
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
C
A
V
*
Ar

tifact *

A
E
C

Robust Controller Synthesis in Timed Büchi
Automata: A Symbolic Approach?

Damien Busatto-Gaston1, Benjamin Monmege1, Pierre-Alain Reynier1, and
Ocan Sankur2

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
2 Univ Rennes, Inria, CNRS, IRISA, France

Abstract We solve in a purely symbolic way the robust controller syn-
thesis problem in timed automata with Büchi acceptance conditions. The
goal of the controller is to play according to an accepting lasso of the
automaton, while resisting to timing perturbations chosen by a com-
peting environment. The problem was previously shown to be PSPACE-
complete using regions-based techniques, but we provide a first tool solv-
ing the problem using zones only, thus more resilient to state-space ex-
plosion problem. The key ingredient is the introduction of branching
constraint graphs allowing to decide in polynomial time whether a given
lasso is robust, and even compute the largest admissible perturbation if
it is. We also make an original use of constraint graphs in this context
in order to test the inclusion of timed reachability relations, crucial for
the termination criterion of our algorithm. Our techniques are illustrated
using a case study on the regulation of a train network.

1 Introduction

Timed automata [1] extend finite-state automata with timing constraints, provid-
ing an automata-theoretic framework to design, model, verify and synthesise
real-time systems. However, the semantics of timed automata is a mathematical
idealisation: it assumes that clocks have infinite precision and instantaneous ac-
tions. Proving that a timed automaton satisfies a property does not ensure that
a real implementation of it also does. This robustness issue is a challenging prob-
lem for embedded systems [12], and alternative semantics have been proposed,
so as to ensure that the verified (or synthesised) behaviour remains correct in
presence of small timing perturbations.

We are interested in a fundamental controller synthesis problem in timed
automata equipped with a Büchi acceptance condition: it consists in determin-
ing whether there exists an accepting infinite execution. Thus, the role of the
controller is to choose transitions and delays. This problem has been studied
numerously in the exact setting [28,27,19,13,15,17,14]. In the context of robust-
ness, this strategy should be tolerant to small perturbations of the delays. This
discards strategies suffering from weaknesses such as Zeno behaviours, or even
non-Zeno behaviours requiring infinite precision, as exhibited in [6].
? This work was funded by ANR project Ticktac (ANR-18-CE40-0015).



More formally, the semantics we consider is defined as a game that depends
on some parameter δ representing an upper bound on the amplitude of the
perturbation [7]. In this game, the controller plays against an antagonistic envir-
onment that can perturb each delay using a value chosen in the interval [−δ, δ].
The case of a fixed value of δ has been shown to be decidable in [7], and also for
a related model in [18]. However, these algorithms are based on regions, and as
the value of δ may be very different from the constants appearing in the guards
of the automaton, do not yield practical algorithms. Moreover, the maximal per-
turbation is not necessarily known in advance, and could be considered as part
of the design process.

The problem we are interested in is qualitative: we want to determine whether
there exists a positive value of δ such that the controller wins the game. It has
been proven in [25] that this problem is in PSPACE (and even PSPACE-complete),
thus no harder than in the exact setting with no perturbation allowed [1]. How-
ever, the algorithm heavily relies on regions, and more precisely on an abstraction
that refines the one of regions, namely folded orbit graphs. Hence, it is not at
all amenable to implementation.

Our objective is to provide an efficient symbolic algorithm for solving this
problem. To this end, we target the use of zones instead of regions, as they
allow an on-demand partitioning of the state space. Moreover, the algorithm we
develop explores the reachable state-space in a forward manner. This is known
to lead to better performances, as witnessed by the successful tool UPPAAL
TIGA based on forward algorithms for solving controller synthesis problems [5].

Our algorithm can be understood as an adaptation to the robustness set-
ting of the standard algorithm for Büchi acceptance in timed automata [17].
This algorithm looks for an accepting lasso using a double depth-first search. A
major difficulty consists in checking whether a lasso can be robustly iterated,
i.e. whether there exists δ > 0 such that the controller can follow the cycle for
an infinite amount of steps while being tolerant to perturbations of amplitude at
most δ. The key argument of [25] was the notion of aperiodic folded orbit graph
of a path in the region automaton, thus tightly connected to regions. Lifting this
notion to zones seems impossible as it makes an important use of the fact that
valuations in regions are time-abstract bisimilar, which is not the case for zones.

Our contributions are threefold. First, we provide a polynomial time proced-
ure to decide, given a lasso, whether it can be robustly iterated. This symbolic
algorithm relies on a computation of the greatest fixpoint of the operator describ-
ing the set of controllable predecessors of a path. In order to provide an argument
of termination for this computation, we resort to a new notion of branching con-
straint graphs, extending the approach used in [16,26] and based on constraint
graphs (introduced in [8]) to check iterability of a cycle, without robustness re-
quirements. Second, we show that when considering a lasso, not only can we
decide robust iterability, but we can even compute the largest perturbation un-
der which it is controllable. This problem was not known to be decidable before.
Finally, we provide a termination criterion for the analysis of lassos. Focusing
on zones is not complete: it can be the case that two cycles lead to the same



`0 `1 `2`3
1 < x1 < 2

x2 := 0

x1 6 2, x1 := 0

x2 > 2, x2 := 0x1 < 2, x1 := 0

x2 < 2, x2 := 0

Figure 1. A timed automaton

zones, but one is robustly iterable while the other one is not. Robust iterability
crucially depends on the real-time dynamics of the cycle and we prove that it
actually only depends on the reachability relation of the path. We provide a
polynomial-time algorithm for checking inclusion between reachability relations
of paths in timed automata based on constraint graphs. It is worth noticing that
all our procedures can be implemented using difference bound matrices, a very
efficient data structure used for timed systems. These developments have been
integrated in a tool, and we present a case study of a train regulation network
illustrating its performances.

Integrating the robustness question in the verification of real-time systems
has attracted attention in the community, and the recent works include, for
instance, robust model checking for timed automata under clock drifts [23],
Lipschitz robustness notions for timed systems [11], quantitative robust synthesis
for timed automata [2]. Stability analysis and synthesis of stabilizing controllers
in hybrid systems are a closely related topic, see e.g. [21,20].

2 Timed automata: reachability and robustness

Let X = {x1, . . . , xn} be a finite set of clock variables. It is extended with a
virtual clock x0, constantly equal to 0, and we denote by X0 the set X ∪ {x0}.
An atomic clock constraint on X is a formula x − y 6 k, or x − y < k with
x 6= y ∈ X0 and k ∈ Q. A constraint is non-diagonal if one of the two clocks
is x0. We denote by Guards(X) (respectively, Guardsnd(X)) the set of (clock)
constraints (respectively, non-diagonal clock constraints) built as conjunctions
of atomic clock constraints (respectively, non-diagonal atomic clock constraints).

A clock valuation ν is an element of RX>0. It is extended to RX0

>0 by letting
ν(x0) = 0. For all d ∈ R>0, we let ν + d be the valuation defined by (ν +
d)(x) = ν(x) + d for all clocks x ∈ X . If Y ⊆ X , we also let ν[Y ← 0] be the
valuation resetting clocks in Y to 0, without modifying values of other clocks. A
valuation ν satisfies an atomic clock constraint x− y ./ k (with ./ ∈ {6, <}) if
ν(x)− ν(y) ./ k. The satisfaction relation is then extended to clock constraints
naturally: the satisfaction of constraint g by a valuation ν is denoted by ν |= g.
The set of valuations satisfying a constraint g is denoted by JgK.

A timed automaton is a tuple A = (L, `0, E, Lt) with L a finite set of loca-
tions, `0 ∈ L an initial location, E ⊆ L×Guardsnd(X )× 2X ×L is a finite set of
edges, and Lt is a set of accepting locations.



An example of timed automaton is depicted in Figure 1, where the reset of a
clock x is denoted by x := 0. The semantics of the timed automaton A is defined
as an infinite transition system JAK = (S, s0,→). The set S of states of JAK is
L × RX>0, s0 = (`0,0). A transition of JAK is of the form (`, ν)

e,d−−→ (`′, ν′) with
e = (`, g,Y, `′) ∈ E and d ∈ R>0 such that ν + d |= g and ν′ = (ν + d)[Y ← 0].
We call path a possible finite sequence of edges in the timed automaton. The
reachability relation of a path ρ, denoted by Reach(ρ) is the set of pairs (ν, ν′)
such that there is a sequence of transitions of JAK starting from (`, ν), ending
in (`′, ν′) and that follows ρ in order as the edges of the timed automaton. A
run of A is an infinite sequence of transitions of JAK starting from s0. We are
interested in Büchi objectives. Therefore, a run is accepting if there exists a final
location `t ∈ Lt that the run visits infinitely often.

As done classically, we assume that every clock is bounded in A by a con-
stant M , that is we only consider the previous infinite transition system over
the subset L× [0,M ]X of states.

We study the robustness problem introduced in [25], that is stated in terms
of games where a controller fights against an environment. After a prefix of a
run, the controller will have the capability to choose delays and transitions to
fire, whereas the environment perturbs the delays chosen by the controller with
a small parameter δ > 0. The aim of the controller will be to find a strategy so
that, no matter how the environment plays, he is ensured to generate an infinite
run satisfying the Büchi condition. Formally, given a timed automaton A =
(L, `0, E, Lt) and δ > 0, the perturbation game is a two-player turn-based game
Gδ(A) between a controller and an environment. Its state space is partitioned
into SC]SE where SC = L×RX>0 belongs to the controller, and SE = L×RX>0×
R>0 × E to the environment. The initial state is (`0,0) ∈ SC . From each state
(`, ν) ∈ SC , there is a transition to (`, ν, d, e) ∈ SE with e = (`, g,Y, `′) ∈ E
whenever d > δ, and ν + d + ε |= g for all ε ∈ [−δ, δ]. Then, from each state
(`, ν, d, (`, g,Y, `′)) ∈ SE , there is a transition to (`′, (ν + d + ε)[r ← 0]) ∈ SC
for all ε ∈ [−δ, δ]. A play of Gδ(A) is a finite or infinite path q0

t1−→ q1
t2−→ q2 · · ·

where q0 = (`0, 0) and ti is a transition from state qi−1 to qi, for all i > 0. It is
said to be maximal if it is infinite or can not be extended with any transition.

A strategy for the controller is a function σCon mapping each non-maximal
play ending in some (`, ν) ∈ SC to a pair (d, e) where d > 0 and e ∈ E such
that there is a transition from (`, ν) to (`, ν, d, e). A strategy for the environ-
ment is a function σEnv mapping each finite play ending in (`, ν, d, e) to a state
(`′, ν′) related by a transition. A play gives rise to a unique run of JAK by only
keeping states in VC . For a pair of strategies (σCon, σEnv), we let playδA(σCon, σEnv)
denote the run associated with the unique maximal play of Gδ(A) that follows
the strategies. Controller’s strategy σCon is winning (with respect to the Büchi
objective Lt) if for all strategies σEnv of the environment, playδA(σCon, σEnv) is
infinite and visits infinitely often some location of Lt. The parametrised robust
controller synthesis problem asks, given a timed automaton A, whether there
exists δ > 0 such that the controller has a winning strategy in Gδ(A).



Example 1. The controller has a winning strategy in Gδ(A), with A the auto-
maton of Figure 1, for all possible values of δ < 1/2. Indeed, he can follow the
cycle `0 → `3 → `0 by always picking time delay 1/2 so that, when arriving in
`3 (resp. `0) after the perturbation of the environment, clock x2 (resp. x1) has
a valuation in [1/2 − δ, 1/2 + δ]. Therefore, he can play forever following this
memoryless strategy. For δ ≥ 1/2, the environment can enforce reaching `3 with
a value for x2 at least equal to 1. The guard x2 < 2 of the next transition to
`0 cannot be guaranteed, and therefore the controller cannot win Gδ(A). In [25],
it is shown that the cycle around `2 does not provide a winning strategy for
the controller for any value of δ > 0 since perturbations accumulate so that the
controller can only play it a finite number of times in the worst case.

By [25], the parametrised robust controller synthesis problem is known to be
PSPACE-complete. Their solution is based on the region automaton of A. We are
seeking for a more practical solution using zones. A zone Z over X is a convex
subset of RX>0 defined as the set of valuations satisfying a clock constraint g,
i.e. Z = JgK. Zones can be encoded into difference-bound matrices (DBM), that
are |X0| × |X0|-matrices over (R × {<,6}) ∪ {(∞, <)}. We adopt the following
notation: for a DBMM , we writeM = (M,≺M ), where M is the matrix made of
the first components, with elements in R ∪ {∞}, while ≺M is the matrix of the
second components, with elements in {<,6}. A DBM M naturally represents
a zone (which we abusively write M as well), defined as the set of valuations ν
such that, for all x, y ∈ X0, ν(x)−ν(y) ≺Mx,y Mx,y (where ν(x0) = 0). Coefficients
of a DBM are thus pairs (≺, c). As usual, these can be compared: (≺, c) is less
than (≺′, c′) (denoted by (≺, c) < (≺′, c′)) whenever c < c′ or (c = c′, ≺ = <
and ≺′ = 6). Moreover, these coefficients can be added: (≺, c) + (≺′, c′) is the
pair (≺′′, c+ c′) with ≺′′ = 6 if ≺ = ≺′ = 6 and ≺′′ = < otherwise.

DBMs were introduced in [4,10] for analyzing timed automata; we refer to [3]
for details. Standard operations used to explore the state space of timed auto-
mata have been defined on DBMs: intersection is written M ∩N , Pretime>t(M)
is the set of valuations such that a time delay of more than t time units leads to
the zoneM , UnresetR(M) is the set of valuations that end inM when the clocks
in R are reset. From a robustness perspective, we also consider the operator
shrink[−δ,δ](M) defined as the set of valuations ν such that ν + [−δ, δ] ⊆ M in-
troduced in [24]. Given a DBM M and a rational number δ, all these operations
can be effectively computed in time cubic in |X |.

3 Reachability relation of a path

Before treating the robustness issues, we start by designing a symbolic (i.e. zone-
based) approach to describe and compare the reachability relations of paths in
timed automata. This will be crucial subsequently to design a termination cri-
terion in the state space exploration of our robustness-checking algorithm. Solv-
ing the inclusion of reachability relations in a symbolic manner has independent
interest and can have other applications.



The reachability relation Reach(ρ) of a path ρ, is a subset of RX∪X ′

>0 where X ′
are primed versions of the clocks, such that each (ν, ν′) ∈ Reach(ρ) iff there is
a run from valuation ν to valuation ν′ following ρ. Unfortunately, reachability
relations Reach(ρ) are not zones in general, that is, they cannot be represented
using only difference constraints. In fact, we shall see shortly that constraints of
the form x − y + z − u 6 c also appear, as already observed in [22]. We thus
cannot rely directly on the traditional difference bound matrices (DBMs) used to
represent zones. We instead rely on the constraint graphs that were introduced
in [8], and explored in [16] for the parametric case (the latter work considers
enlarged constraints, and not shrunk ones as we study here). Our contribution
is to use these graphs to obtain a syntactic check of inclusion of the according
reachability relations.

Constraint graphs. Rather than considering the values of the clocks in X ,
this data structure considers the date Xi of the latest reset of the clock xi,
and uses a new variable τ denoting the global timestamp. Note that the clock
values can be recovered easily since Xi = τ − xi. For the extra clock x0, we
introduce variable X0 equal to the global timestamp τ (since x0 must remain
equal to 0). A constraint graph defining a zone is a weighted graph whose nodes
are X = {X0, X1, . . . , Xn}. Constraints on clocks are represented by weights on
edges in the graph: a constraint X − Y ≺ c is represented by an edge from X
to Y weighted by (≺, c), with ≺ ∈ {6, <} and c ∈ Q. Weights in the graph
are thus pairs of the form (≺, c). Therefore, we can compute shortest weights
between two vertices of a weighted graph. A cycle is said to be negative if it has
weight at most (<, 0), i.e. (<, 0) or (≺, c) with c < 0.

Encoding paths. Constraint graphs can also encode tuples of valuations seen
along a path. To encode a k-step computation, we make k + 1 copies of the
nodes, that is, Xi = {Xi

0, X
i
1, . . . , X

i
n} for i ∈ {1, . . . , k + 1}. These copies are

also called layers. Let us first consider an example on the path ρ consisting of
the edge from `1 to `2, and the edge from `2 to `1, in the timed automaton
of Figure 1. The constraint graph Gρ is depicted in Figure 2: in our diagrams
of constraint graphs, the absence of labels on an edge means (6, 0), and we
depict with an edge with arrows on both ends the presence of an edge in both
directions. The graph has five columns, each containing copies of the variables
for that step: they represent the valuations before the first edge, after the first
time elapse, after the first reset, after the second time elapse and after the second
reset. In general now, each elementary operation can be described by a constraint
graph with two layers (Xi) (before) and (X ′i) (after).

– The operation Pretime>t is described by the constraint graph G>ttime with

edges Xi → X0, Xi ↔ X ′i for i > 0, and X0
(<,−t)−−−−→ X ′0. Figure 2 contains

two occurrences of G>0
time: we always represent with dashed arrows edges that

are labelled by (<, c), and plain arrows edges that are labelled with (6, c);
the absence of an edge means that it is labelled with (<,∞).

– The operation g ∩ UnresetY(·), to test a guard g and reset the clocks in Y,
is described by the constraint graph Gg,Yedge with edges X0 ↔ X ′0 (meaning



X0

X1

X2

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

(<, 0)

(6, 2)

(<, 0)

(6,−2)

`1
G>0

time G
x162,{x1}
edge `2

G>0
time G

x2>2,{x2}
edge `1

X`
0

X`
1

X`
2

◦

◦

◦

◦

◦

◦

Xr
0

Xr
1

Xr
2

Figure 2. On the left, the constraint graph of the path `1
x162,x1:=0−−−−−−−→ `2

x2>2,x2:=0−−−−−−−→ `1.
On the right, its normalised version: dashed edges have weight (<, .), plain edges have
weight (6, .), black edges have weight (., 0), red edges have weight (., 2) and blue edges
have weight (.,−2).

that the time does not elapse), Xi ↔ X ′i for i such that clock xi /∈ Y, and
X ′i ↔ X ′0 for i such that clock xi ∈ Y, and for all clock constraint xi−xj ≺ c
appearing in g, an edge from Xj to Xi labelled by (≺, c) (since it encodes
the fact that (τ −Xi)− (τ −Xj) = Xj −Xi ≺ c). In Figure 2, we have first
G
x162,{x1}
edge , and then Gx2>2,{x2}

edge .

Constraint graphs can be stacked one after the other to obtain the constraint
graph of an edge e, and then of a path ρ, that we denote by Gρ. In the resulting
graph, there is one leftmost layer of vertices (X`

i )i and one rightmost one (Xr
i )i

representing the situation before and after the firing of the path ρ. Once this
graph is constructed, the intermediary levels can be eliminated after replacing
each edge between the nodes of X` ∪Xr by the shortest path in the graph. This
phase is hereafter called normalisation of the constraint graph. The normalised
version of the constraint graph of Figure 2 is depicted on its right.
From constraint graphs to reachability relations. From a logical point of
view, the elimination of intermediary layers reflects an elimination of quantifiers
in a formula of the first-order theory of real numbers. At the end, we obtain a
set of constraints of the form Xk

i −Xk′

j ≺ c with k, k′ ∈ {`, r}. These constraints
do not reflect uniquely the reachability relation Reach(ρ), in the sense that it is
possible that Reach(ρ1) = Reach(ρ2) but the normalised versions of Gρ1 and Gρ2
are different. For example, if we consider the path ρ2 obtained by repeating the
cycle ρ between `1 and `2, the reachability relation does not change (Reach(ρ2) =
Reach(ρ)), but the normalised constraint graph does (Gρ2 6= Gρ1): all labels
(6, 2) of the red dotted edges from the rightmost layer to the leftmost layer
become (6, 4), and the labels (6,−2) of the dashed blue edges become (6,−4).

We solve this issue by jumping back from variablesXk
i to the clock valuations.

Indeed, in terms of clock valuations ν` and νr before and after the path, the
constraint Xk

i − Xk′

j ≺ c (for k, k′ ∈ {l, r}) rewrites as (τk − νk(xi)) − (τk
′ −

νk
′
(xj)) ≺ c, where τ ` is the global timestamp before firing ρ and τ r the one after.

When k = k′, variables τ ` and τ r disappear, leaving a constraint of the form



νk(xj)− νk(xi) ≺ c. When k 6= k′, we can rewrite the constraint as τk − τk′ ≺
νk(xi)− νk

′
(xj) + c. We therefore obtain upper and lower bounds on the value

of τ r − τ `, allowing us to eliminate τ r − τ ` considered as a single variable. We
therefore obtain in fine a formula mixing constraints of the form

• νk(xa)− νk(xb) ≺ p, with k ∈ {`, r}, a 6= b, and we define γka,b = (≺, p);
• ν`(xa) − ν`(xb) + νr(xc) − νr(xd) ≺ p, with a 6= b and c 6= d, and we

define γa,b,c,d = (≺, p). This constraint can appear in two ways: either from
νr(xc)−ν`(xb)+p1 ≺1 τ

r−τ l ≺2 ν
l(xa)−νr(xd)+p2 by eliminating τ r−τ l,

or by adding the two constraints of the form νl(xa) − νl(xb) ≺1 p1 and
νr(xc) − νr(xd) ≺2 p2. Thus, γa,b,c,d is obtained as the minimum of the
two constraints obtained in this manner. In other terms, in the constraint
graph, this constraint is the minimal weight between the sum of the weights
of the edges (Xr

d , X
l
a) and (X l

b, X
r
c ), and the sum of the weights of the

edges (X l
b, X

l
a) and (Xr

d , X
r
c ). For example, in the path in Figure 2, we have

γ0,1,0,2 = (6, 0) since the two constraints are (6, 0) and (<,∞), whereas
γ1,2,2,1 = (6, 0) because the two constraints are (<, 2) and (6, 0).

Let ϕ(G) be the conjunction of such constraints obtained from a constraint
graph G once normalised: this is a quantifier-free formula of the additive theory
of reals. We obtain the following property whose proof mimics the one for proving
the normalisation of DBMs (and can be derived from the developments of [8]).

Lemma 1. Let ρ be a path in a timed automaton. If Gρ contains a negative
cycle, then Reach(ρ) = ∅. Otherwise, Reach(ρ) is the set of pairs of valuations
(ν`, νr) that satisfy the formula ϕ(Gρ).

Checking inclusion. For a path ρ, we regroup the pairs (γla,b), (γra,b) and
(γa,b,c,d) above in a single vector Γ ρ. We extend the comparison relation < to
these vectors by applying it componentwise. These vectors can be used to check
equality or inclusion of reachability relations in time O(|X|4):

Theorem 1. Let ρ and ρ′ be paths in a timed automaton such that Reach(ρ) and
Reach(ρ′) are non empty. Then Reach(ρ) ⊆ Reach(ρ′) if and only if Γ ρ 6 Γ ρ

′
.

Notice that we do not need to check equivalence or implication of formulas
ϕ(Gρ) and ϕ(Gρ′), but simply check syntactically constants appearing in these
formulas. Moreover, these constants can be stored in usual DBMs on 2 × |X0|
clocks, allowing for reusability of classical DBM libraries. For the constraint
graph in Figure 2, we have seen that Gρ2 6= Gρ1 , even if Reach(ρ2) = Reach(ρ).
However, we can check that ϕ(Gρ2) = ϕ(Gρ) as expected.
Computation of Pre and Post. By Lemma 1 and the construction of con-
straint graphs, one can easily compute Preρ(Z) = {ν | ∃ν′ ∈ Z ((`, ν), (`′, ν′)) ∈
Reach(ρ)} for a given path ρ and zone Z (see [8,16]). In fact, consider the
normalised constraint graph Gρ on nodes X` ∪ Xr. To compute Preρ(Z), one
just needs to add the constraints of Z on Xr. This is done by replacing each

edge Xr
i
w−→ Xr

j by Xr
i

min(Zj,i,w)−−−−−−−→ Xr
j where Zj,i = (≺, p) defines the constraint



of Z on xj − xi. Then, the normalisation of the graph describes the reachab-
ility relation along path ρ ending in zone Z. Furthermore, projecting the con-
straints to X` yields Preρ(Z): this can be obtained by gathering all constraints
on pairs of nodes of X`. A reachability relation can thus be seen as a function
assigning to each zone Z its image by ρ. One can symmetrically compute the
successor Postρ(Z) = {ν′ | ∃ν ∈ Z ((`, ν), (`′, ν′)) ∈ Reach(ρ)} by constraining
the nodes X` and projecting to Xr.

4 Robust iterability of a lasso

In this section, we study the perturbation game Gδ(A) between the two players
(controller and environment), as defined in Section 2, when the timed auto-
maton A is restricted to a fixed lasso ρ1ρ2, i.e. ρ1 is a path from `0 to some
accepting location `t, and ρ2 a cyclic path around `t. This implies that the con-
troller does not have the choice of the transitions, but only of the delays. We
will consider different settings, in which δ is fixed or not.
Controllable predecessors and their greatest fixpoints. Consider an edge
e = (`, g, R, `′). For any set Z ⊆ RX>0, we define the controllable predecessors
of Z as follows: CPreδe(Z) = Pretime>δ(shrink[−δ,δ](g∩UnresetR(Z))). Intuitively,
CPreδe(Z) is the set of valuations from which the controller can ensure reaching Z
in one step, following the edge e, no matter of the perturbations of amplitude at
most δ of the environment. In fact, it can delay in shrink[−δ,δ](g ∩ UnresetR(Z))
with a delay of at least δ, where under any perturbation in [−δ, δ], the valuation
satisfies the guard, and it ends, after reset, in Z. Results of [24] show that this
operator can be computed in cubic time with respect to the number of clocks.
We extend this operator to a path ρ by composition, denoted it by CPreδρ. Note
that CPre0ρ = Preρ is the usual predecessor operator without perturbation.

This operator is monotone, hence its greatest fixpoint νX CPreδρ(X) is well-
defined, equal to

⋂
i>0 CPre

δ
ρi(>): it corresponds to the valuations from which

the controller can guarantee to loop forever along the path ρ. By definition of
the game Gδ(A) where A is restricted to the lasso ρ1ρ2, the controller wins the
game if and only if 0 ∈ CPreδρ1(νX CPreδρ2(X)). As a consequence, our problem
reduces to the computation of this greatest fixpoint.
Branching constraint graphs. We consider first a fixed (rational) value of
the parameter δ, and are interested in the computation of the greatest fixpoint
νX CPreδρ2(X). In [16], constraints graphs were used to provide a termination
criterion allowing to compute the greatest fixpoint of the classical predecessor
operator CPre0ρ. We generalize this approach to deal with the operator CPreδρ
and to this end, we need to generalize constraint graphs so as to encode it.
Unfortunately, the operator shrink[−δ,δ] cannot be encoded in a constraint graph.
Intuitively, this comes from the fact that a constraint graph represents a relation
between valuations, while there is no such relation associated with the CPreδρ
operator. Instead, we introduce branching constraint graphs, that will faithfully
represent the CPreδρ operator: unlike constraint graphs introduced so far that



have a left layer and a right layer of variables, a branching constraint graph has
still a single left layer but several right layers.

We first define a branching constraint graph Gδshrink associated with the op-
erator shrink[−δ,δ] as follows. Its set of vertices is composed of three copies of
the {X0, X1, . . . , Xn}, denoted by primed, unprimed and doubly primed ver-
sions. Edges are defined so as to encode the following constraints : X ′i = Xi and
X ′′i = Xi for every i 6= 0, and X ′0 = X0 + δ and X ′′0 = X0 − δ. An instance of
this graph can be found in several occurrences in Figure 3.

Proposition 1. Let Z be a zone and Gδshrink(Z) be the graph obtained from
Gδshrink by adding on primed and doubly primed vertices the constraints defining Z
(as for Preρ(Z) in the end of Section 3). Then the constraint on unprimed ver-
tices obtained from the shortest paths in Gδshrink(Z) is equivalent to shrink[−δ,δ](Z).

Proof. Given a zone Z and a real number d, we define Z + d = {ν + d | ν ∈ Z}.
One easily observes that shrink[−δ,δ](Z) = (Z + δ) ∩ (Z − δ). The result follows
from the observation that taking two distinct copies of vertices, and considering
shortest paths allows one to encode the intersection. ut

Then, for all edges e = (`, g, R, `′), we define the branching constraint graph
Gδe as the graph obtained by stacking (in this order) the branching constraint
graphG>δtime,G

δ
shrink andG

g,Y
edge. Note that two copies of the graphG

g,Y
edge are needed,

to be connected to the two sets of vertices that are on the right of the graph
Gδshrink. This definition is extended in the expected way to a finite path ρ, yielding
the graph Gδρ. In this graph, there is a single set of vertices on the left, and 2|ρ|

sets of vertices on the right. As a direct consequence of the previous results on
the constraint graphs for time elapse, shrinking and guard/reset, one obtains:

Proposition 2. Let Z be a zone and ρ be a path. We let Gδρ(Z) be the graph
obtained from Gδρ by adding on every set of right vertices the constraints defin-
ing Z. Then the constraint on the left layer of vertices obtained from the shortest
paths in Gδρ(Z) is equivalent to CPreδρ(Z).

An example of the graph Gδρ(Z) for ρ = e1e2, edges considered in Figure 2,
is depicted in Figure 3 (on the left).

We are now ready to prove the following result, generalisation of [16, Lemma 2],
that will allow us to compute the greatest fixpoint of the operator CPreδρ:

Proposition 3. Let ρ be a path and δ be a non-negative rational number. We
let N = |X0|2. If CPreδρ2N+1(>) ( CPreδρ2N (>), then νX CPreδρ(X) = ∅.

Proof. Assume CPreδρ2N+1(>) ( CPreδρ2N (>) and consider the zones CPreδρN+1(>)
(represented by the DBM M1) and CPreδρN (>) (represented by the DBM M2).
We have M1 ( M2, as otherwise the fixpoint would have already been reached
after N steps. By Proposition 2, the zone corresponding toM1 is associated with
shortest paths between vertices on the left in the graph GδρN+1 . In the sequel,
given a path r in this graph, w(r) denotes its weight. We distinguish two cases:



◦X0

◦X1

◦X2

◦

◦

◦

G>δtime

◦

◦

◦

◦

◦

◦

Gδshrink

G
x162,{x1}
edge

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

G>δtime

◦

◦

◦

◦

◦

◦

Gδshrink

G
x2>2,{x2}
edge

◦

◦

◦

◦

◦

◦

◦

◦

◦

Z

◦

◦

◦

Z

◦

◦

◦

Z

◦

◦

◦

Z

i j

r1

r2

r3

r4

r5

Figure 3. On the left, the branching constraint graph Gδe1e2 encoding the operator
CPreδe1e2 , where e1 and e2 refer to edges considered in Figure 2. Dashed edges have
weight (<, .), plain edges have weight (6, .). Black edges (resp. orange edges, pink
edges, red edges, blue edges) are labelled by (., 0) (resp. (.,−δ), (., δ), (., 2),(.,−2)). On
the right, a decomposition of a path in a branching constraint graph Gδρ.

Case 1: M1 ( M2 because of the rational coefficients. Then, there exists an
entry (x, y) ∈ X 2

0 such that M1[x, y] < M2[x, y]. The value M1[x, y] is thus
associated with a shortest path between vertices X and Y in GδρN+1 . We fix a
shortest path of minimal length, and denote it by r. As the entry is strictly
smaller than in M2, this shortest path should reach the last copy of the graph
Gδρ. This path can be interpreted as a traversal of the binary tree of depth
|X0|2 + 1, reaching at least one leaf. We can prove that this entails that there
exists a pair of clocks (u, v) ∈ X 2

0 appearing at two levels i < j of this tree, and
a decomposition r = r1r2r3r4r5 of the path, such that w(r2) + w(r4) = (≺, d)
with d < 0 (Property (†)). In addition, in this decomposition, r3 is included in
subgraphs of levels k ≥ j, and the pair of paths (r2, r4) is called a return path,
following the terminology of [16]. This decomposition is depicted in Figure 3
(on the right). Intuitively, the property (†) follows from the fact that as r3 is
included in subgraphs of levels k ≥ j, and because the final zone (on the right)
is the zone > which adds no edges, the concatenation r′ = r1r3r5 is also a valid
path from X to Y in GδρN+1 , and is shorter than r. We conclude using the fact
that r has been chosen as a shortest path of minimal weight.

Property (†) allows us to prove that the greatest fixpoint is empty. Indeed,
by considering iterations of ρ, one can repeat the return path associated with
(r2, r4) and obtain paths from X to Y whose weights diverge towards −∞.
Case 2: M1 ( M2 because of the ordering coefficients. We claim that this case
cannot occur. Indeed, one can show that the constants will not evolve anymore



after the Nth iteration of the fixpoint: the coefficients can only decrease by chan-
ging from a non-strict inequality (≤, c) to a strict one (<, c). This propagation
of strict inequalities is performed in at most |X0|2 additional steps, thus we have
CPreδρ2N+1(>) = CPreδρ2N (>), yielding a contradiction. ut

Compared to the result of [16], the number of iterations needed before con-
vergence grows from |X0|2 to 2|X0|2: this is due to the presence of strict and
non-strict inequalities, not considered in [16]. With the help of branching con-
straint graphs, we have thus shown that the greatest fixpoint can be computed
in finite time: this can then be done directly with computations on zones (and
not on branching constraint graphs).

Proposition 4. Given a path ρ and a rational number δ, the greatest fixpoint
νX CPreδρ(X) can be computed in time polynomial in |X | and |ρ|. As a con-
sequence, one can decide whether the controller has a strategy along a lasso ρ1ρ2
in Gδ(A) in time polynomial in |X | and |ρ1ρ2|.

Solving the robust controller synthesis problem for a lasso. We have
shown how to decide whether the controller has a winning strategy for a fixed
rational value of δ. We now aim at deciding whether there exists a positive value
of δ for which the controller wins the game Gδ(A) (where A is restricted to a
lasso ρ1ρ2). To this end, we will use a parametrised extension of DBMs, namely
shrunk DBMs, that were introduced in [24] in order to study the parametrised
state space of timed automata. Intuitively, our goal is to express shrinkings of
guards, e.g. sets of states satisfying constraints of the form g = 1 + δ < x <
2 − δ ∧ 2δ < y, where δ is a parameter to be chosen. Formally, a shrunk DBM
is a pair (M,P ), where M is a DBM, and P is a nonnegative integer matrix
called a shrinking matrix. This pair represents the set of valuations defined by
the DBM M − δP , for any given δ > 0. Considering the example g, M is the
guard g obtained by setting δ = 0, and P is made of the integer multipliers
of δ. We adopt the following notation: when we write a statement involving a
shrunk DBM (M,P ), we mean that for some δ0 > 0, the statement holds for
M − δP for all δ ∈ (0, δ0]. For instance, (M,P ) = Pretime>δ((N,Q)) means
that M − δP = Pretime>δ(N − δQ) for all small enough δ > 0. Shrunk DBMs
are closed under standard operations on zones, and as a consequence, the CPre
operator can be computed on shrunk DBMs:

Lemma 2 ([25]). Let e = (`, g, R, `′) be an edge and (M,P ) be a shrunk DBM.
Then, there exists a shrunk DBM (N,Q), that we can compute in polynomial
time, such that (N,Q) = CPreδe((M,P )).

Proposition 5. Given a path ρ, one can compute a shrunk DBM (M,P ) equal
to the greatest fixpoint of the operator CPreδρ. As a consequence, one can solve
the parametrised robust controller synthesis problem for a given lasso in time
complexity polynomial in the number of clocks and in the length of the lasso.

Proof. The bound 2|X0|2 identified previously does not depend on the value of δ.
Hence the algorithm for computing a shrunk DBM representing the greatest fix-
point proceeds as follows. It computes symbolically, using shrunk DBMs, the



2|X0|2-th and 2|X0|2 + 1-th iterations of the operator CPreδρ, from the zone >.
By monotonicity, the 2|X0|2 + 1-th iteration is included in the 2|X0|2-th. If the
two shrunk DBMs are equal, then they are also equal to the greatest fixpoint.
Otherwise, the greatest fixpoint is empty. To decide the robust controller syn-
thesis problem for a given lasso, one first computes a shrunk DBM representing
the greatest fixpoint associated with ρ2 and, if not empty, one computes a new
shrunk DBM by applying to it the operator CPreδρ1 . Then, one checks whether
the valuation 0 belongs to the resulting shrunk DBM. ut

Computing the largest admissible perturbation. We say that a perturb-
ation δ is admissible if the controller wins the game Gδ(A). The parametrised
robust controller synthesis problem, solved before just for a lasso, aims at decid-
ing whether there exists a positive admissible perturbation. A more ambitious
problem consists in determining the largest admissible perturbation.

The previous algorithm performs a bounded (2|X0|2) number of computations
of the CPreδρ operator. Instead of focusing on arbitrarily small values using shrunk
DBMs as we did previously, we must perform a computation for all values of δ. To
do so, we consider an extension of the (shrunk) DBMs in which each entry of the
matrix (which thus represents a clock constraint) is a piecewise affine function
of δ. One can observe that all the operations involved in the computation of
the CPreδρ operator can be performed symbolically w.r.t. δ using piecewise affine
functions. As a consequence, we obtain the following new result:

Proposition 6. We can compute the largest admissible perturbation of a lasso.

Proof. Let ρ1ρ2 be a lasso. One first computes a symbolic representation, valid
for all values of δ, of the greatest fixpoint of CPreδρ2 . To do so, one computes the
2|X0|2-th and 2|X0|2+1-th iterations of this operator, from the zone>. We denote
them byM1 andM2 respectively. By monotonicity, the inclusionM1(δ) ⊆M2(δ)
holds for every δ ≥ 0. In addition, both M1 and M2 are decreasing w.r.t. δ,
thus one can identify the value δ0 = inf{δ ≥ 0 | M1(δ) ( M2(δ)}. Then, the
greatest fixpoint is equal to M1 for δ < δ0, and to the emptyset for δ at least
δ0. As a second step, one applies the operator CPreρ1 to the greatest fixpoint.
We denote the result by M . To conclude, one can then compute and return the
value sup{δ ∈ [0, δ0[ | 0 ∈M(δ)} of maximal perturbation. ut

5 Synthesis of robust controllers

We are now ready to solve the parametrised robust controller synthesis problem,
that is to find, if it exists, a lasso ρ1ρ2 and a perturbation δ such that the
controller wins the game Gδ(A) when following the lasso ρ1ρ2 as a strategy. As
for the symbolic checking of emptiness of a Büchi timed language [17], we will
use a double forward analysis to exhaust all possible lassos, each being tested for
robustness by the techniques studied in previous section: a first forward analysis
will search for ρ1, a path from the initial location to an accepting location, and
a second forward analysis from each accepting location ` to find the cycle ρ2



around `. Forward analysis means that we compute the successor zone Postρ(Z)
when following path ρ from zone Z.
Abstractions of lassos. Before studying in more details the two independant
forward analyses, we first study what information we must keep about ρ1 and ρ2
in order to still being able to test the robustness of the lasso ρ1ρ2. A classical
problem for robustness is the firing of a punctual transition, i.e. a transition where
controller has a single choice of time delay: clearly such a firing will be robust
for no possible choice of parameter δ. Therefore, we must at least forbid such
punctual transitions in our forward analyses. We thus introduce a non-punctual
successor operator Postnpρ . It consists of the standard successor operator Postρ
in the timed automaton Anp obtained from A by making strict every constraint
appearing in the guards (1 ≤ x ≤ 2 becomes 1 < x < 2). The crucial point is that
if a positive delay d can be taken by the controller while satisfying a set of strict
constraints, then other delays are also possible, close enough to d. By analogy,
a region is said to be non-punctual if it contains two valuations separated by
a positive time delay. In particular, if such a region satisfies a constraint in A
it also satisfies the corresponding strict constraint in Anp. Therefore, controller
wins Gδ(A) for some δ > 0 if and only if he wins Gδ(Anp) for some δ > 0.

The link between non-punctuality and robustness is as follows:

Theorem 2. Let ρ1ρ2 be a lasso of the timed automaton. We have

∃δ > 0 0 ∈ CPreδρ1(νX CPreδρ2(X)) ⇐⇒ Postnpρ1 (0)∩(
⋃
δ>0νX CPreδρ2(X)) 6= ∅

Proof. The proof of this theorem relies on three main ingredients:

1. the timed automaton Anp allows one to compute
⋃
δ>0 CPre

δ
e(Z
′) by classical

predecessor operator: Prenpe (Z ′) =
⋃
δ>0 CPre

δ
e(Z
′);

2. for all edges e, and zones Z and Z ′, Z ∩ Prenpe (Z ′) 6= ∅ if and only if
Postnpe (Z)∩Z ′ 6= ∅: this duality property on predecessor and successor rela-
tions always holds, in particular in Anp. These two ingredients already imply
that the theorem holds for a path reduced to a single edge e;

3. we then prove the theorem by induction on length of the path using that⋃
δ>0 CPre

δ
ρ1ρ2(Z) =

⋃
δ>0 CPre

δ
ρ1

(⋃
δ′>0 CPre

δ′

ρ2(Z)
)
, due to the monoton-

icity of the CPreδρ1 operator. ut

Therefore, in order to test the robustness of the lasso ρ1ρ2, it is enough to
only keep in memory the sets Postnpρ1 (0) and

⋃
δ>0 νX CPreδρ2(X).

Non-punctual forward analysis. As a consequence of the previous theorem,
we can use a classical forward analysis of the timed automaton Anp to look for
the prefix ρ1 of the lasso ρ1ρ2. A classical inclusion check on zones allows to stop
the exploration, this criterion being complete thanks to Theorem 2. It is worth
reminding that we consider only bounded clocks, hence the number of reachable
zones is finite, ensuring termination.
Robust cycle search. We now perform a second forward analysis, from each
possible final location, to find a robust cycle around it. To this end, for each



cycle ρ2, we must compute the zone
⋃
δ>0 νX CPreδρ2(X). This computation is

obtained by arguments developed in Section 4 (Proposition 4). To enumerate
cycles ρ2, we can again use a classical forward exploration, starting from the
universal zone >. Using zone inclusion to stop the exploration is not complete:
considering a path ρ′2 reaching a zone Z ′2 included in the zone Z2 reachable
using some ρ2, ρ′2 could be robustly iterable while ρ2 is not. In order to ensure
termination of our analysis, we instead use reachability relations inclusion checks.
These tests are performed using the technique developed in Section 3, based on
constraint graphs (Theorem 1). The correction of this inclusion check is stated in
the following lemma, where Reachnpρ denotes the reachability relation associated
with ρ in the automaton Anp. This result is derived from the analysis based on
regions in [25]. Indeed, we can prove that the non-punctual reachability relation
we consider captures the existence of non-punctual aperiodic paths in the region
automaton, as considered in [25].

Lemma 3. Let ρ1 a path from `0 to some target location `t. Let ρ2, ρ′2 be two
paths from `t to some location `, such that Reachnpρ2 ⊆ Reachnpρ′2

. For all paths

ρ3 from ` to `t, Postnpρ1 (0) ∩ (
⋃
δ>0 νX CPreδρ2ρ3(X)) 6= ∅ implies Postnpρ1 (0) ∩

(
⋃
δ>0 νX CPreδρ′2ρ3(X)) 6= ∅.

6 Case study

We implemented our algorithm in C++. To illustrate our approach, we present
a case study on the regulation of train networks. Urban train networks in big
cities are often particularly busy during rush hours: trains run in high frequency
so even small delays due to incidents or passenger misbehavior can perturb the
traffic and end up causing large delays. Train companies thus apply regulation
techniques: they slow down or accelerate trains, and modify waiting times in
order to make sure that the traffic is fluid along the network. Computing robust
schedules with provable guarantees is a difficult problem (see e.g. [9]).

We study here a simplified model of a train network and aim at automatic-
ally synthesizing a controller that regulates the network despite perturbations,
in order to ensure performance measures on total travel time for each train.
Consider a circular train network with m stations s0, . . . , sm−1 and n trains. We
require that all trains are at distinct stations at all times. There is an interval
of delays [`i, ui] attached to each station which bounds the travel time from si
to si+1 mod m. Here the lower bound comes from physical limits (maximal al-
lowed speed, and travel distance) while the upper bound comes from operator
specification (e.g. it is not desirable for a train to remain at station for more
than 3 minutes). The objective of each train i is to cycle on the network while
completing each tour within a given time interval [ti1, ti2].

All timing requirements are naturally encoded with clocks. Given a model, we
solve the robust controller synthesis problem in order to find a controller choosing
travel times for all trains ensuring a Büchi condition (visiting s1 infinitely often).
Given the fact that trains cannot be at the same station at any given time, it



suffices to state the Büchi condition only for one train, since its satisfaction of
the condition necessarily implies that of all other trains.

Scenario m n #Clocks robust? time
A 6 2 4 yes 4s
B 6 2 4 no 2s
C 6 3 5 no 263s
D 6 3 4 yes 125s
E 6 4 2 yes 53s
F 6 4 2 yes 424s
G 6 4 8 TO
H 6 4 8 TO
I 20 2 2 yes 76s
J 20 2 2 yes 55s
K 30 2 2 yes 579s

Figure 4. Summary of experiments
with different sizes. In each scenario,
we assign a different objective to a
subset of trains. The answer is yes if
if a robust controller was found, no
if none exists. TO stands for a time-
out of 30 minutes.

Let us present two representative in-
stances and then comment the performance
of the algorithm on a set of instances. Con-
sider a network with two trains and m sta-
tions, with [`i, ui] = [200, 400] for each sta-
tion i, and the objective of both trains is
the interval [250 ·m, 350 ·m], that is, an av-
erage travel time between stations that lies
in [250, 350]. The algorithm finds an accept-
ing lasso: intuitively, by choosing δ small
enough so that mδ < 50, perturbations do
not accumulate too much and the control-
ler can always choose delays for both trains
and satisfy the constraints. This case corres-
ponds to scenario A in Figure 4. Consider
now the same network but with two differ-
ent objectives: [0, 300 ·m] and [300 ·m,∞).
Thus, one train needs to complete each cycle
in at most 300 ·m time units, while the other
one in at least 300 ·m time units. A classical Büchi emptiness check reveals the
existence of an accepting lasso: it suffices to move each train in exactly 300
time units between each station. This controller can even recover from perturb-
ations for a bounded number of cycles: for instance, if a train arrives late at
a station, the next travel time can be chosen smaller than 300. However, such
corrections will cause the distance between the two trains to decrease and if such
perturbations happen regularly, the system will eventually enter a deadlock. Our
algorithm detects that there is no robust controller for the Büchi objective. This
corresponds to the scenario B in Figure 4.

Figure 4 summarizes the outcome of our prototype implementation on other
scenarios. The tool was run on a 3.2Ghz Intel i7 processor running Linux, with
a 30 minute time out and 2GB of memory. The performance is sensitive to the
number of clocks: on scenarios with 8 clocks the algorithm ran out of time.

7 Conclusion

Our case study illustrates the application of robust controller synthesis in small
or moderate size problems. Our prototype relies on the DBM libraries that we use
with twice as many clocks to store the constraints of the normalised constraint
graphs. In order to scale to larger models, we plan to study extrapolation op-
erators and their integration in the computation of reachability relations, which
seems to be a challenging task. Different strategies can also be adopted for the
double forward analysis, switching between the two modes using heuristics, a
parallel implementation, etc.



References

1. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

2. Giovanni Bacci, Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey,
and Pierre-Alain Reynier. Optimal and robust controller synthesis using energy
timed automata with uncertainty. In Bill W. Roscoe and Jan Peleska, editors, Pro-
ceedings of the 22nd International Symposium on Formal Methods (FM’18), Lec-
ture Notes in Computer Science, pages 203–221, Oxford, UK, July 2018. Springer.
Best paper award.

3. Johan Bengtsson and Wang Yi. Timed Automata: Semantics, Algorithms and
Tools, volume 3098 of Lecture Notes in Computer Science, pages 87–124. Springer,
2004.

4. Bernard Berthomieu and Miguel Menasche. An enumerative approach for ana-
lyzing time Petri nets. In R. E. A. Mason, editor, Information Processing 83 –
Proceedings of the 9th IFIP World Computer Congress (WCC’83), pages 41–46.
North-Holland/IFIP, September 1983.

5. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier
Lime. Efficient on-the-fly algorithms for the analysis of timed games. In CONCUR
2005, volume 3653, pages 66–80. Springer-Verlag, 2005.

6. Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison
of control problems for timed and hybrid systems. In Claire Tomlin and Mark R.
Greenstreet, editors, Proceedings of the 5th International Workshop on Hybrid Sys-
tems: Computation and Control (HSCC’02), volume 2289 of Lecture Notes in Com-
puter Science, pages 134–148. Springer, 2002.

7. Krishnendu Chatterjee, Thomas A. Henzinger, and Vinayak S. Prabhu. Timed
parity games: Complexity and robustness. Logical Methods in Computer Science,
7(4), 2011.

8. Hubert Comon-Lundh and Yan Jurski. Timed automata and the theory of real
numbers. In Proceedings of CONCUR’99, volume 1664 of Lecture Notes in Com-
puter Science, pages 242–257. Springer, 1999.

9. A. D’Ariano, M. Pranzo, and I. A. Hansen. Conflict resolution and train speed
coordination for solving real-time timetable perturbations. IEEE Transactions on
Intelligent Transportation Systems, 8(2):208–222, June 2007.

10. David L. Dill. Timing assumptions and verification of finite-state concurrent sys-
tems. In Automatic Verification Methods for Finite State Systems (CAV 1989),
volume 407 of Lecture Notes in Computer Science, pages 197–212. Springer, 1990.

11. Thomas A. Henzinger, Jan Otop, and Roopsha Samanta. Lipschitz robustness
of timed i/o systems. In Barbara Jobstmann and K. Rustan M. Leino, editors,
Verification, Model Checking, and Abstract Interpretation, pages 250–267, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

12. Thomas A. Henzinger and Joseph Sifakis. The embedded systems design chal-
lenge. In FM 2006, volume 4085 of Lecture Notes in Computer Science, pages
1–15. Springer, 2006.

13. Frédéric Herbreteau and B. Srivathsan. Efficient on-the-fly emptiness check for
timed büchi automata. In ATVA 2010, volume 6252 of Lecture Notes in Computer
Science, pages 218–232. Springer, 2010.

14. Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor Walukiewicz. Why
liveness for timed automata is hard, and what we can do about it. In FSTTCS
2016, volume 65 of LIPIcs, pages 48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016.



15. Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Efficient emptiness
check for timed büchi automata. Formal Methods in System Design, 40(2):122–
146, 2012.

16. Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of flat
timed automata. In Proceedings of the 14th International Conference on Founda-
tions of Software Science and Computation Structures (FoSSaCS’11), volume 6604
of Lecture Notes in Computer Science, pages 229–244. Springer, 2011.

17. Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guld-
strand Larsen, and Jaco van de Pol. Multi-core emptiness checking of timed büchi
automata using inclusion abstraction. In CAV 2013, volume 8044 of Lecture Notes
in Computer Science, pages 968–983. Springer, 2013.

18. Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and Andrzej Wasowski. Ro-
bust synthesis for real-time systems. Theor. Comput. Sci., 515:96–122, 2014.

19. Guangyuan Li. Checking timed büchi automata emptiness using lu-abstractions.
In FORMATS 2009, volume 5813 of Lecture Notes in Computer Science, pages
228–242. Springer, 2009.

20. Pavithra Prabhakar and Miriam García Soto. Formal synthesis of stabilizing con-
trollers for switched systems. In Proceedings of the 20th International Conference
on Hybrid Systems: Computation and Control, HSCC ’17, pages 111–120, New
York, NY, USA, 2017. ACM.

21. Pavithra Prabhakar and Miriam Garcia Soto. Counterexample guided abstraction
refinement for stability analysis. In Computer Aided Verification - 28th Interna-
tional Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceed-
ings, Part I, pages 495–512, 2016.

22. Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revisiting reachability
in timed automata. In LICS’17. IEEE, 2017.

23. Nima Roohi, Pavithra Prabhakar, and Mahesh Viswanathan. Robust model check-
ing of timed automata under clock drifts. In Proceedings of the 20th International
Conference on Hybrid Systems: Computation and Control, HSCC ’17, pages 153–
162, New York, NY, USA, 2017. ACM.

24. Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking Timed Automata. In
IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS 2011), volume 13 of LIPIcs, pages 90–102. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2011.

25. Ocan Sankur, Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust
controller synthesis in timed automata. In Proceedings of the 24th International
Conference on Concurrency Theory (CONCUR’13), volume 8052 of Lecture Notes
in Computer Science, pages 546–560. Springer, 2013.

26. Thanh-Tung Tran. Verification of timed automata : reachability, liveness and mod-
elling. (Vérification d’automates temporisés : sûreté, vivacité et modélisation). PhD
thesis, University of Bordeaux, France, 2016.

27. Stavros Tripakis. Checking timed büchi automata emptiness on simulation graphs.
ACM Trans. Comput. Log., 10(3):15:1–15:19, 2009.

28. Stavros Tripakis, Sergio Yovine, and Ahmed Bouajjani. Checking timed büchi
automata emptiness efficiently. Formal Methods in System Design, 26(3):267–292,
2005.


	Robust Controller Synthesis in Timed Büchi Automata: A Symbolic Approach

