Brief Annoucement: On Local Representation of Distances in Trees

Cyril Gavoille
LabRI - Universite Bordeaux
France
gavoille@labri.fr

Arnaud Labourel
LabRI - Universite Bordeaux
France
labourel@labri.fr

ABSTRACT
We consider distributed representation scheme for trees, supporting some special relationships between nodes at small distance. For instance, we show that for a tree T and an integer k we can assign local information on nodes such that we can decide for two nodes u and v if the distance between u and v is at most k and if so, compute it only using the local information assigned. For trees with n nodes, the local information assigned by our scheme is binary label of $\log n + O(k \log(\log(n/k)))$ bits, improving a recent result of [1].

Categories and Subject Descriptors
E.1 [Data Structure]: distributed data structures, graphs and networks

General Terms
Algorithms

Keywords
distributed representation, trees, distance

1. INTRODUCTION

A distributed representation scheme is a scheme maintaining global information on a network using local data structures (or labels) assigned to nodes of the network. Such schemes play an important role in the fields of distributed computing. Their goal is to locally store some useful information about the network and make it conveniently accessible. For instance, implicit representation or adjacency scheme of networks is a distributed representation scheme that support adjacency queries, i.e., adjacency between two nodes can be determined only by examining the local information stored by the two nodes. So, the network can be manipulated by keeping only its labels in memory, any other global information on the graph (like its matrix) can be removed. The goal is to minimize the maximum length of a label associated with a vertex while keeping fast adjacency queries.

Implicit representation of graphs with short labels have been investigated by Kannan, Naor and Rudich [3] and is widely used in distributed computing, e.g. in [4]. They construct adjacency labeling schemes for several families of graphs including trees with labels of $2 \log n$ bits. The size of label for implicit representation of trees was later improved in a non-trivial way to $\log + \log \log n + O(1)$ by Chung [2]. This result has been further improved by the use of an efficient labeling scheme to $\log n + O(\log^* n)$ bits.

Unfortunately, implicit representation is not always sufficient. For instance, address based routing between nodes in networks cannot be achieved using adjacency. In this paper, we consider labeling schemes for various relationships between nodes of small distance in trees. For instance, we show, that a distributed representation scheme supporting parent and sibling queries can be achieved with labels of size $\log n + 2 \log \log n + 2$, improving a recent result of Alstrup, Bille and Rauhe [1].

More generally, we say that two nodes v and w with nearest common ancestor z are (k_1, k_2)-related if the distance from v to z is k_1 and the distance from w to z is k_2. For any integer k, a k-relationship scheme is a distributed representation scheme that supports tests for whether v and w are (k_1, k_2)-related for all nodes v and w and all positive integers $k_1, k_2 \leq k$. In particular, a 1-relationship scheme supports tests for whether two nodes are $(0, 0)$, $(0, 1)$, $(1, 0)$ or $(1, 1)$-related. We propose a k-relationship scheme for trees of n nodes with labels of size $\log n + O(k \log(\log(n/k)))$ bits. This improves the scheme presented in [1] that use labels of $\log n + O(k^2 \log(k \log n))$ bits.

2. MAIN RESULT

Theorem 1. The family of n-node rooted trees enjoys a k-relationship scheme with labels of $\log n + O(k \log(\log(n/k)))$ bits, and with a constant adjacency query time.

The basic idea of our scheme is to store into the label of each node v, an identifier of v and its k closest ancestors. Indeed, to test if u and v are (k_1, k_2)-related, it suffices to test if the ancestor at distance k_1 of u is equal to the ancestor

1^*n denotes the number of times \log should be iterated to get a constant.
at distance k_2 of v, and the ancestor at distance $k_1 - 1$ of u
differs from the ancestor at distance $k_2 - 1$ of v.

Let T be a rooted tree of n nodes. We define the k-complex
of a node u as the set of ancestors of u at distance at most k,
u included. A branch of T is a path leading from a leaf
to the root of T.

Definition 1. A k-ancestor decomposition of a rooted
tree T is a rooted binary tree B where nodes, called parts,
form a partition of $V(T)$ such that, for any k-complex K of
T, the set of parts containing a node of K is contained in a
branch of B.

Our result highly depends on the following key lemma.

Lemma 1. Every n-node tree T enjoys a k-ancestor de-
scription such that every part of depth h contains at most
$k \cdot (\log(n/k) - h)$ nodes of T.

The idea is a construct from T a graph G obtained by
adding an edge between every u and its proper ancestors at
distance $\leq k$. We then observe that every subgraph H of
G has a subset of $k + 1$ nodes, called half-separator, whose
removal leaves H in connected components of $\leq |V(H)|/2$
nodes. The root of B is constructed by finding iteratively $O(\log(n/k))$ half-separators, and by grouping all the re-
sulting connected components in two sets V_1, V_2, each with
$\leq n/2$ nodes. By this way, there is no edges of G between
V_1 and V_2. The tree B is completed by performing similarly
and recursively the subgraphs induced by V_1 and V_2. Even-
tually, B is a k-ancestor decomposition since 1) k-complexes
of T induce cliques in G; and 2) all edges of G belongs to
the same branch in B.

We define the function $I(h) = \sum_{i=0}^{h} k \cdot (\log(n/k) - i)$
if $h \geq 0$ and $I(h) = 0$ if $h < 0$. Let X be a part of B at
depth h. By Lemma 1, $|X| \leq I(h) - I(h-1)$. We denote by $\path(X)$
the binary word of length h defining the unique
path from the root of T to X.

We associated with each $u \in X$, its rank, a unique integer
rank(u) $\in [0, |X|)$, and its position, defined by pos(u) =
rank(u) + $I(h - 1)$. We order the nodes of a k-complex
according to their positions. The apex of a k-complex K is
the node $a \in K$ with the greatest position. Observe that
the positions are relative to a branch of B: every pair of
nodes whose parts are on the same branch have distinct
positions, and conversely, the parts of any two nodes having
the same positions are not related (and so are not on the
same branch).

Let u be a node of T, let C_u be its k-complex, a the apex
of C_u, and B_a the part in B that contains a. The label
of node u is defined by the following quadruple:

\[
\text{label}(u) = (\path(B_a), \text{rank}(a), P_u, D_u)
\]

where:

- $P_u = \{\text{pos}(v) \mid v \in C_u, v \neq a\}$; and
- $D_u = (d_1, d_2, \ldots, d_{k+1})$ where d_i is the distance in T
 from u to the i-th node of C_u.

The label length is $\log n + O(k \log(k \log(n/k)))$. We can
check that the labels uniquely identify each k-complex, and
that given two k-complexes C_u and C_v, the k-relation can
be determined. Using a more sophisticated data structure,
we show how to perform the test in constant time while
preserving the $\log n + O(k \log(k \log(n/k)))$ label length.

3. REFERENCES

for small distances in trees. SIAM Journal on Discrete

induced-universal graphs. Journal of Graph Theory,

representation of graphs. In 20th Annual ACM
Symposium on Theory of Computing (STOC), pages

system. In 24th Annual ACM Symposium on
Principles of Distributed Computing (PODC), pages

Figure 1: An example of k-ancestor decomposition.