Towards Register Minimisation of Streaming String Transducers

Pierre-Alain Reynier

LIS, Aix-Marseille Université \& CNRS

Transducers

Automata accept objects / Transducers transform objects
A transduction is a function (or even a relation) from words to words \rightarrow In this talk, we focus on functions

Examples:
\rightarrow Erase: "Oxford" \mapsto "xfrd"
\rightarrow Last: "Oxford" \mapsto "ddddd"
\rightarrow Reverse: "Oxford" \mapsto "drofxO"
\rightarrow Copy: "Oxford" \mapsto "OxfordOxford"
\rightarrow Replace: "Oxford\#I love \$1" \mapsto "I love Oxford"
\rightarrow Sort: "Oxford" \mapsto "dfoOrx"

Transducers

Some applications:

- language and speech processing
- model-checking infinite state-space systems
- verification of web sanitizers
- string pattern matching
- XML transformations (nested word)
- model for recursive programs (nested word)

(One/Two-way) finite state transducers

Example (A transducer T)

Semantics $\llbracket T \rrbracket$: Erase : $\vdash w \dashv \mapsto a^{\# a(w)}$, with $w \in\{a, b\}^{*}$
Non-determinism: semantics is a relation

(One/Two-way) finite state transducers

Example (A transducer T)

Semantics $\llbracket T \rrbracket$: Erase : $\vdash w \dashv \mapsto a^{\#_{a}(w)}$, with $w \in\{a, b\}^{*}$
Non-determinism: semantics is a relation
A transducer is:

- functional if it realizes a function
- deterministic if the underlying automaton is deterministic

$$
\text { Classes: } \operatorname{det} 1 \mathrm{~W}, \text { fun1W, 1W }
$$

\rightarrow Too low expressive power (Reverse, Copy, Replace, Sort)

(One/Two-way) finite state transducers

Example (A transducer T)

Semantics $\llbracket T \rrbracket$: Sort : $\vdash w \dashv \mapsto a^{\# a(w)} b^{\# b}(w)$, with $w \in\{a, b\}^{*}$
Non-determinism: semantics is a relation
A transducer is:

- functional if it realizes a function
- deterministic if the underlying automaton is deterministic

Classes: $\operatorname{det} 1 \mathrm{~W}$, fun1W, 1 W , $\operatorname{det} 2 \mathrm{~W}$, fun2W, 2 W

Regular Word Functions

[EH01] \(\begin{array}{r}fun2W
=\operatorname{det} 2 W\end{array}\)

Regular Word Functions

Regular Word Functions

Regular Word Functions

Regular Word Functions

- closed under composition
- regular languages are preserved by inverse image
- functionality and equivalence are decidable

Streaming String Transducers [AC10]

1W deterministic autom.

+ registers
Register updates:

$$
\vdash w \dashv \mapsto a^{\# a(w)} b^{\# b}(w)
$$

- X:=u.Y.v
- $X:=Y$. Z
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}:$ registers u, v : words in Σ^{*}

$$
\begin{gathered}
\left.\quad \begin{array}{l}
a \left\lvert\,\left\{\begin{array}{l}
X_{a}:=X_{a} \cdot a \\
X_{b}:=X_{b}
\end{array}\right.\right. \\
\rightarrow
\end{array} \rightarrow X_{a} X_{b} \rightarrow \right\rvert\,\left\{\begin{array}{l}
X_{a}:=X_{a} \\
X_{b}:=X_{b} \cdot b
\end{array}\right.
\end{gathered}
$$

Streaming String Transducers [AC10]

1W deterministic autom.

+ registers
Register updates:

$$
\vdash w \dashv \mapsto a^{\# a(w)} b^{\# b}(w)
$$

- $X:=u . Y$.v
- $X:=Y$. Z
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: registers u, v : words in Σ^{*}

$$
\rightarrow \longrightarrow \begin{aligned}
& a \left\lvert\,\left\{\begin{array}{l}
X_{a}:=X_{a} \cdot a \\
X_{b}:=X_{b}
\end{array}\right.\right. \\
& \vdash-\neg \rightarrow X_{a} X_{b}
\end{aligned}
$$

Expressiveness results :

- det1W \equiv 1-register appending SST

$$
\mathrm{X}:=\mathrm{X} . \mathrm{a}
$$

Streaming String Transducers [AC10]

1W deterministic autom.

+ registers
Register updates:

$$
\vdash w \dashv \mapsto a^{\# a(w)} b^{\# b}(w)
$$

- $X:=u . Y$.v
- $X:=Y$. Z
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: registers u, v : words in Σ^{*}

$$
\left.\begin{array}{c}
\left.\quad \begin{array}{l}
a \left\lvert\,\left\{\begin{array}{l}
X_{a}:=X_{a} \cdot a \\
X_{b}:=X_{b}
\end{array}\right.\right. \\
\rightarrow
\end{array}\right\} \rightarrow X_{a} X_{b}
\end{array}\right\}
$$

Expressiveness results :

- det1W \equiv 1-register appending SST

$$
\begin{aligned}
& \mathrm{X}:=\mathrm{X} . \mathrm{a} \\
& \mathrm{X}:=\mathrm{Y} . \mathrm{a}
\end{aligned}
$$

- fun1W \equiv appending SST

Streaming String Transducers [AC10]

1W deterministic autom.

+ registers
Register updates:

$$
\vdash w \dashv \mapsto a^{\# a(w)} b^{\# b}(w)
$$

- $X:=u . Y$.v
- $X:=Y$. Z
$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$: registers u, v : words in Σ^{*}

$$
\left.\rightarrow \longrightarrow \begin{array}{l}
X_{a}:=X_{a} \cdot a \\
X_{b}:=X_{b}
\end{array}\right\}
$$

Expressiveness results :

- det1W \equiv 1-register appending SST
$\mathrm{X}:=\mathrm{X} . \mathrm{a}$
- fun1W \equiv appending SST
X:=Y.a
- fun2W \equiv copyless SST
$(X, Y):=(X, X)$ is forbidden

Examples of SST

$$
\begin{gathered}
\sigma \mid X:=\sigma \cdot X \\
\rightarrow \bigodot^{\Omega} X
\end{gathered}
$$

$$
\sigma \neq \# \left\lvert\,\left\{\left.\begin{array}{l}
X:=X . \sigma \\
Y:=\varepsilon
\end{array} \quad \sigma \neq \$_{1} \right\rvert\,\left\{\begin{array}{l}
X:=X \\
Y:=Y \sigma
\end{array}\right.\right.\right.
$$

$$
\sigma \mid X:=X . \sigma
$$

Register Minimisation Problem for SST

Motivations: Streaming and simplification of models

- minimisation/determinisation of automata
- normal form \sim learning
- 2 way: reduce number of passes

Register Minimisation Problem for class \mathcal{S} of SST

Input: $T \in \mathcal{S}$ and $k \in \mathbb{N}$
Question: Does there exist $T^{\prime} \in \mathcal{S}$ with k registers s.t. $T \equiv T^{\prime}$?
Related works

- [AR13] Additive Cost Register Automata
- [BGMP16] concatenation-free funNSST

$$
\begin{array}{r}
X:=Y+c, c \in \mathbb{Z} \\
X:=u Y v
\end{array}
$$

Classes of Functions

$$
\text { Regular functions } \quad \operatorname{det} 2 \mathrm{~W}=\text { copyless } \mathrm{SST}=\mathrm{MSOT}
$$

\square

Classes of Functions

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $S S T=$ MSOT

Rational functions fun1W=appending SST	$\mathrm{X}:=\mathrm{Y} . \mathrm{u}$	Reverse	
			Copy
	LAST		

Classes of Functions

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $S S T=$ MSOT

Rational functions fun1W=appending SST	$\mathrm{X}:=\mathrm{Y} . \mathrm{u}$	Reverse	Copy
Sequential functions det1W=1-app.SST			
Erase	LAST		

Classes of Functions

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $S S T=$ MSOT

Rational functions fun $1 \mathrm{~W}=$ appending SST $\quad \mathrm{X}:=\mathrm{Y} . \mathrm{u}$		Reverse	
		Copy	
Sequential functions $\operatorname{det1W}=1$-app.SST	Multi-seq. functions X:=X.u		
Erase	Last		

In this talk

- Rational functions ($\mathrm{X}:=\mathrm{Y} . \mathrm{u}$)
\rightarrow [LICS16] with L. Daviaud and J.M. Talbot
- Multi-sequential functions ($\mathrm{X}:=\mathrm{X} . \mathrm{u}$)
\rightarrow [FoSSaCS17] with L. Daviaud, I. Jecker and D. Villevalois

Overview

(1) Introduction
(2) Rational functions $(\mathrm{X}:=\mathrm{Y} . \mathrm{u})$
(3) Multi-sequential functions ($\mathrm{X}:=\mathrm{X} . \mathrm{u}$)
(4) Conclusion

Overview

(1) Introduction

(2) Rational functions ($\mathrm{X}:=\mathrm{Y} . \mathrm{u}$)

(3) Multi-sequential functions ($\mathrm{X}:=\mathrm{X} . \mathrm{u}$)

Rational functions and appending SST

Appending SST: only updates $\mathrm{X}:=\mathrm{Y} . \mathrm{u}$
Facts:

- appending SST $=$ fun 1 W
- appending SST \leadsto fun1W is polynomial (guess the register)
- appending SST with 1 register $=\operatorname{det} 1 \mathrm{~W}$

Register minimisation for appending SST

Input: an appending SST T and $k \in \mathbb{N}$
Question: does there exist an app. SST T^{\prime} with k registers s.t. $T \equiv T^{\prime}$?
\rightarrow for $k=1$, our problem is the det1W-definability of fun1W

From rational functions to sequential ones

Sequentiality Problem [Choffrut77]

Input: a fun1WT
Question: does there exist an equivalent det1W?

Standard technique:

- subset construction starting from the set of initial states.
- output longest common prefix
- store the unproduced outputs in the configuration

Configurations of the form $\{(p, a),(q, \varepsilon),(s, b b)\}$

From rational functions to sequential ones

Sequentiality Problem [Choffrut77]

Input: a fun1WT
Question: does there exist an equivalent det1W?

Standard technique:

- subset construction starting from the set of initial states.
- output longest common prefix
- store the unproduced outputs in the configuration

Configurations of the form $\{(p, a),(q, \varepsilon),(s, b b)\}$
Issue: termination (bound the size of unproduced outputs)

An example

LAST on Σ^{3}

An example

LAST on Σ^{3}

Twinning Property [Choffrut7]]

For all situations like:

We define:

$$
\operatorname{delay}(u, v)=\operatorname{Icp}(u, v)^{-1} \cdot(u, v)
$$

Example:
$\operatorname{lcp}(a a a, a a b)=a a$
$\operatorname{delay}(a a a, a a b)=(a, b)$

we have delay $\left(w_{0}, w_{1}\right)=\operatorname{delay}\left(w_{0} w_{0}^{\prime}, w_{1} w_{1}^{\prime}\right)$

Twinning Property [Choffrut77]

For all situations like:

We define:

$$
\operatorname{delay}(u, v)=\operatorname{Icp}(u, v)^{-1} \cdot(u, v)
$$

Example:
$\operatorname{lcp}(a a a, a a b)=a a$
$\operatorname{delay}(a a a, a a b)=(a, b)$
we have $\operatorname{delay}\left(w_{0}, w_{1}\right)=\operatorname{delay}\left(w_{0} w_{0}^{\prime}, w_{1} w_{1}^{\prime}\right)$
$T \models$ Twinning Property $\Longrightarrow \forall(p, x) \in$ subset constr., $|x| \leq n^{2} M$
Theorem ([Choffrut77])
$T \models$ Twinning Property \Longleftrightarrow There exists an equivalent det1W

Twinning Property [Choffrut77]

For all situations like:
We define:

$$
\operatorname{delay}(u, v)=\operatorname{Icp}(u, v)^{-1} \cdot(u, v)
$$

Example:
$\operatorname{lcp}(a a a, a a b)=a a$
$\operatorname{delay}(a a a, a a b)=(a, b)$

we have $\operatorname{delay}\left(w_{0}, w_{1}\right)=\operatorname{delay}\left(w_{0} w_{0}^{\prime}, w_{1} w_{1}^{\prime}\right)$
$T \models$ Twinning Property $\Longrightarrow \forall(p, x) \in$ subset constr., $|x| \leq n^{2} M$
Theorem ([Choffrut77])
$T \models$ Twinning Property \Longleftrightarrow There exists an equivalent det1W

Theorem ([WK95])

Twinning Property can be decided in PTime.

Register minimisation using Twinning Property

Our objective: Characterize when a fun1W can be expressed by an appending SST with k registers.

Twinning property characterizes the fact that runs (on the same input) remain close.

Intuition:

2 reg. needed if there are 2 runs with arbitrarily large delays
$k+1$ reg. needed if there are $k+1$ runs with pairwise arb. large delays
k registers are sufficient if for every $k+1$ runs, 2 of them remain close

Register minimisation using Twinning Property

Our objective: Characterize when a fun1W can be expressed by an appending SST with k registers.

Twinning property characterizes the fact that runs (on the same input) remain close.

Intuition:

2 reg. needed if there are 2 runs with arbitrarily large delays
$k+1$ reg. needed if there are $k+1$ runs with pairwise arb. large delays
k registers are sufficient if for every $k+1$ runs, 2 of them remain close

For every $k+1$ runs, 2 of them remain close

Twinning Property of order k

For all situations like:

there are two runs $0 \leq i<j \leq k$ s.t. for every loop ℓ, we have $\operatorname{delay}\left(w_{1, i} \ldots w_{\ell, i}, w_{1, j} \ldots w_{\ell, j}\right)=\operatorname{delay}\left(w_{1, i} \ldots w_{\ell, i} w_{\ell, i}^{\prime}, w_{1, j} \ldots w_{\ell, j} w_{\ell, j}^{\prime}\right)$

Register minimisation using Twinning Property

Lemma

If a fun1W satisfies the TP of order k, then from any set of runs on the same input word, one can extract k runs such that every run is "close" to one of these k runs.
"close" : (p, x) with $|x| \leq n^{k+1} M$

Register minimisation using Twinning Property

Lemma

If a fun1W satisfies the TP of order k, then from any set of runs on the same input word, one can extract k runs such that every run is "close" to one of these k runs.
"close" : (p, x) with $|x| \leq n^{k+1} M$

Theorem

- A fun1W is definable by a k-app. SST iff it satisfies the TP of order k
- TP of order k can be decided in PSpace (k given in unary)

Register minimisation using Twinning Property

Lemma

If a fun1W satisfies the TP of order k, then from any set of runs on the same input word, one can extract k runs such that every run is "close" to one of these k runs.
"close" : (p, x) with $|x| \leq n^{k+1} M$

Theorem

- A fun1W is definable by a k-app. SST iff it satisfies the TP of order k
- TP of order k can be decided in PSpace (k given in unary)

Corollary

The register minimisation problem for appending SST is PSpace-complete.

Example

How many registers for the following function?

Example

How many registers for the following function?

Only 2 registers!

Example

$$
\operatorname{LAST}^{2}: u_{1} \# u_{2} \mapsto \operatorname{LAST}\left(u_{1}\right) \# \operatorname{LAST}\left(u_{2}\right)
$$

Overview

(1) Introduction

(2) Rational functions ($\mathrm{X}:=\mathrm{Y} . \mathrm{u}$)
(3) Multi-sequential functions $(X:=X . u)$

Multi-sequential functions

Definition ([CS86])

Multi-sequential functions are defined as functions that can be realized as finite union of sequential transducers.
\rightarrow allows a parallel evaluation in a streaming scenario Examples:

- LAST on $\Sigma=\{a, b\}$ is multi-sequential: split Σ^{+}as $\Sigma^{*} a \uplus \Sigma^{*} b$

Multi-sequential functions

Definition ([CS86])

Multi-sequential functions are defined as functions that can be realized as finite union of sequential transducers.
\rightarrow allows a parallel evaluation in a streaming scenario Examples:

- LAST on $\Sigma=\{a, b\}$ is multi-sequential: split Σ^{+}as $\Sigma^{*} a \uplus \Sigma^{*} b$
- $\operatorname{LAST}^{2}: u_{1} \# u_{2} \mapsto \operatorname{LAST}\left(u_{1}\right) \# \operatorname{LAST}\left(u_{2}\right)$ is multi-sequential: split the domain according to last $\left(u_{1}\right)$, last $\left(u_{2}\right) \in\{a, b\}$

Multi-sequential functions

Definition ([CS86])

Multi-sequential functions are defined as functions that can be realized as finite union of sequential transducers.
\rightarrow allows a parallel evaluation in a streaming scenario Examples:

- LAST on $\Sigma=\{a, b\}$ is multi-sequential: split Σ^{+}as $\Sigma^{*} a \uplus \Sigma^{*} b$
- $\operatorname{LAST}^{2}: u_{1} \# u_{2} \mapsto \operatorname{LAST}\left(u_{1}\right) \# \operatorname{LAST}\left(u_{2}\right)$ is multi-sequential: split the domain according to last $\left(u_{1}\right)$, last $\left(u_{2}\right) \in\{a, b\}$
- $\operatorname{LAST}^{*}: u_{1} \# \ldots \# u_{n} \mapsto \operatorname{LAST}\left(u_{1}\right) \# \ldots \# \operatorname{LASt}\left(u_{n}\right)$ is not multi-seq.

Multi-sequential functions

Definition ([C586])

Multi-sequential functions are defined as functions that can be realized as finite union of sequential transducers.

Definition (Appending SST with independent registers)

Only updates $X:=X u$: "No communication between threads"

Multi-sequential functions

Definition ([CS86])

Multi-sequential functions are defined as functions that can be realized as finite union of sequential transducers.

Definition (Appending SST with independent registers)
Only updates $X:=X u: \quad$ "No communication between threads"
Observations:

- Multi-sequential functions \equiv app. SST with independent registers
- size of the union $=$ number of registers
\rightarrow Register minimisation in this class \equiv Minimisation of size of the union

Example

\rightarrow Requires 4 independent registers

Registers cannot be reset!

Branching twinning property of order k

For all situations like:
k not synchronised loops

there are two runs $0 \leq i<j \leq k$ s.t. for every loop ℓ with same input words, we have $\operatorname{delay}\left(w_{1, i} \ldots w_{\ell, i}, w_{1, j} \ldots w_{\ell, j}\right)=\operatorname{delay}\left(w_{1, i} \ldots w_{\ell, i} w_{\ell, i}^{\prime}, w_{1, j} \ldots w_{\ell, j} w_{\ell, j}^{\prime}\right)$

Branching twinning property of order k

Tree representation of input words:

Branching twinning property of order k

Theorem

- A fun1W is definable by a k-app. SST with independent registers iff it satisfies the BTP of order k.
- The BTP of order k is decidable in PSpace (k in unary).

Branching twinning property of order k

Theorem

- A fun1W is definable by a k-app. SST with independent registers iff it satisfies the BTP of order k.
- The BTP of order k is decidable in PSpace (k in unary).

Theorem

The register minimisation problem for appending SST with independent registers is PSpace-complete.

Overview

(1) Introduction

(2) Rational functions $(X:=Y . u)$
(3) Multi-sequential functions ($\mathrm{X}:=\mathrm{X} . \mathrm{u}$)

4 Conclusion

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $S S T=$ MSOT

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $\mathrm{SST}=\mathrm{MSOT}$

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $S S T=$ MSOT

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $\mathrm{SST}=\mathrm{MSOT}$

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $\mathrm{SST}=\mathrm{MSOT}$

Summary

Regular functions $\quad \operatorname{det} 2 \mathrm{~W}=$ copyless $\mathrm{SST}=\mathrm{MSOT}$

I did not present...

Alternative characterizations:

- bounded variation property
- Lipschitz property

I did not present...

Alternative characterizations:

- bounded variation property
- Lipschitz property

Functional \sim finite-valued

I did not present...

Alternative characterizations:

- bounded variation property
- Lipschitz property

Functional \sim finite-valued

Extension to "weak" weighted automata on semigroups:

- set semantics
- infinitary semigroup $\left(\alpha \beta \gamma \neq \beta \Longrightarrow\left|\left\{\alpha^{n} \beta \gamma^{n} \mid n \in \mathbb{N}\right\}\right|=+\infty\right)$
- finitely generated semigroup

Perspectives

Shift from rational to regular functions
\rightarrow deal with both prepending and appending: $\mathrm{X}:=\mathrm{u} . \mathrm{Y} . \mathrm{v}$ (on-going)
\rightarrow deal with concatenation of registers
Weighted automata: replace set semantics with other aggregations
Extensions to infinite words, nested words

Perspectives

Shift from rational to regular functions
\rightarrow deal with both prepending and appending: $\mathrm{X}:=\mathrm{u} . \mathrm{Y} . \mathrm{v}$ (on-going)
\rightarrow deal with concatenation of registers
Weighted automata: replace set semantics with other aggregations
Extensions to infinite words, nested words

Thanks!

Classes of Transductions

Regular functions $\operatorname{det} 2 \mathrm{~W}=$ copyless SST $=$ MSOT
 Copy
 Reverse

Classes of Transductions

Classes of Transductions

Classes of Transductions

$$
\text { Kleene Star } u \mapsto u^{*} \quad 2 \mathrm{~W}
$$

Rational relations 1W=appending NSST

SUBWORD $u \mapsto\left\{u^{\prime} \mid u^{\prime} \preceq u\right\}$

Rational functions
fun1W=appending SST
($\mathrm{X}:=\mathrm{Y} . \mathrm{u}$)
LAST

$$
\left.\begin{array}{l}
\text { Regular functions } \\
\begin{array}{rl}
\operatorname{det} 2 \mathrm{~W} & =\text { copyless SST } \\
= & \text { MSOT }
\end{array} \\
\text { COPY }
\end{array}\right\}
$$

Classes of Transductions

Kleene Star $u \mapsto u^{*}$ 2W		
Rational relations 1W=appending NSST		$\begin{aligned} & \text { NSST } \\ = & \text { NMSOT } \end{aligned}$
SUBWORD $u \mapsto\left\{u^{\prime} \mid u^{\prime} \preceq u\right\}$		$\begin{gathered} \text { SUBWORDS }^{2} \\ u \mapsto \end{gathered}$
$\overbrace{\text { Rational functions }}^{\text {fun1W }=\text { appending SST }} \begin{gathered}\text { (X:=Y.u) }\end{gathered}$	Regular functions $\begin{aligned} \operatorname{det} 2 \mathrm{~W} & =\text { copyless SST } \\ & =\text { MSOT } \end{aligned}$	$\left\{u^{\prime} u^{\prime} \mid u^{\prime} \preceq u\right\}$
LAST	Copy	
	Reverse	

Alternative characterizations

$f: \Sigma^{*} \mapsto \Gamma^{*}$		
	bounded variation	Lipschitz property
$\operatorname{det} 1 \mathrm{~W}$	$\forall n \exists N \forall u, v \in \operatorname{dom}(f)$, $d(u, v) \leq n \Rightarrow d(f(u), f(v)) \leq N$	$\exists L \forall u, v \in \operatorname{dom}(f)$, $d(f(u), f(v)) \leq L .(d(u, v)+1)$
k registers		
k independent registers		

Alternative characterizations

$f: \Sigma^{*} \mapsto \Gamma^{*}$		
	bounded variation	
$\operatorname{det} 1 \mathrm{~W}$	$\forall n \exists N \forall u, v \in \operatorname{dom}(f)$, $d(u, v) \leq n \Rightarrow d(f(u), f(v)) \leq N$	$\exists L \forall u, v \in \operatorname{dom}(f)$, $d(f(u), f(v)) \leq L .(d(u, v)+1)$
k registers	$\forall n \exists N \forall u_{0} \ldots u_{k} \in \operatorname{dom}(f)$, $\left(\forall i \neq j, d\left(u_{i}, u_{j}\right) \leq n\right)$ $\Rightarrow \exists i \neq j . d\left(f\left(u_{i}\right), f\left(u_{j}\right)\right) \leq N$	
k independent registers		

Alternative characterizations

$f: \Sigma^{*} \mapsto \Gamma^{*}$		
	bounded variation	
det1W	$\forall n \exists N \forall u, v \in \operatorname{dom}(f)$, $d(u, v) \leq n \Rightarrow d(f(u), f(v)) \leq N$	$\exists L \forall u, v \in \operatorname{dom}(f)$, $d(f(u), f(v)) \leq L .(d(u, v)+1)$
k registers	$\forall n \exists N \forall u_{0} \ldots u_{k} \in \operatorname{dom}(f)$, $\left(\forall i \neq j, d\left(u_{i}, u_{j}\right) \leq n\right)$ $\Rightarrow \exists i \neq j . d\left(f\left(u_{i}\right), f\left(u_{j}\right)\right) \leq N$	$?$
 k independent registers	$?$	

