
Q22686 - Donald Trum	Home In Analyti	ics Query 32% 15 out of 46 kn • #Objects 133	About Completeness rating own non-functional properties are complete #Properties 2	donald trump S all properties Class completeness 0.00%	show t

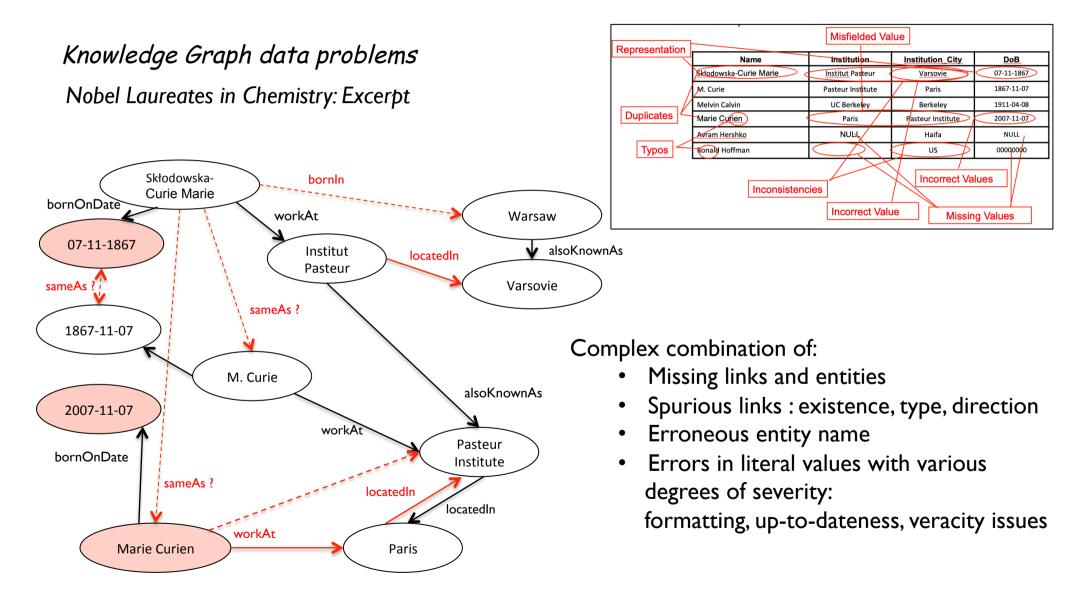
F. Darari, R.E. Prasojo, S. Razniewski, W. Nutt. COOL-WD: A Completeness Tool for Wikidata. ISWC'17

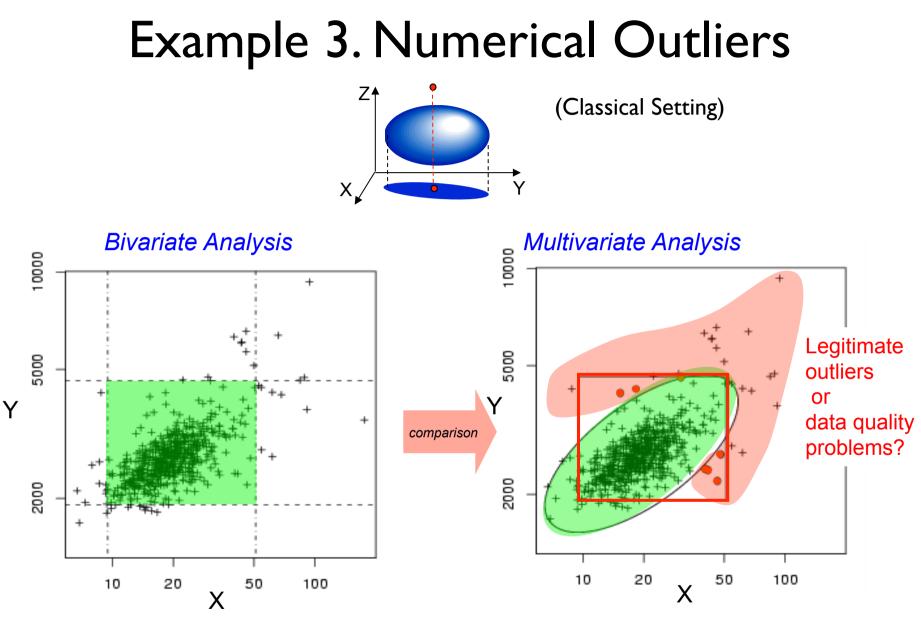
Example I (Cont'ed). KB Representativeness and Bias

Suppose you have the accurate and complete knowledge of the world-wide populations per city grouped into 4 categories: e.g. (<100k, [100k, 500k], [500k, 1M], >1M) and 4 KBs.


 K_1 is more complete than K_2 but both are somehow biased toward one category K_1 and K_2 are not as representative as K_3 or K_4

- Soulet, Giacometti, Markhoff, Suchanek: Representativeness of Knowledge Bases with the Generalized Benford's Law. International Semantic Web Conference (1) 2018: 374-390
- Wagner, Garcia, Jadidi, Strohmaier: It's a man's Wikipedia? Assessing gender inequality in an online encyclopedia. ICWSM. pp. 454–463 (2015)
- Callahan, Herring: Cultural bias in Wikipedia content on famous persons. J. of the Association for Information Science and Technology, 62(10), 1899–1915 (2011)
- Pitoura, Tsaparas, Flouris, Fundulaki, Papadakos, Abiteboul, Weikum. On Measuring Bias in Online Information. SIGMOD Record, Vol. 46 No. 4, December 2017


Example 2. KB Correctness


Relational data quality problems

Nobel Laureates in Chemistry

Example 2 (Cont'ed). KB Correctness

Rejection area: Data space excluding the area defined between 2% and 98% quantiles for X and Y Rejection area based on: Mahalanobis_dist(cov(X,Y)) > $\chi^2(.98,2)$

Example 3 (Cont'ed). Numerical Outliers in KG

Need for more approaches leveraging ontology, constraints or dependencies to improve outlier detection

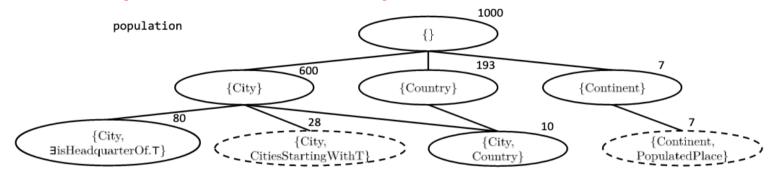
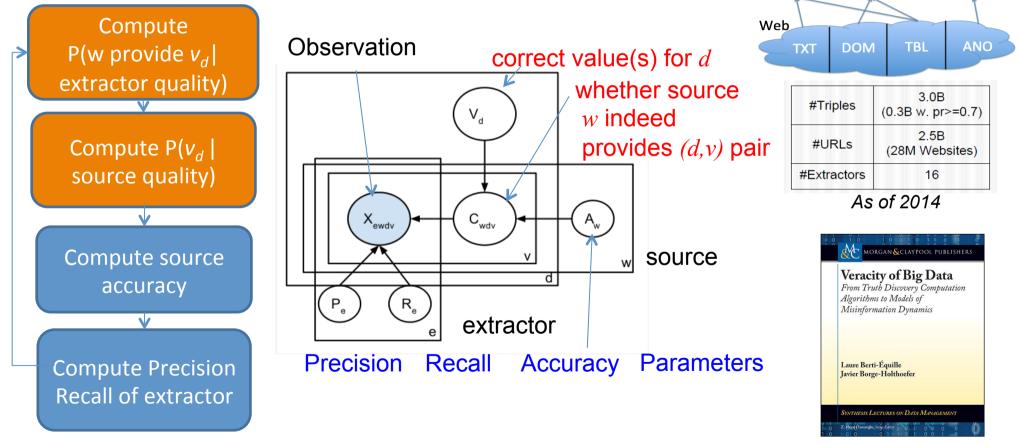


Fig. 1: Example for subpopulation lattice for property population. Numbers to the upper right of a node give the number of instances fulfilling the constraint set. Dashed nodes would be pruned, the left one for too low KL divergence, the right one for not reducing the instance set further.


Table 2: Area under the curve determined for the given samples and approaches							
Approach	elevation	height	populationTotal				
Outlier Detection	0.872	0.888	0.876				
Cross-Checked Outlier Detection	0.861	0.891	0.941				
Baseline	0.745	0.847	0.847				
Multi-lingual Baseline	0.669	0.509	0.860				

Fleischhacker, Paulheim, Bryl, Völker, and Bizer. Detecting Errors in Numerical Linked Data using Cross-Checked Outlier Detection. ISWC 2014 Debattista, Lange, Auer. A Preliminary Investigation Towards Improving Linked Data Quality Using Distance-based Outlier Detection, The Semantic Web, 2016.

Example 4. Veracity and Trustworthiness

ML-based approach for knowledge-based trust:

- Multi-Layer Model based on EM and Bayesian inference
- Distinguish extractor errors from source errors

X. L. Dong, K. Murphy, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, W. Zhang. Knowledge Vault: A Web-scale approach to probabilistic knowledge fusion. VLDB 2015

VAULT

Extractor

Extractor Extractor

Example 5: Up-to-dateness Asynchronous Real World and KG evolution

Version OWL Class		RDF Property				Object Prop.			Datatype Prop.					
Version	#	Δ	(-)	(+)	#	Δ	(-)	(+)	#	(-)	(+)	#	(-)	(+)
3.2/3	174				720				384			336		
3.4	204	30	-2	32	2168	1448	-271	1719	1144	-139	899	1024	-132	820
3.5	255	51	-6	57	1274	-894	-1198	304	601	-673	130	673	-525	174
3.6	272	17	0	17	1335	61	-37	98	629	-26	54	706	-11	44
3.7	319	47	-1	48	1643	308	-17	325	750	-6	127	893	-11	198
3.8	359	40	-1	41	1775	132	-3	135	800	-1	51	975	-2	84
3.9	529	170	-1	171	2333	558	-8	566	927	-6	133	1406	-2	433
2014	683	154	-5	159	2795	462	-46	508	1079	-9	161	1716	-37	347
2015-04	735	52	-5	57	2819	24	-103	127	1098	-23	42	1721	-80	85
2015-10	739	4	-5	9	2833	14	-9	23	1099	-3	4	1734	-6	19
2016-04	754	15	0	15	2849	16	-2	18	1103	-1	5	1746	-1	13

 Table 1. DBpedia - Classes and Properties

Today's DBpedia Ontology: 685 classes described by 2,795 properties

Mihindukulasooriya, Poveda-Villalon, Garcia-Castro, Gomez-Perez. Collaborative Ontology Evolution and Data Quality -An Empirical Analysis, in OWL: Experiences and Directions – Reasoner Evaluation, Springer International Publishing, Cham, 2017, pp. 95–114. https://www.w3.org/community/owled/files/2016/11/OWLED-ORE-2016_paper_9.pdf

Outline

Introduction

- Motivations
- Context
- Examples illustrating some relevant work

ML-based KG Data Curation

Knowledge Graph Refinement

Ontology Learning to learn a concept level description of a domain (e.g., Cities are Places)

Knowledge Extraction

Fact Extraction and Verification : Knowledge Fusion Methods

ML-based Solutions for KG Curation

Completion of Knowledge Graphs

- Learning Embeddings
- Methods for Entity Linking & Link Prediction : classification, rank, probabilistic graph models, deep (reinforcement) learning

Error Detection and Repair in Knowledge Graphs

- Rule learning for detecting/correcting erroneous type assertions, relations or literal values
- User-guided repair with updates

Knowledge Verification for Long-Tail Verticals

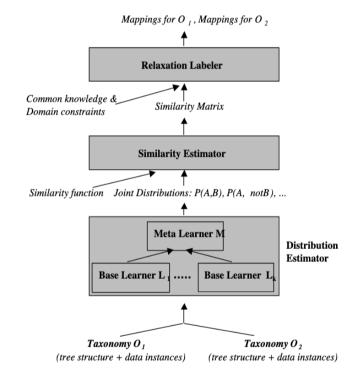
Furong Lit Xin Luna Dongt Anno Langens Yang Lit 'National University of Singapore *Amazon 'Google Inc. furongli@comp.nus.edu.sg lunadong@amazon.com {arl, ngli;@google.com

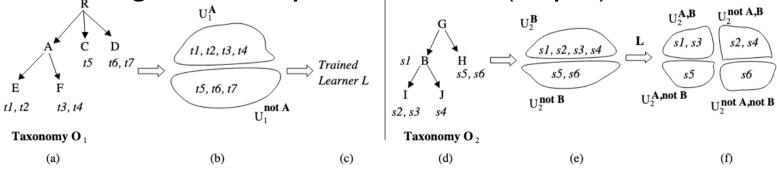
GLUE: Learning to find similar ontological concepts

 Glue applies ML technique to find, for each concept node in a taxonomy, the most similar concept in the other taxonomy

KG Refinement

 It applies the multi-learning approach of LSD (Learning Source Description)




Fig. 2. The GLUE Architecture

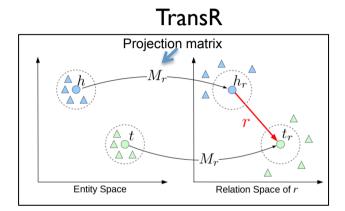
GLUE: Learning to find similar ontological concepts (2)

It leverages the joint probability distribution:
 – P(A,B), P(A, not(B)), P(not(A),B), P(not(A),not(B))

KG Refinement

- ML is used to infer whether P(A,B) can be approximated with P(A intersect B)
 - By defining a classifier for instances containing concept A (resp. B) and using it to classify instances of B (resp. A)

Fig. 3. Estimating the joint distribution of concepts A and B

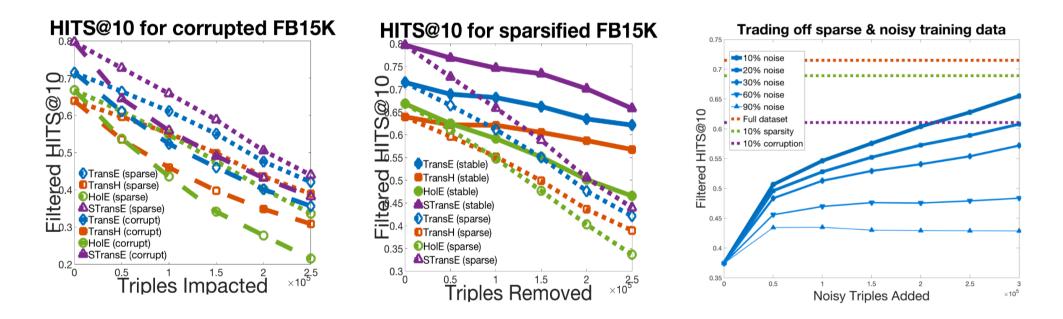

Doan, Madhavan and Halevy. Ontology Matching: A Machine Learning Approach. Handbook on Ontologies in Information Systems (pp. 385-403), 2004

Learning distributed representations of entities and relations of KG

- Linear models
 - Translation-based : TransE, TransH, TransR, STransE, FTransE

KG embedding

 Tensor product-based: RESCAL, DistMult, ComplEx, SimplE, TuckER

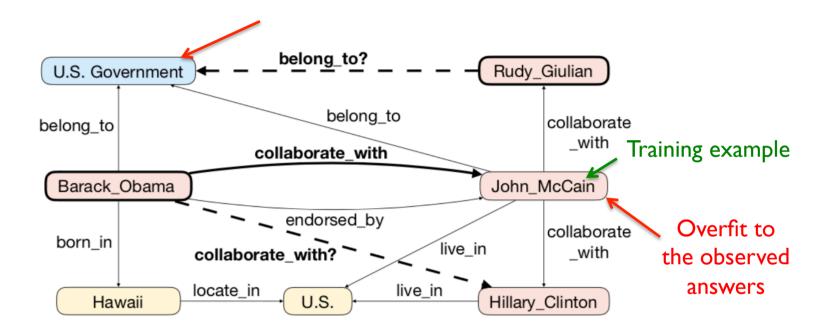

- Deep Learning or convolution
 - HypER, ConvE, ConKB, SLM, LFM, ER-MLP NTN

Model	Scoring Function	Relation Parameters	Space Complexity
RESCAL (Nickel et al., 2011)	$\mathbf{e}_s^{ op} \mathbf{W}_r \mathbf{e}_o$	$\mathbf{W}_r \in \mathbb{R}^{{d_e}^2}$	$\mathcal{O}(n_e d_e + n_r d_r^2)$
DistMult (Yang et al., 2015)	$\langle \mathbf{e}_{s}^{'}, \mathbf{w}_{r}, \mathbf{e}_{o} angle$	$\mathbf{w}_r \in \mathbb{R}^{d_e}$	$\mathcal{O}(n_e d_e + n_r d_e)$
ComplEx (Trouillon et al., 2016)	$\operatorname{Re}(\langle \mathbf{e}_s, \mathbf{w}_r, \overline{\mathbf{e}}_o angle)$	$\mathbf{w}_r \in \mathbb{C}^{d_e}$	$\mathcal{O}(n_e d_e + n_r d_e)$
ConvE (Dettmers et al., 2018)	$f(\operatorname{vec}(f([\underline{\mathbf{e}}_{s};\underline{\mathbf{w}}_{r}]*w))\mathbf{W})\mathbf{e}_{o}$	$\mathbf{w}_r \in \mathbb{R}^{d_r}$	$\mathcal{O}(n_e d_e + n_r d_r)$
HypER (Balažević et al., 2018)	$f(\operatorname{vec}(\mathbf{e}_s * \operatorname{vec}^{-1}(\mathbf{w}_r \mathbf{H}))\mathbf{W})\mathbf{e}_o$	$\mathbf{w}_r \in \mathbb{R}^{d_r}$	$\mathcal{O}(n_e d_e + n_r d_r)$
SimplE (Kazemi & Poole, 2018)	$rac{1}{2}(\langle \mathbf{h}_{e_s}, \mathbf{w}_r, \mathbf{t}_{e_o} angle + \langle \mathbf{h}_{e_o}, \mathbf{w}_{r^{-1}}, \mathbf{t}_{e_s} angle)$	$\mathbf{w}_r \in \mathbb{R}^{d_e}$	$\mathcal{O}(n_e d_e + n_r d_e)$
TuckER	$\mathcal{W} imes_1 \mathbf{e}_s imes_2 \mathbf{w}_r imes_3 \mathbf{e}_o$	$\mathbf{w}_r \in \mathbb{R}^{d_r}$	$\mathcal{O}(n_e d_e + n_r d_r)$

KG Refinement

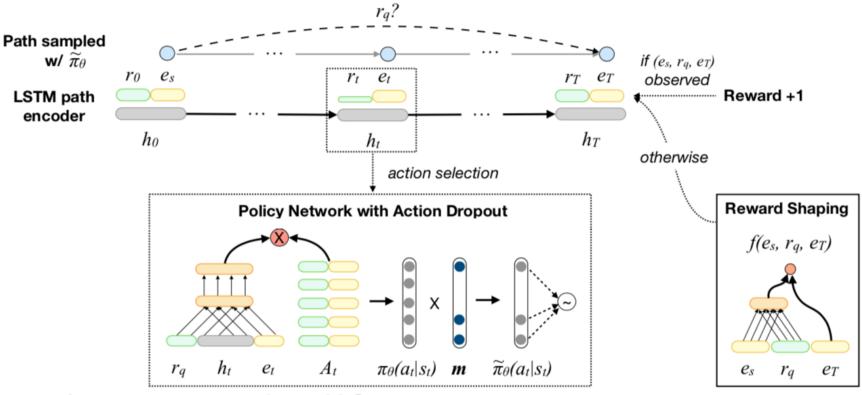
Impact of Noise and Sparsity in KG embeddings

KG embedding



A large, unreliable training dataset may be better than an extremely sparse, high-quality one.

Pujara, Augustine, Getoor. Sparsity and Noise: Where Knowledge Graph Embeddings Fall Short. ACL 2017 https://www.github.com/lings/pujara-emnlp17


Link Prediction with Reinforcement Learning

No reward

- Leverage multi-hop KG query answering
- Use pre-trained model-based on-policy reinforcement learning
- New reward shaping and policy network with action dropout

Link Prediction with Reinforcement Learning

- Leverage multi-hop KG query answering
- Use pre-trained model-based on-policy reinforcement learning
- New reward shaping and policy network with action dropout

KG Refinement KG embedding KG completion Joint Entity Linking On Wednesday with Deep Reinforcement Learning

WWW 2019, May 13-17, 2019, San Francisco, CA, USA Zheng Fang, Yanan Cao, Dongjie Zhang, Qian Li, Zhenyu Zhang, and Yanbing Liu

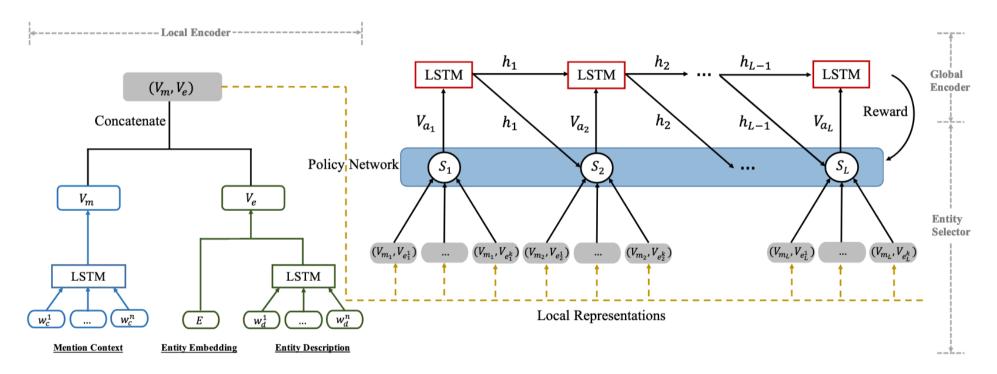
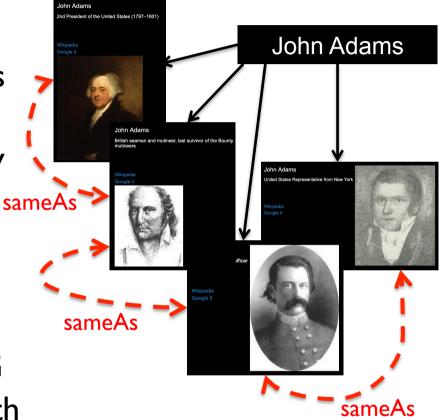



Figure 2: The overall structure of our RLEL model. It contains three parts: Local Encoder, Global Encoder and Entity Selector. In this framework, $(V_{m_t}, V_{e_t^k})$ denotes the concatenation of the mention context vector V_{m_t} and one candidate entity vector $V_{e_t^k}$. The policy network selects one entity from the candidate set, and V_{a_t} denotes the concatenation of the mention context vector V_{m_t} and the selected entity vector $V_{e_t^*}$. h_t represents the hidden status of V_{a_t} , and it will be input into S_{t+1} . KG embedding

Identity Problem or Link Quality Problem ?

To assessing link quality:

- Network topology and link properties
- Link type, content, and context
- Ontology axioms and ontology quality
- Provenance: source and extractor reliability
- Accessibility, reachability
- Information gain
- Task-dependent properties: e.g., in KG completion: path predicting power, path diversity (to avoid overfitting due to spurious paths)

Error Detection and Repairing

• Error detection

Probabilistic techniques [Ruckhaus et al. 2014, Debattista et al., 2015, Li et al. 2015]

Value imputation

Statistics: SDType [Paulheim, Bizer, 2014],

Pattern enforcement

- Syntactic patterns (date formatting)
- Semantic patterns (name/address)

• Consistency checks and value update to satisfy

- A set of rules, constraints, FDs, CFDs, Denial Constraints (DCs),
 Matching Dependencies (MDs) with minimal number of changes
- Integrity, Cardinality, Range or String-based constraints using W3C
 Shape Constraints Language (SHACL) and Shape Expressions
 Language (ShEX) [Rashid et al. 2019] see http://github.com/AKSW/RDFUnit

Consistency analysis in evolving KB

Hypothesis(H)

H1: Dynamics features from periodic data profiling can help to identify completeness issues. H2: Learning models can be used to predict correct integrity constraints using the outputs of the data profiling as features.

Learning	Minimum Cardinality			Maximum Cardinality			Range		
Algorithm	Precision	Recall	F1	Precision	Recall	F1	Precision	Recall	F1
Random Forest	0.9890	0.9574	0.9730	0.9842	0.9920	0.9881	0.9457	0.9527	0.9594
Least Squares SVM	0.9944	0.9468	0.9700	0.8491	0.9574	0.9000	0.8596	0.9231	0.8902
Multilayer Perceptron	0.9674	0.9468	0.9570	0.8167	0.9601	0.8826	0.8262	0.8657	0.8456
K-Nearest Neighbour	0.9511	0.9309	0.9409	0.8797	0.8750	0.8773	0.8361	0.8425	0.8393
Naive Bayes	0.9401	0.8351	0.8845	0.9065	0.7739	0.8350	0.8953	0.7951	0.8422

Rashida, Rizzo, Torchianoa, Mihindukulasooriyac, Corchoc, Garcia-Castroc. Completeness and Consistency Analysis for Evolving Knowledge Bases. Journal of Web Semantics. Volume 54, January 2019, Pages 48-71.

Rule discovery in KB

- AMIE+: https://www.mpi-inf.mpg.de/departments/databases-andinformation-systems/research/yago-naga/amie/
- RuleN: http://web.informatik.uni-mannheim.de/RuleN/
- RUDIK: https://github.com/stefano-ortona/rudik

Pellissier, Tanon, Bourgaux Suchanek, Learning how to correct KB from Edit History On Thursday

Galarraga, Teflioudi, Hose, Suchanek. Fast rule mining in ontological knowledge bases with AMIE+. The VLDB Journal, 24(6):707–730, 2015
 Meilicke et al. Fine-Grained Evaluation of Rule- and Embedding-Based Systems for Knowledge Graph Completion. ISWC 2018 (2018): 3–20.
 Ortona, Meduri, Papotti. Robust discovery of positive and negative rules in knowledge-bases. ICDE 2018.

 $P_2(7.3\%)$

h@10

.736

.724

.438

.546

.661

h@1

.451

.536

.179

.288

.019

UC (18.4%)

h@1 h@10

.205

.207

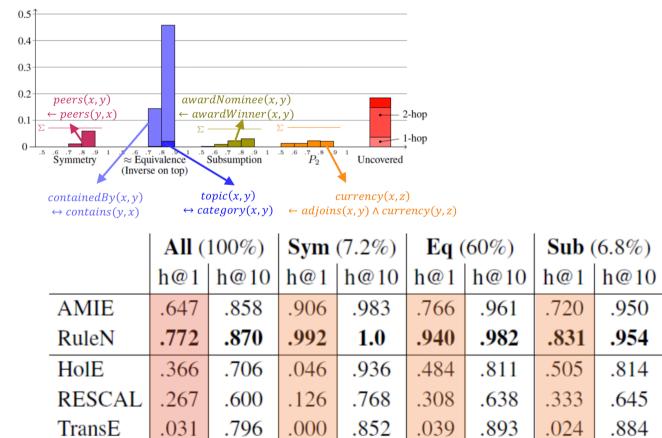
.127

.158

.027

.486

.480


.339

.416

.479

Fine-Grained Evaluation: Rule-based vs embedding-based approaches

Test Set Partitioning (FB15k)

Concluding Remarks

- ML provides a principled framework and efficient tools for automating and optimizing many KG management tasks (e.g., extraction, population, completion, consistency checking)
- Paradox: ML for KG curation need high quality training data
- Hybrid approaches combining Humans-inthe-loop, AutoML techniques and distant supervision are promising for KG curation

Perspectives for ML-Based KG Curation

Integrate the Human "in the Loop of ML-tools"

 "Taskify" and minimize the amount of interactions with the users while, at the same time, maximize the potential "ML benefit" for KG management tasks

Current efforts:

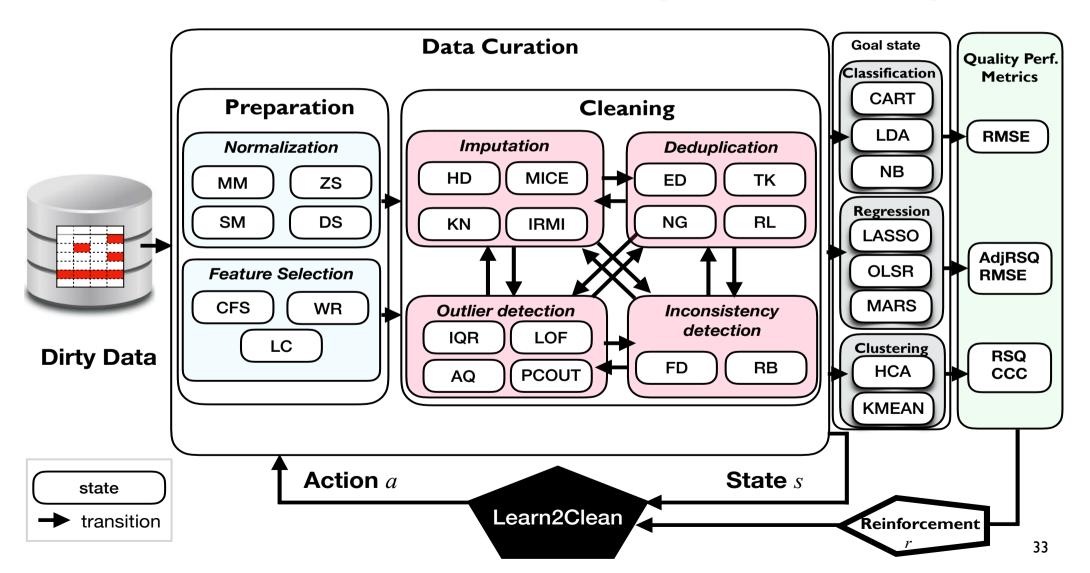
Crowdsourcing, active learning, user-guided repair

- Detecting LoD Quality issues via Crowdsourcing (DBpedia) [Acosta et al. 2016]
- Data cleaning with oracle crowds [Bergman et al., SIGMOD'15]
- User-guided repair of KB [Arioua, Bonifati, EDBT 2018]

• Direction:

- Orchestration of Humans and ML-tools for KG curation

Be inspired !


A Condensed View of ML-based curation solutions for structured data

Repair System	ML Approach	Goal
Febri [Churches et al., 2002]	HMM and MLE	Standardizing loosely structured texts (e.g., name/address) based on the probabilistic model learnt from training data
SCARE [Yakout, Berti-Equille, Elmagarmid, SIGMOD'I 3]	Multiple ML models used to capture data dependencies across multiple data partitions	Find the candidate repair that maximizes the likelihood repair benefit under a cost threshold of the update
Continuous Cleaning [Volkovs et al., ICDE'14]	Logistic classifiers	Learning from past user repair preferences to recommend next more accurate repairs
Lens [Yang et al. ,VLDB'15]	Various ML models encoded in Domain Constraints	Declarative on-Demand ETL with prioritized curation tasks based on probabilistic query processing and PC-Tables
HoloClean [Rekatsinas et al.,VLDB 2017]	Probabilistic inference on factor graphs with SGD and Gibbs sampling	Mixing statistical and logical rules, DCs, MDs, etc. to infer candidate repairs in a scalable way with domain pruning and constraint relaxation
BoostClean [Krishnan et al., 2017]	Poster #1293 on Wednesday !	Mixing statistical and logical rules, domain constraints for detection and repair combinations to maximize the predictive accuracy over test data
Learn2Clean [Berti-Equille, TheWebConf2019]	Reinforcement Learning	Learn from trial-and-errors the sequence of data preprocessing tasks that maximizes the quality of a given ML model

Reinforcement learning for data cleaning

Learn2Clean: Optimizing the Sequence of Tasks for Data Preparation

[The Web Conference 2019]

Thanks!

