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1. Introduction 
Four biotechnological advances have been accomplished of the last decade: i) sequencing 
of whole genomes giving chance to the discovery of thousands of genes, ii) functional 
genomics using high-throughput DNA microarrays to measure expression of each of 
these genes in multiple physiological and environmental conditions, iii) scaling of 
proteins using Proteome to map all the proteins produced by a genome, and iv) the 
dynamics of these genes and proteins in a network of interactions that gives life to any 
biological activity and phenotype. These major breakthroughs resulted in massive 
collection of data in the field of Life Sciences. Considerable efforts have been made to 
sort out, curate and integrate every relevant piece of information from multiple 
information sources in order to understand complex biological phenomena.  
 
Biomedical researchers spend a phenomenal time to search data across heterogeneous 
and distributed resources. Biomedical data are indeed available in several public 
databanks: banks for genomic data (DNA, RNA) like Ensembl, banks for proteins 
(polypeptides and structures) such as SWISS-PROT1, generalist databanks such as 
GenBank2, EMBL3 (European Molecular Biology Laboratory) and DDBJ4 (DNA 
DataBank of Japan). Other specialized databases exist today to describe specific aspects 
of a biological entity, including structural data of proteins (PDB5), phenotype data 
(OMIM6), gene interactions (KEGG7) and gene expression data (ArrayExpress8). 
Advances in communication technologies enabled these databases to be worldwide 
accessible by scientists via the Web. This has promoted the desire to share and integrate 
the data they contain, for connecting each biological aspect to another, e.g., gene 
sequence to biological functions, gene to partners, gene to cell, tissue and body locations, 
signal transductions to phenotypes and diseases, etc. However, semantic heterogeneity 
has been a major obstacle to the interoperability of these databases, moving to semantic 
scale the structuring efforts of biomedical information. Since then, interoperability, i.e., 
the linking of distributed and heterogeneous information items, has become a major 
problem in bioinformatics. Besides, biological data integration is still error-prone and 
difficult to achieve without human intervention. 
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In spite of these barriers, we have assisted in the last decade to an explosion of data 
integration approaches and solutions to help Life Sciences researchers to interpret their 
results, test and generate new hypothesis. In high throughput bio-technologies like DNA-
chips, data warehouse solutions encountered a great success, because of constant needs to 
store locally the delivered gene expression data, confront and enrich them with data 
extracted from other sources, for multiple possibilities of novel analyses.  

 

The Life Sciences data sources are supplied by researchers. They are also accessed by 
researchers to interpret their results and generate new hypotheses.  

 

However, in case of insufficient mechanisms for characterizing the quality of the data 
they contain, such as: truthfulness, accuracy, redundancy, inconsistency, completeness, 
and freshness, data is considered by scientists as a "representation" of reality. Many 
imperfections in the data are not detected or corrected before integration and analysis. In 
this context, tremendous amount of data warehouse projects integrate data from various 
heterogeneous sources, having different degrees of quality and trust. Most of the time, the 
data are neither rigorously chosen nor carefully controlled for data quality. Data 
preparation and data quality metadata are recommended but still insufficiently exploited 
for ensuring quality and validating the results of information retrieval or data mining 
techniques (Berti-Équille and Moussouni, 2005). 
Most-used on-line databanks for Life Sciences are riddled with errors and lots of factors 
will cause them. The three major sources of data quality problems are the following:  
 
� Heterogeneity of data sources: Public molecular databases (GenBank, Swiss-Prot, 

DDBJ, EMBL, PIR, among others) are large and complex artifacts. They already 
integrate data from multiple sources, and transform it using various programs, scripts 
and manual annotation procedures that are neither traced, nor documented and 
reproducible, and that change over time. Extensive duplication, repeated submissions 
of the sequences to the same or different databases and cross-updating of databases 
accelerate the propagation of errors within and across the main on-line databanks. 
 

� Free-ruled data annotation: Biological data come from journal literature and direct 
author submissions for otherwise unpublished sources. There are usually no content 
restrictions for the submitters or collaborators to present their data to the databanks, 
even allow them claim patents, copyrights, or other intellectual property rights in all 
or a portion of the data with very few checking or assessment of the information 
content validity. Data entry errors can be easily introduced due to the lack of 
standardized nomenclature, variations in naming conventions (synonyms, homonyms, 
and abbreviations). In addition, information content may have different 
interpretations. 
 

� Instrumentation/Experimental errors. The tools driving the current automated, high-
throughput sequencing systems are not infallible. Even a 1% error rate will produce 



 page 3 

10 mistakes in every 1000 bases generated by the machine. Due to the unboundary 
information feature of coding and origin region in genomic sequence data, the 
researchers of molecular biology have to extract the relevant data from them when 
performing analysis and addressing specific research. Any data problem or error in 
the symbol sequences and repetitions may cause misleading and wrong data analysis 
results or misinterpretations.  

 
� Inadequacy of data quality control mechanisms and scalability issues. Since the 

data sizes of major public databanks have been increasing exponentially, (e.g., 
GenBank contains approximately 126,551,501,141 bases in 135,440,924 sequence 
records in the traditional GenBank divisions and 191,401,393,188 bases in 
62,715,288 sequence records in the WGS division as of April 2011), manual data 
curation still predominates, despite its high cost and obvious problems of scalability 
(Baumgartner et al., 2007). Systematic approaches to data checking and cleaning are 
lacking (Buneman et al., 2008). 

 
A wide range of data quality problems may emerge at any time during data life cycle 
(i.e., data acquisition, assembly, transformation, extraction, integration, storage, internal 
manipulation, etc.) from primary raw experiment databases to large public databanks and 
specialized laboratory information management systems (LIMS).  
Careful data cleaning and data preparation are very necessary prerequisites to any process 
of knowledge discovery from integrated biological data.  

 

In this chapter, we review the literature on data integration in the Life Sciences with a 
particular focus on the approaches that have been proposed to handle biological data 
quality problems (Section 2). We propose a classification of data quality problems in 
biomedical resources and we present some of preprocessing solutions that can be 
practically implemented before any task of data mining (Section 3). Based on our 
previous work on data cleaning, integration and warehousing of biomedical data, we 
present the lessons we've learnt and the approach we've implemented in practice (Section 
4). Finally, we'll conclude this chapter with some challenging research directions for 
biomedical data preprocessing and integration (Section 5). 

2. Related work  
The first generations of data integration systems for the Life Sciences were based on flat 
file indexing (e.g., SRS9, DBGet10, Entrez11, Atlas12), multi-database query languages 
(Kleisli, OPM, P/FDM), and federated databases (DiscoveryLink, BioMediator, 
caGRID). Recent systems are now mediation systems (or mediators) that consist in 
connecting fully autonomous distributed heterogeneous data sources. Mediators do not 
assume that integrated sources will all be relational databases. Instead, integrated 
resources can be various database systems (relation, object-relational, object, XML, etc.), 
flat files, etc. The integration component of mediation is in charge of (1) providing a 
global view of integrated resources to the user, (2) proving the user with a query language 
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to query integrated resources, (3) executing the query by collecting needed data from 
each integrated resource, and (4) returning the result to the user. For the user, the system 
provides a single view of the integrated data as it was a single database. Several 
mediation systems have been designed for domain specific integration of biomolecular 
data, providing non-materialized views of biological data sources. They include: 
- BioKleisli (Davidson et al., 1997, Buneman at al., 1998) and its extensions K2 

(Davidson et al., 2001) and Pizzkell/Kleisli (also known as Discovery Hub, Wong, 
2000) 

-  the multi-database system based on the Object Protocol Model (OPM) (Chen & 
Markovitz, 1995) to design object views (Chen et al., 1997) and its Object-Web 
Wrapper (Lacroix 2002), 

-  the DiscoveryLink (Haas et al., 2001),  
- P/FDM (Kemp et al., 1999, 2000) and  
- TAMBIS (Baker et al., 1998). 
 
 Indeed mediation systems often offer an internal query language that allows the 
integration of (new) resources (data and tools) in addition to a user’s query language that 
is used by biologists to access, analyze, and visualize the data. Existing mediation 
approaches rely on traditional database query languages (e.g., SQL, OQL). As a 
particular example of ontology-based integration, TAMBIS (Baker et al., 1998) is 
primarily concerned with overcoming semantic heterogeneity through the use of 
ontologies. It provides users an ontology-driven browsing interface. Thus it restricts the 
extent to which sources can be exploited for scientific discovery.  

 

To summarize, these systems have made many inroads into the task of data integration 
from diverse biological data sources. They all rely on significant programming resources 
to adjust to specific scientific tasks. They are also difficult to maintain and provide user’s 
query language that requires programming ability (such as SQL, OQL, Daplex, etc.) and 
significantly limit the query capabilities.  

 

However, none of the existing systems allows the management of data quality metadata 
and none of them offers the flexibility of customization for ETL (Extract-Transform-
Load) or data preprocessing tasks. These functionalities may be partially covered by 
emerging scientific workflow management systems (Cohen-Boulakia & Leser, 2011; 
Ives, 2009) emphasizing data provenance as a critical dimension of biological knowledge 
discovery (Cohen-Boulakia & Tan, 20009). 
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3. Typology of data quality problems in biomedical 
resources 

 

We can classify data quality problems occurring in biomedical resources into the 
following categories illustrated with relevant examples: 
� Redundancy: Redundant or duplicated data are mainly caused by over-submission. 

This category is due to overlapping annotations and replication of identical sequence 
information, e.g., the same sequence can be submitted to different databases or 
submitted several times to the same database by different groups, and/or the protein 
sequence may be translated from the duplicate nucleotide sequence and several 
records may contain fragmented or overlapping sequences with more or less complete 
sequences. The redundancy problem often comes along with partial incompleteness 
of records and more generally it is caused by the evolving nature of knowledge. 
Extensive redundancy is caused by records containing fragmented or overlapping 
sequences with more complete sequences in other records (see Example 1 for 
illustration). 
Example 1. Redundancy. Consider two records describing the same biological entity, 
GI:11692004 and GI:11692006 respectively from NCBI nucleotide databank 
presented in Figure 1. The only difference between the two records relies on the 
sequence length. The record GI:11692006 provides additional irrelevant bases “a”. 
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Figure 1. Example of two redundant records with uninformative sequence portions 

 

� Incompleteness: Paradoxically, over-submission does not prevent from submission of 
incomplete records and fragmented information from one record to another with 
potentially overlapping or conflicting data.  

� Inconsistency: Multiple database records of the same nucleotide or protein sequences 
contain inconsistent or conflicting feature annotations. This category includes data 
entry errors, misspelling errors, mis-annotations of sequence functions, different 
expert interpretations, and inference of features or annotation transfer based on best 
matches of low sequence similarity. Problematic data that lack of domain 
consistency, such as contaminated data existing in coding region due to unsure 
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reasons, outdated, missing and discrepant annotations comparing with other 
databanks. Various kinds of inconsistency may occur: 

� Syntax errors: The syntax errors are violations of syntactic constraints on 
particular format/fields of the databank record. 

� Semantics errors: Semantics errors contain data field discrepancy, invalid 
data content identified either by the databank flatfile format or other NCBI 
specifications. For examples, invalid MedLine or PubMed numbers, 
invalid reference number, etc. Another type of error is the mis-use of fields 
when data content does not correspond to the field usage (see Example 2). 

� Naming ambiguities: The manifestation of synonyms, homonyms and 
abbreviations results in information ambiguities which cause problems in 
biological entity identification and keyword searching. For example, BMK 
stands for “Big Map Kinase”, “B-cell/myeloid kinase”, “bovine midkine”, 
as well as for “Bradykinin-potentiating peptide”. The scorpion neurotoxin 
BmK-X precursor has a permutation of synonyms. It is also known as 
“BmKX”, “BmK10”, “BmK-M10”, “Bmk M10”, “Neurotoxin M10”, 
“Alpha-Neurotoxin TX9”, and “BmKalphaTx9”. 

� Undersized/oversized fields: Sequences with meaningless content can be 
found in protein records queried using Entrez to the major protein or 
translated nucleotide databases: these are protein sequences shorter than 
four residues and sequences shorter than six bases. The undersized fields 
may alter the entity identification: e.g., “M” is the synonym of the protein 
“ACTM_HELTB” (record GI:1703137) but “M” also corresponds to 
1,389,441 records on NCBI protein database.  

� Cross-annotations with conflicting values: Multiple database records of 
the same nucleotide or protein sequences may contain conflicting feature 
annotations, data entry errors, mis-annotation of sequence functions, 
different expert interpretations, and inference of features or annotation 
transfer based on best matches of low sequence similarity (see Example 2). 

� Putative information: Functional annotation sometimes involves 
searching for the highest matching annotated sequence in the database. 
Features are then extrapolated from the most similar known searched 
sequences. In some cases, even the highest matching sequence from 
database search may have weak sequence similarities and therefore does 
not share similar functions as the query sequence. “Blind” inference can 
cause erroneous functional assignment.  

Example 2. Inconsistency. Consider the bibliographic reference provided in the 
record GenBank: AF139840.1 presented in Figure 2. 
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 Figure 2. Example of mis-use of the bibliographic references field 

This record and sequence information has been directly submitted to GenBank and they 
don't correspond to a peer-reviewed publication stricto sensu. 
� Irrelevancy: Less meaningful, nonsense or irrelevant data existing in free-text field of 

annotation or description, e.g., coding region, which intervene with the target 
analysis. Some values of finer granularity may be concatenated and automatically 
imported into a data field of coarser granularity. These values are so-called misfielded 
(see Example 3).  

� Uninformative features or data: A profuse percentage of the unknown 
residues (“X”) or unknown bases (“N”) can reduce the complexity of the 
sequence and thus, the information content of the sequence.  

� Contaminated data: Introns and exons must be non-overlapping except in 
cases of alternative splicing. But in some erroneous records, nucleotide 
sequences have overlapping intron/exon region and some sequences can 
possibly be contaminated with vectors commonly used for the cloning. 

Example 3. Irrelevancy. Consider the following DEFINITION field of the protein record 
AAB25735.1 (http://www.ncbi.nlm.nih.gov/protein/AAB25735.1): it includes the 
species, the sequence length, etc. These additional information items are irrelevant and 
mis-fielded. 

DEFINITION neurotoxin, NTX [Naja naja=Formosan cobra, ssp. atra, venom, Peptide, 62 aa] 

 

� Obsolescence: Instead of checking existing records related to the biological entity of 
interest and updating one of them, users may prefer to submit a new record. This may 
increase not only the inter-record redundancy and overlaps in the databank but it also 
has two consequences, first on increasing the difficulty to achieve entity resolution 
and correctly group together the records that may be truly related to the same 
biological entity, and second on keeping out-of-date records with misleading or no 
longer valid knowledge elements. 

 
Table 1 summarizes a categorization of potential intra-record data quality problems into 
categories and the fields they can affect in a traditional record content.  
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Categories Data quality 
problems 

Record Fields 

  Global 
Identifier 

Definition Taxonom
y 

References Cross-
Links 

Feature 
annotations 

Raw 
data 

Inconsistency Typo/ Mis-
spelling  X  X   X 

 Format 
violation  X  X  X X 

 

Ambiguous 
naming 
(homonyms, 
synonyms, 
abbreviations)  

 X X X  X X 

 Mis-fielded 
values  X  X  X X 

 Undersized/ 
over-sized field  X    X X 

 

Measurement 
error , 
Contaminated 
data  

    X X X 

 
syntax errors 
and format 
violations 

 X  X X X X X 

Irrelevancy Putative 
information  X    X X 

 Uninformative 
data  X  X  X X 

Incompleteness 
Incomplete 
data / default 
values 

 X X X X X X 

Obsolescence Out-of-date 
data X X  X X X X 

Table 1. Categorization of potential intra-record data quality problems. 

 
Since redundancy can be observed from a group of records, it can be classified as inter-
record data quality problem. In the next table, we present the existing solutions for 
consolidating data both at the intra- and inter-record levels. These solutions are based on 
integrity, format and constraint checking, comparative analysis and duplicate detection 
depending on the type of data quality problem. 
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Categories Data quality problems Attribute-based 

solutions 
Intra-record 

solutions 
Inter-record 

solutions  

Inconsistency Typo/ Mis-spelling  Constraint 
checking  

 
Ambiguous naming 
(homonyms, synonyms, 
abbreviations)  

Dictionary look-
up 

Entity 
resolution 

Duplicate 
detection 

 Mis-fielded values   Constraint 
checking  

 Format violation Integrity 
constraints 

Formatting 
ETL 

Schema 
remapping 

 Undersized/ over-sized 
field  Size  

checking 
Comparative 

analysis 

 Measurement error , 
Contaminated data  

Vector 
screening, 
sequence 
structure 
parser 

Constraint 
checking 

Comparative 
analysis 

 syntax errors and format 
violations Format checking 

Irrelevancy Putative information Keywords 
search   

 Uninformative data    

Incompleteness Incomplete data / default 
values 

Constraint 
checking 

Constraint 
checking 

Comparative 
analysis 

Obsolescence Out-of-date data    

Table 2. Practical solutions to biological data quality problems. 

4. Cleaning, integrating and warehousing biomedical 
data 

 
Within this specific context, the aim of this section is to report on our experience during 
the design of GEDAW, the Gene Expression Data Warehouse (Guérin et al., 2005) and 
the implementation of the biomedical data integration process in the presence of syntactic 
and semantic conflicts. We will precisely point out on the lessons learned from data pre-
processing and propose the different but complementary solutions we have adopted for 
quality aware data integration.  

4.1. Lessons learned from integrating and warehousing 
biomedical data on liver genes and diseases 

Liver diseases, including those from infectious, alcoholic, metabolic, toxic and vascular 
etiology, are a major public health problem. They are frequently complicated by the 
occurrence of acute liver failure or the development of cirrhosis and liver cancer which 
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shorten life expectancy. Molecular mechanisms involved in the occurrence of these 
diseases and of their complications are still not well known. Ongoing researches focus on 
identifying new relative molecular mechanisms leading to new diagnostic and therapeutic 
tools. 
One way to study liver diseases and correlated complications is the use of DNA-Chips 
technologies for high-throughputs transcriptome study. Using this technology, thousands 
of genes can be studied simultaneously, in order to find out the subset of genes that are 
abnormally expressed in injured tissues, and that gives an attractive big turn in delivering 
new knowledge on gene networks and regulation mechanisms. 

 

However, the data generated on gene expression are massive and involve difficulties in 
their management and analysis. Furthermore, for the interpretation of a single gene 
expression measurement, the biologist has to consider the available knowledge about this 
gene on different databanks, including its chromosomal location, relative sequences with 
promoters, molecular function and classification, biological processes, gene interactions, 
expressions in other physio-pathological situations, clinical follow-ups and an 
increasingly important bibliography. 

 

The Gene Expression DAta Warehouse GEDAW, we have developed at the National 
Medical Research Institute (INSERM), stores data on genes expressed in the liver during 
iron overload and liver pathologies. Relevant information from public databanks, DNA 
chips home experiments and medical records have been integrated, stored and managed 
in GEDAW for globally analyzing the delivered gene expression measurements.  

 

GEDAW aimed at in silico studying liver pathologies by using expression levels of genes 
in different physiological situations, enriched with annotations extracted from the variety 
of the scientific data sources, ontologies and standards in Life Sciences and medicine. 
For the case of GenBank, each record, usually associated to a gene, describes the 
genomic sequence with several annotations and is identified by a unique accession 
number. It may also be retrieved by keywords (cf. Figure 5. GenBank screen shots for 
HFE Gene). Annotations may include the description of the genomic sequence: function, 
size, species for which it has been determined, related scientific publications and the 
description of the regions constituting the sequence (codon start, codon stop, introns, 
exons, ORF, etc.).  

 

However, designing a single global data warehouse schema that integrates syntactically 
and semantically many heterogeneous Life Sciences data sources is a challenging task. 
Only structured and semi-structured data sources were used to integrate GEDAW, using a 
Global As View (GAV) schema mapping approach and a rule-based transformation 
process from a given source schema to the global schema of the data warehouse (cf. 
Figure 3). As an almost hands-off integration method, this technique was quite advanced 
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at this time, comparing to previous developed warehouses like (Paton et al., 2000) for 
which yeast data were completely flat. 

 

Figure 3. Mapping GenBank DTD to GEDAW 

Figure 3 gives a synthesized Class diagram of GEDAW and some correspondences with 
the GenBank DTD (e.g., Seqdes_title and Molinfo values were extracted, transformed and 
migrated to other description attributes of the class Gene in the GEDAW global schema). 
The GEDAW system presented in (Guérin et al., 2005) allows massive import of 
biological and medical data into an object-oriented data warehouse that supports 
transcriptome analyses specific to the human liver. It focused on the relevant genomic, 
biological and medical resources that have been used to build GEDAW. The integration 
process of the full sequence annotations of the genes expressed was performed by parsing 
and cleaning the corresponding XML description in GenBank, transforming the recorded 
genomic items to persistent objects and storing them in the warehouse. This process is 
almost systematic because another aspect related to the conciliation of duplicate records 
has been added. Elements of formalization of expertise rules for mapping such data were 
given. This ongoing work is still a difficult problem in information integration in Life 
Sciences and has not yet satisfied answers by classical solutions proposed in existing 
mediation systems. In order to lead strong analysis on expressed genes and correlate 
expression profiles to liver biology and pathological phenotype, a second way of 
annotation has been added to the integration process. 
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4.2.  Data quality-aware solutions 

Different input data sources have been considered during the built of GEDAW: i) 
GenBank for the genomic features of the genes, ii) annotations of genes in biomedical 
ontologies and terminologies (such as UMLS13, MeSH14 and GO15), and iii) gene 
expression measurements generated in different physiological conditions.  
Because gene expression data is massive (more than two thousands measures per 
experiment and a hundred of experiments per gene), the use of schema integration in our 
case – i.e., the replication of the source schema in the warehouse - would highly burden 
the data warehouse.  
By using a Global as View (GAV) mapping approach for integrating one data source at a 
time (cf. Figure 3 for GenBank), we have minimized as much as possible the problem of 
identification of equivalent attributes. The problem of equivalent instance identification is 
still complex to address. This is due to general redundancy in the occurrence of a 
biological entity even within one data source. As we pointed out in Section 3, biological 
databanks may have inconsistent values of equivalent attributes referring to the same 
real-world object. For example, in GenBank, there are more than 10 data forms 
associated to the same human HFE gene, a central gene associated to iron uptake! 
Obviously the same segment could be a clone, a marker or a genomic sequence.  

 

This is mainly due to the fact that Life Sciences researchers can submit any biological 
information to public databanks with more or less formalized submission protocols that 
usually do not include names standardization or data quality controls. Erroneous data 
may be easily entered and cross-referenced. Even if some tools propose clusters of 
records (like LocusLink16 for GenBank, more recently called EntryGene) to identify a 
same biological concept across different biological databanks for being semantically 
related, biologists still must validate the correctness of these clusters and resolve 
interpretation of differences between records.  

 

Entity resolution and record linkage is required in this situation. It is even augmented and 
made more complex due to the high-level of expertise and knowledge it requires (i.e., 
difficult to formalize because related to many different sub-disciplines of biology, 
chemistry, pharmacology, and medical sciences). After the step of biological entity 
resolution, data are scrubbed and transformed to fit the global data warehouse schema 
with the appropriate standardized format for values, so that the data meets all the 
validation rules that have been decided upon by the warehouse designer. Problems that 
can arise during this step include null or missing data; violations of data type, non-
uniform value formats, and invalid data.  

4.2.1. Biological entity resolution and record linkage 

As the first preprocessing step for data integration, the process of entity identification, 
resolution and record linkage has to be performed using a sequence of increasingly 
sophisticated linkage techniques, described in the following, and also additional 
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knowledge bases, ontologies and thesaurus (such as UMLS Metathesaurus and MeSH-SR 
vocabulary), each operating on the set of records that were left unlinked in the previous 
phase: 

1. Linkage based on exact key matching: i.e., based on gene names and cross-referenced 
accession numbers (for instance between a gene from HGNC17 and a protein in 
SWISS-PROT), 

2. Linkage based on nearly exact key matching (i.e., based on all the synonyms of a 
term and all the identifiers of a gene or gene product in HGNC, the UMLS 
Metathesaurus and MeSH-SR and in the cluster of records proposed by EntryGene), 

3. Probabilistic linkage based on the full set of comparable attributes (i.e., based on the 
search for information about a gene or a gene product: the set of concepts related to 
this gene in the Gene Ontology (Molecular Function (F), Biological Process (P) and 
Cellular Component (C)) and the set of concepts related to the gene in UMLS and 
MedLine18 abstracts (including chemicals & drugs, anatomy, and disorders), 

4. Search for erroneous links (false positives), 

5. Analysis of residual data and final results for biological entity resolution. 
 
As an example, consider data related to Ceruloplasmin, a gene expressed mainly in the 
liver and involved in iron metabolism through its ferroxidase activity, which is dependent 
of the copper charge of the protein. Relative disease, called Aceruloplasminemia, is a 
genetic disease responsible of iron overload (Loreal et al., 2002). The level of plasmatic 
ceruloplasmin is modulated during various chronic liver diseases (Laine et al., 2002). 

 

As shown in Figure 4, a first phase of linkage based on a search of Ceruloplasmin in 
GOA19 database and HGNC provides related terms and returns the corresponding 
accession numbers in GeneEntry (1356) or SWISS-PROT, approved gene name 
(Ceruloplasmin ferroxidase), and gene symbol (CP). The accession number can then be 
used to find information in external sources. 

 

Another search of the term on Gene Ontology returns the set of concepts of each of the 
categories F, P and C. From the UMLS context, terms associated to Ceruloplasmin in the 
Metathesaurus and terms that co-occur with Ceruloplasmin in MedLine are extracted and 
MedLine abstracts are made accessible.  
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Figure 4. Entity resolution and record linkage of Ceruloplasmin gene 

Indeed, in our experience, combining medical and molecular biology knowledge provides 
valuable information about genes, e.g., Ceruloplasmin is involved in molecular functions 
such as iron transport mediation, and has relationships to diseases like, Iron overload and 
Duodenal ulcer. It can be used to support various tasks to cluster genes according to their 
properties. Moreover, integration is required for better understanding of disease-
molecular data relationships. All these functionalities are presented with more details in 
(Guérin et al., 2006). 

4.2.2. Biomedical data scrubbing and conflict resolution 

In order to define an appropriate data aggregation of all the available information items 
resulting from the previous step of biological entity resolution, data conflicts have to be 
resolved using rules for mapping the source records and conciliating different values 
recorded for a same concept.  
Mapping rules have been defined to allow data exchange from public databanks to 
GEDAW. Apart from experimental data, public information items are automatically 
extracted by scripts using the DTD (Document Type Definition) of the data source 
translated into the GEDAW conceptual data model.  
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Three categories of mapping rules were proposed for GEDAW: 1) structural mapping 
rules, 2) semantic mapping rules and 3) cognitive mapping rules according to the 
different knowledge levels involved in the biological interpretation of data. 

 

Structural mapping rules are defined at the schema level according to the GEDAW 
model by identifying the existing correspondences with relevant DTD elements; e.g., in 
Figure 3, the Seqdesc_title element in GenBank DTD is used to extract the attribute Name 
of the gene and the MolInfo_biomol value to determine the type of molecule. 

 

Semantic and cognitive mapping rules are used for data unification at the instance level: 
several rules may use available tools for determining analogies between homologous data 
(such as sequence alignment). The result of the BLAST algorithm (Basic Local Alignment 
Search Tool) implemented as a set of similarity search programs allows considering that 
two genomic sequences match.  
 
The nomenclature provided by the entity resolution and record linkage phase, described 
in the previous section is also considerably used to conciliate duplicate records, based on 
several ontologies, like UMLS that covers the whole biomedical domain and Gene 
Ontology™ (GO) that focuses on genomics, as well as additional terminologies, as that 
provided by the HUman Genome Organisation (HUGO) Gene Nomenclature Committee 
(HGNC) to resolve synonymy conflicts.  
 
More semantic mapping rules are built using this information during the integration 
process. For example, the Gene-ID is used to cluster submitted sequences (DNA, mRNA 
and Proteins) associated to a same gene with cross-referenced records in GeneEntry 
databank and the official gene name along with its aliases to relate different gene name 
appearances in literature. These aliases are also stored in the data warehouse and used to 
tackle the mixed or split citation problems similar to those studied by (Lee et al., 2005) in 
Digital Libraries. 
 
Example 4.  Three distinct records are obtained from GenBank Nucleotide databank by 
querying the DNA sequence for the human gene HFE, as partially presented in Figures 5, 
6 and 7 respectively. 
� A first record 1 identified by the accession number AF204869 describes a partial gene 

sequence (size = 3043) of the HFE gene20 with no annotation but one relevant and 
fundamental information item about the position of the promoter region at [1..3043] 
in the “misc_feature” field which cannot be found in the other records. 

� A second record 2 identified by the accession number AF184234 describes a partial 
sequence (size = 772) of the protein precursor of HFE gene21 with a detailed but 
incomplete annotation.  

� The third record 3 identified by the accession number Z92910 describes the complete 
gene sequence (size = 12146) of the HFE gene22 with a complete annotation.  
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We need to integrate this information and to evaluate the quality of these three records 
because they are complementary regarding to the biological topic of interest (i.e., HFE 
human gene). The first record has a relevant data item that the other records do not have, 
the second record overlaps the third one regarding the gene sequence but provide more 
detailed annotations and the third record is complete regarding the gene sequence. This 
example shows the main quality criteria we use: i.e. completeness, relevancy and detail 
level of annotation. 

 

 

In this example, using the BLAST algorithm for determining the sequence alignment 
between the two sequences of the records 2 and 3 shows 100% of alignment. This 
indicates that the sequence in both records 2 and 3 are perfectly identical and can be 
merged. The detailed annotation of record 2 can be concatenated with the more complete 
annotation of record 3 in the data warehouse. 

 

Several cognitive mapping rules may be used in this example for conciliating data such as 
the position offset: in the record 3 the fourth exon is located at position 6494 and in the 
record 2 this same exon is located at the relative position 130, thus using overlapping 
information that identifies the same entities, we can deduce the position offset and use the 
following cognitive rule such as:  
record(AF18423)/exon[number>=4]/position = record(Z92910)/exon[number >=4]/position – 6364 
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Figure 5. GenBank Screen Shot for HFE Gene: Record AF204869 
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Figure 6. GenBank Screen Shos for HFE Gene: Record AF184224 
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Figure 7. GenBank Screen Shot for HFE Gene: Record Z92910 
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4.2.3.  Database profiling and data quality metrics 

Several information quality dimensions with their related metrics can be then defined, 
computed, and associated as metadata to the data extracted from biological databanks. 
These metadata can be very useful for data integration, knowledge pre- and post-filtering. 
We have categorized them into three categories (cf. Table 3):  
� Bio-knowledge-based quality metadata such as originality, domain authority of the 

authors who submitted the sequence, 
� Schema-based quality metadata such as local and global completeness, level of 

details, intra- and inter-record redundancy,  
� Contextual quality metadata such as freshness, and consolidation degree. 

 Category Quality 
Criterion 

Target Definition 

Originality Data items 
and sub-
items per 
record 

Considering a set of records related to the same bio-entity (i.e., entity identification resolved), the originality 
of a data (sub-) item in a record set is defined by its occurrence frequency and its variability based on the 
normalized standard deviation of the edit distance between the considered strings. 

 
Bio-
Knowledge-
based Quality 
Criteria Domain 

Authority 
Record Domain authority is a grade in [0,1] that is computed depending on the status  of the reference (Published, 

Submitted, Unpublished), the number of referenced submissions of the authors in the record and of the 
user-grade defined on the journal and authors reputations of the most recent reference of these authors. 

Local 
Completeness 

Record  Local completeness is defined by the fraction of the number of items and sub-items with non null values on 
the total number of items and sub-items in the local data source schema (DTD). 

Global 
Completeness 

Record  Global completeness is defined by the fraction of the number of items and sub-items with non null values 
provided by a source on the total number of items and sub-items in the global schema of the data 
warehouse. 

Level of Detail Data items 
and sub-
items per 
record 

Level of detail is the number of sub-items per item described with non null values by a local source 
normalized by the total of possible sub-items in the data source schema. 

Intra-Record 
Redundancy 

Record Intra-record redundancy is defined by the fraction of items and sub-items in the record that are 
approximately the same based on the edit or q-grams distance functions or other semantic and cognitive 
rules 

 
 
 
Schema-
based Quality 
Criteria 

Inter-Record 
Redundancy 

Record 
Set of the 
same bio-
entity 

Inter-record redundancy is defined by the fraction of items and sub-items in the record set that are 
approximately the same based on edit or q-grams distance functions, BLAST or other sequence alignment 
techniques or other cognitive rules. 

Freshness Record Freshness is defined by the difference between the current date and the publication date of the record  
Contextual 
Quality 
Criteria 

Consolidation 
Degree 

Data items 
and sub-
items per 
record 

Consolidation degree is defined by the number of inter-record redundancies and overlaps. 

  
Table 3. Computing Data Quality Metadata for Documenting Biomedical Sources Before Integration 

 

4.3. Ontology-based Approaches  

Semantic Web anticipates the use of ontologies to facilitate data sharing over the web, 
and ontologies are proposed as a solution to conciliate and attain as much as possible 
heterogeneity between data sources. As a result, the use of ontologies for semantic driven 
data integration to build multiple data warehouses, that combine and analyse different 
sorts of data was promising.  
 
Two major events have urged the development of ontologies in Life Sciences: i/ a strong 
emergence of large volume of data represented heterogeneously in multiple data sources 
and ii/ increasing motivation to world-wide share these data on the web.  
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Following the publication of the genome sequences and their various annotations, the use 
of bio-ontologies became essential to deal with the heterogeneity of data and sources. 
Bio-ontologies helped to unify different definitions, improve data quality and promote 
data sharing and exchange. 
 
Paradoxically, it is the medical informatics community that has first developed strategies 
to facilitate and improve access to biomedical knowledge using ontologies. Thus, the 
NLM (National Library of Medicine) has developed the Unified Medical Language 
System (UMLS), a rich knowledge base qualified as a medical ontology of more than one 
million of concepts and developed by the unification of 60 biomedical terminologies 
(Bodenreider 2004). 
 
Thus, previous achievements on ontologies in the medical domain had a direct impact in 
the bioinformatics community. The understanding of functional genomic data being also 
one of the challenges of modern medicine, the two communities have joint their efforts in 
the development of bio-ontologies. 
 
While Gene Ontology has rapidly turned-out to be the leading Ontology in functional 
genomics, other ontologies have emerged as a response to a constant need to formalize 
the various fields of Life and Health Sciences. Consequently, the Open Biological and 
biomedical Ontologies foundry23 (OBO) archives a collection of bio-ontologies in a 
standard format. A strong community involvement was crucial to avoid as much as 
possible redundancy and ensure that only single ontologies for each area are placed in the 
public domain. 
 
As shown in Table 4, the OBO Foundry supports various domain knowledge of Life and 
Health Sciences, and includes ontologies like: Gene Ontology, Pathway Ontology, 
Disease Ontology, Systems Biology Ontology, and Chemical Entities of Biological 
Interest (CHEBI) Ontology (Smith et. al., 2007). 
 
Shared ontologies are used to conciliate and to attain as much as possible data conflicts. 
Various standards in Life Sciences have been developed to provide domain knowledge to 
be used for semantically driven integration of information from different sources. 
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Unfortunately, the one way that was massively used to integrate life science data using 
ontologies, is through the annotation of the multiple sorts of data in genomics (gene 
sequences and proteins) using the common vocabulary carried by these ontologies. But 
the great success of this approach has led to proliferation of bio-ontologies that again has 
created obstacles to data integration. In some sorts, the OBO foundry consortium has 
emerged to overcome this problem (Smith et. al., 2007). 
 
More ideally, the aim of such ontologies in the context of data integration would be of 
granting a model of biological concepts that can be used to form a semantic framework 
for querying the heterogeneous Life Sciences sources or for systematizing annotation of 
experimental results. As an experience, the TaO ontology (TAMBIS ontology), that 
describes a wide range of Life Sciences concepts and their relationships, provided such 
framework. Rather than materializing bio-data in integrated data warehouses, the 
TAMBIS project aimed to providing a single and transparent access point for Life 
Sciences information through the use of a mediating ontology (Baker et al., 1998). 
Queries are written in terms of TaO ontology concepts and converted to queries to 
appropriate sources.  
 
More recently, there exists an extraordinary number of bioinformatics applications (Erson 
et al., 2010) that are based on ontology as a background domain knowledge and a unified 
model against Life Sciences resources to remediate data annotation, data integration, and 
data heterogeneity. However, ontology development and maintenance is time-consuming 
and requires constant investment from expert curators. Open collaborative platforms 
enable the wider scientific community to become involved in developing and maintaining 
them, but raises concerns regarding the quality and correctness of the information added 
(Hoehndorf et al., 2009). 
 

5. Conclusions and perspectives 
 
Many data sources in the biomedical domain are renowned for containing data of 
sometimes poor quality. This is due to the experimental nature of the field, the quickly 
changing knowledge landscape, the high redundancies in experiments performed often 
leading to contradicting results, and the difficulties in properly describing the results of 
an experiment in a domain as complex as molecular biology. Furthermore, it was often 
observed that data quality problems multiply when data of low quality are integrated and 
re-used for annotation.  
 
Based on our past experience of building the biomedical data warehouse GEDAW (Gene 
Expression Data Warehouse) that stores all the relevant information on genes expressed 
in the liver during iron overload and liver pathologies (i.e., records extracted from public 
databanks, data generated from DNA chips home experiments, data collected in hospitals 
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and clinical institutions as medical records), we presented some lessons learned, data 
quality issues in this context and current solutions we proposed for quality-aware 
integrating and warehousing our biomedical data. In this chapter, we gave an overview of 
data quality problems and solutions relevant to any preprocessing approach and also 
elements for data quality-awareness for the complex processes of integrating and 
warehousing biomedical data.  
 
With regards to the limits of any data warehousing approach, it is relevant to generate 
quality metadata at the preprocessing and pre-integration stage, as long as the whole data 
integration process (from the original data sources into the destination data warehousing 
system) stays feasible automatically and with a reasonable performance. The final data 
filtering task has generally to be performed by the expert on the delivered annotations or 
data analysis before their storage in the warehouse by using multiple data quality criteria, 
like the authoritativeness of the information source or the credibility of the authors of the 
submitted record, for instance.  
 
Quality in the results of data mining and knowledge discovery from biomedical resources 
critically depends on the preparation and on the quality of analyzed datasets. Indeed 
biomedical data mining processes and applications require various forms of data 
preparation, correction and consolidation combining complex data transformation 
operations and cleaning techniques, because the data input to the mining algorithms is 
assumed to conform to “nice” data distributions, containing no missing, inconsistent or 
incorrect values. This leaves a large gap between the available “dirty” data and the 
available machinery to process and analyze the data for discovering added-value 
knowledge and decision making in Life Sciences. 
 
The aspects of measuring data quality and detecting hot-spots of poor quality constitute 
very challenging research directions for the Bioinformatics community. These include 
analyzing contradicting values in the case of duplicate entries and detecting hard-to-catch 
errors. Such an erroneous data is one whose value looks perfectly legitimate. Yet, if we 
examine this value in conjunction with other attribute values, the value appears 
questionable. Detecting such dubious values is a major problem in data cleaning but it 
becomes much harder in complex domains such as Life Sciences. 
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