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Abstract

We consider labeled Traveling Salesman Problems, defined upon a complete graph of n
vertices with colored edges. The objective is to find a tour of maximum (or minimum) num-
ber of colors. We derive results regarding hardness of approximation and analyze approxi-
mation algorithms, for both versions of the problem. For the maximization version we give
a 1

2
-approximation algorithm based on local improvements, and a simpler 1

3
-approximation

algorithm. We show that the problem is APX-hard. For the minimization version, we show
that it is not approximable within n1−ǫ for every ǫ > 0. When every color appears in the
graph at most r times and r is an increasing function of n, the problem is shown not to
be approximable within factor O(r1−ǫ). For fixed constant r we analyze a polynomial-time
(r + Hr)/2-approximation algorithm, where Hr is the r-th harmonic number, and prove
APX-hardness for r = 2. For all of the analyzed algorithms we exhibit tightness of their
analysis by provision of appropriate worst-case instances.

1 Introduction

We study labeled versions of the Traveling Salesman Problem (TSP). The problems are defined
upon a complete graph Kn of n vertices, associated to an edge-labeling (or coloring) function
L : E(Kn)→ {c1, . . . , cq}. The objective is to find a hamiltonian tour T of Kn optimizing (either
maximizing or minimizing) the number of distinct labels used |L(T )|, where L(T ) = {L(e) : e ∈
T}. We refer to the corresponding problems with MaxLTSP and MinLTSP respectively. We
also consider the case of an additional input parameter for MinLTSP, that we refer to as color
frequency. The color frequency of a MinLTSP instance is the maximum number of equi-colored
edges or, equivalently, the maximum number of appearances of any color in the graph. For the
class of MinLTSP instances with specified color frequency r, we use MinLTSP(r).

Labeled network optimization over colored graphs has seen extensive study [17, 18, 1, 4,
12, 3, 2, 14, 10, 11, 15]. Minimization of used colors models naturally the need for using links
with common properties, whereas the maximization case can be viewed as a maximum covering
problem with a certain network structure (in our case such a structure is a hamiltonian cycle).
If for example every color represents a technology consulted by a different vendor, then we wish
to use as few colors as possible, so as to diminish incompatibilities among different technologies.
For the maximization case, consider the situation of designing a metropolitan peripheral ring
road, where every color represents a different suburban area that a certain link would traverse.
In order to maximize the number of suburban areas that such a peripheral ring covers, we seek
a tour of a maximum number of colors. To the best of our knowledge, the only result known
for labeled traveling salesman problems prior to ours is NP-hardness, shown in [2] for both
MaxLTSP and MinLTSP.
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Contribution We present approximation algorithms and complexity results for MaxLTSP

and MinLTSP. For MaxLTSP in particular, we analyze a 1
2 -approximation algorithm, that

is based on local improvements. We also analyze a significantly simpler greedy algorithm that
achieves 1

3 factor approximation. We show that analysis of both algorithms is tight, by de-
vising non-trivial worst-case examples. With respect to complexity we show that MaxLTSP

is APX-hard, by an appropriate approximation-preserving reduction. This, along with our
approximability results yields that the problem is complete for APX.

The MinLTSP problem is significantly harder; we show that it cannot be approximated
within a factor strictly less than n1−ǫ for every ǫ > 0. When the color frequency r is specified
as an increasing function of the number of vertices n, the problem is not approximable within a
factor less than O(r1−ǫ) for every ǫ > 0. Therefore we turn our attention to the case of constant
color frequency instances, and find that a simple greedy algorithm achieves an approximation
factor of r+Hr

2 , where Hr =
∑r

i=1
1
i

is the r-th harmonic number. We illustrate tightness of
analysis of the greedy algorithm by a far from trivial worst-case example. Finally we prove that
MinLTSP(2) is APX-complete. We conclude with open problems concerning both versions,
minimization and maximization.

The paper is organized as follows. In the next section (2) we discuss related work with respect
to combinatorial optimization problems on colored graphs. Sections 3 and 4 are devoted to
the study of MaxLTSP and MinLTSP respectively. We analyze approximation algorithms for
MaxLTSP in paragraphs 3.1 and 3.2, and settle the problem’s complexity in 3.3. For MinLTSP

we study the problem’s hardness of approximation in 4.1. For constant color frequency we
analyze a greedy approximation algorithm and prove APX-hardness in 4.2. For the latter
greedy algorithm we develop our argument for tightness of its analysis in 4.3. We conclude the
paper by mentioning issues that remain open. A preliminary version of our results appeared
in [5].

2 Related Work

Multi/Mono-Chromatic Cycles and Paths Erdős Nešeťril and Rödl [6] first mentioned
a problem with respect to the conditions that a complete colored graph needs to satisfy, so
as to contain heterochromatic Hamilton cycles, that is cycles that do not contain the same
color twice. It was shown in [6] that constant color frequency r guarantees existence of such
cycles. Hahn and Thomassen [9] identified a similar but improved bound for the existence of
a heterochromatic Hamilton cycle, namely that n ≥ cr3 suffices for some constant c and any
color frequency r. This problem was further studied in [7]; the authors showed that, if the
edges of a complete graph are colored so that every color appears at most r = n

A lnn
times for

some large constant A, then a heterochromatic Hamilton cycle exists. In [2] similar problems
to this are studied; in particular the authors provide sufficient conditions for the existence of
long monochromatic/heterochromatic paths and cycles. Furthermore they prove NP-hardness
of the problem of finding a long path/cycle of a minimum number of colors and provide exact
and heuristic algorithms.

Traveling Salesman The only work that we are aware of dealing with polynomial-time
approximation and hardness of Hamilton tours of few or many colors are the works of [17, 18].
The TSP under categorization problem studied in [17, 18] generalizes several traveling salesman
problems, and is also a weighted generalization of MinLTSP as well; each edge is associated to
a (metric) weight and a color simultaneously, and optimization of the sum of maximum weights
of equi-colored edges of the Hamilton tour is sought for. If at most q colors appear in the
graph, a 2q approximation algorithm is shown. The MinLTSP has also been experimentally
investigated in [19].
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Labeled Spanning Trees and Paths The recent literature on labeled/colored network op-
timization problems includes several interesting results from both perspectives of hardness and
approximation algorithms. The Minimum Label Spanning Tree problem is perhaps the most
well explored [4, 12, 3, 10]. The problem was shown to be NP-complete in [4], even for com-
plete graphs. The authors presented an exact and two heuristic algorithms. In [12] a greedy
approximation algorithm is analyzed, that achieves O(ln n) approximation. Bounded color fre-
quency r for the Minimum Label Spanning tree is considered in [3]; the authors show that
the problem is polynomial-time solvable for r = 2 and APX-complete for any fixed r ≥ 3.
They also show that local search can yield a factor of r

2 approximation. In [10] the authors
investigate weighted generalizations of labeled minimum spanning tree and shortest paths prob-
lems, where each label is also associated with a positive weight and the objective generalizes to
minimization of the weighted sum of different labels used. They analyze approximation algo-
rithms and prove inapproximability results for both problems. In particular, they give a Hn−1

approximation algorithm for the minimum weighted label spanning tree problem and a Hr − 1
6

approximation algorithm for the case of given color frequency r and unweighted labels. For the
minimum weighted label path a factor O(

√
n) approximation algorithm is given. For the case

of fixed color frequency r = O(1) the problem is shown to admit constant factor approximation.
The minimum weighted label path problem is shown not to admit a polylogarithmic factor
approximation unless P = NP.

Labeled Matchings Labeled perfect matching problems were studied in [14, 15]. In [14] it is
shown that both the minimum and maximum label perfect matching problem is APX-complete
even in 2-regular bipartite graphs for any fixed color frequency r ≥ 2. The maximization version
is approximable within a factor of 0.7846. APX-completeness of the minimization version is
shown to persist in the case of complete bipartite graphs for any fixed color frequency r ≥ 6.
In absence of information with respect to color frequency the minimization problem is not
approximable with (1

2 − ǫ) ln n for any ǫ > 0, while a simple greedy algorithm achieves Hr+r
2

approximation for fixed color frequency r. Maffioli et al. present results on a labeled matroid
problem [13]. Complexity of approximation of bottleneck labeled problems is studied in [11]. In
such problems each color is associated to a weight and the target is maximization of the minimum
or minimization of the maximum weight color used. The authors derive hardness results and
approximation algorithms for labeled paths, spanning trees, and perfect matchings.

3 MaxLTSP: Constant factor Approximation

In the following paragraphs we analyze two approximation algorithms for MaxLTSP. Although
the first yields factor 1

2 approximation and is based on local improvements, the second is simpler
and achieves a 1

3 factor. Subsequently we prove APX-hardness of the problem.

3.1 Local Improvements for 1
2
-approximation

The algorithm grows iteratively by local improvements a subset S ⊆ E of edges, that satisfies
the following properties:

1. Each label of L(S) appears at most once in S.

2. S does not induce vertices of degree three or more, or a cycle of length less than n.

We call the set S a labeled valid subset of edges. Finding a labeled valid subset S of maxi-
mum size is clearly equivalent to MaxLTSP: once it has been found, it can be completed into
a feasible Hamilton tour by insertion of appropriately connecting edges, regardless of their la-
bel/color. We define two kinds of improvements that the local improvement algorithm performs
on the current labeled valid subset S:
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• A 1-improvement of S is a labeled valid subset S ∪ {e1}, where e1 /∈ S.

• A 2-improvement of S is a labeled valid subset (S \ {e}) ∪ {e1, e2}, where e ∈ S and
e1, e2 /∈ S \ {e}.

Clearly, a 1- or 2-improvement of S is a labeled valid subset S′ such that |S′| = |S| + 1.
A 1-improvement can be viewed as a particular case of 2-improvement, but we separate the
two cases for ease of presentation. The local improvement algorithm - henceforth referred to as
locim - initializes S = ∅ and performs iteratively either a 1- or a 2-improvement on the current
S, as long as such an improvement exists. This algorithm works clearly in polynomial-time. We
denote by S the solution returned by locim and by S∗ an optimal solution, i.e. a maximum
labeled valid subset of edges. Given e ∈ S, we define ℓ(e) to be the edge of S∗ with the same
label, if such an edge exists. Formally, ℓ : S → S∗ ∪ {⊥} is defined as:

ℓ(e) =

{

⊥ if L(e) /∈ L(S∗)
e∗ ∈ S∗ such that L(e∗) = L(e) otherwise.

For e = [i, j] ∈ S, let N(e) be the edges of S∗ incident to i or j.

N(e) = {[k, l] ∈ S∗ | {k, l} ∩ {i, j} 6= ∅}

Define a partition of N(e) into two subsets, N1(e) and N0(e), as follows: e∗ ∈ N1(e) iff (S \
{e}) ∪ {e∗} is a labeled valid subset, and N0(e) = N(e) \N1(e). In particular, N0(e) contains
the edges e∗ ∈ S∗ of N(e) such that (S \ {e}) ∪ {e∗} is not labeled valid subset. Finally, for
e∗ = [k, l] ∈ S∗, let N−1(e∗) be the edges of S incident to k or l.

N−1(e∗) = {[i, j] ∈ S | {k, l} ∩ {i, j} 6= ∅}

Property 1 Let e = [i, j] ∈ S and e∗ = [i, k] ∈ N1(e) with k 6= j, e∗ 6= ℓ(e). Either S has two
edges incident to i, or S ∪ {e∗} contains a cycle passing through e and e∗.

Property 1 holds at the end of the algorithm, because otherwise S ∪ {e∗} would be a 1-
improvement of S.

Property 2 Let e = [i, j] ∈ S and e∗1, e
∗
2 ∈ N1(e). Either both e∗1 and e∗2 are adjacent to i (or

to j) or there is a cycle in S ∪ {e∗1, e∗2} passing through e∗1, e∗2.

Property 2 holds at the end of the algorithm since otherwise (S \ {e}) ∪ {e∗1, e∗2} would be a
2-improvement of S. In order to prove the 1

2 approximation factor for locim we use charg-
ing/discharging arguments based on the following function g : S → R:

g(e) =

{

|N0(e)|/4 + |N1(e)|/2 + 1− |N−1(ℓ(e))|/4 if ℓ(e) 6=⊥
|N0(e)|/4 + |N1(e)|/2 otherwise

}

For simplicity the proof of the 1/2-approximation is cut into two lemmas.

Lemma 1 ∀e ∈ S, g(e) ≤ 2.

Proof. Let e = [i, j] be an edge of S. We study two cases, when e ∈ S ∩ S∗ and when
e ∈ S \ S∗. If e ∈ S ∩ S∗ then ℓ(e) = e. Observe that |N−1(e)| ≥ |N1(e)|, since otherwise
a 1- or 2-improvement would be possible. Since |N(e)| = |N0(e)| + |N1(e)| ≤ 4 we obtain
g(e) ≤ (|N0(e)|+ |N1(e)|)/4 + 1 ≤ 2.

Suppose now that e ∈ S \S∗. Let us first show that |N1(e)| ≤ 2. By contradiction, suppose
that {e∗1, e∗2, e∗3} ⊆ N1(e) and without loss of generality, assume that e∗1 and e∗2 are incident
to i (see Fig. 1a for an illustration). The pairs e∗1, e

∗
3 and e∗2, e

∗
3 cannot be simultaneously

adjacent since otherwise {e∗1, e∗2, e∗3} would form a triangle. Then e∗1, e
∗
3 is a matching. Property
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e∗1

e∗2 e∗3

v1 v2

i

(a) |N1(e)| ≥ 3

e∗2

v2

i je = (i, j)

l(e) = e∗1

(b) |N−1(ℓ(e))| = 1, ℓ(e) ∈
N1(e)

Figure 1: Cases studied in proof of lemma 1.

2 implies that (S \ {e}) ∪ {e∗1, e∗3} contains a cycle. If Pe is the path containing e in S, this
cycle must be (Pe \ {e})∪{e∗1, e∗3} (see Fig. 1a: e∗1 = [i, v2] and e∗3 = [j, v1]; note that e∗2 6= [i, v1]
because e∗2 ∈ N1(e)). Then (S \ {e})∪{e∗2, e∗3} would be a 2-improvement of S, a contradiction.
Thus |N1(e)| ≤ 2. For proving g(e) ≤ 2 we consider the following cases, and make use of
|N(e)| = |N0(e)| + |N1(e)| ≤ 4.

• If ℓ(e) =⊥ or |N−1(ℓ(e))| ≥ 2, by |N1(e)| ≤ 2 we deduce that g(e) ≤ 2.

• If ℓ(e) 6=⊥ and |N−1(ℓ(e))| = 1, then it must be |N1(e)| ≤ 1. If not, let {e∗1, e∗2} ⊆ N1(e).
We have ℓ(e) 6= e∗1 and ℓ(e) 6= e∗2 since otherwise (S \ {e}) ∪ {e∗1, e∗2} is a 2-improvement
of S, see Fig. 1b for an illustration. In this case, we deduce that (S \ {e}) ∪ {ℓ(e), e∗2}
or (S \ {e}) ∪ {ℓ(e), e∗1} is a 2-improvement of S, a contradiction. Thus |N1(e)| ≤ 1 and
g(e) ≤ 2.

• If ℓ(e) 6=⊥ and |N−1(ℓ(e))| = 0, then |N1(e)| = 0. Hence, g(e) ≤ 2.

�

We apply a discharging method to establish a relationship between g and |S∗|.

Lemma 2
∑

e∈S g(e) ≥ |S∗|.

Proof. Let f : S × S∗ → R be defined as:

f(e, e∗) =































1/4 if e∗ ∈ N0(e) and ℓ(e) 6= e∗

1/2 if e∗ ∈ N1(e) and ℓ(e) 6= e∗

1− |N−1(e∗)|/4 if e∗ /∈ N(e) and ℓ(e) = e∗

5/4− |N−1(e∗)|/4 if e∗ ∈ N0(e) and ℓ(e) = e∗

3/2− |N−1(e∗)|/4 if e∗ ∈ N1(e) and ℓ(e) = e∗

0 otherwise

For all e ∈ S it is
∑

{e∗∈S∗} f(e, e∗) = g(e). Because of the following:

∑

e∈S

g(e) =
∑

e∗∈S∗

∑

e∈S

f(e, e∗)

it is enough to show that
∑

{e∈S} f(e, e∗) ≥ 1 for all e∗ ∈ S∗. For an edge e∗ ∈ S∗, we study
two cases: L(e∗) ∈ L(S) and L(e∗) /∈ L(S). If L(e∗) ∈ L(S) then there is e0 ∈ S such that
ℓ(e0) = e∗. One of the two following cases occurs:

• e∗ ∈ N(e0): it is possible that e0 = e∗ if e∗ ∈ N1(e0). Then:

∑

e∈S

f(e, e∗) ≥ f(e0, e
∗) +

∑

e∈N−1(e∗)\{e0}

f(e, e∗) ≥ 5

4
− |N

−1(e∗)|
4

+
|N−1(e∗)| − 1

4
= 1

5



e2

v1 v2

e1 e2

e∗
e∗

v2

e1

Figure 2: The case where N−1(e∗) = {e1, e2}.

• e∗ /∈ N(e0). Then:

∑

e∈S

f(e, e∗) ≥ f(e0, e
∗) +

∑

e∈N−1(e∗)

f(e, e∗) ≥ 1− |N
−1(e∗)|
4

+
|N−1(e∗)|

4
= 1

Now consider L(e∗) /∈ L(S). Then |N−1(e∗)| ≥ 2, otherwise S∪{e∗} would be an 1-improvement.
We examine the following situations (exactly one of them occurs):

• N−1(e∗) = {e1, e2}: By Property 1 e1 and e2 are adjacent, or there is a cycle passing
through e∗, e1 and e2. In this case e∗ ∈ N1(e1) and e∗ ∈ N1(e2) (see Fig. 2). Thus:

∑

{e∈S}

f(e, e∗) ≥ f(e1, e
∗) + f(e2, e

∗) =
1

2
+

1

2
= 1

• N−1(e∗) = {e1, e2, e3}: Then, e∗ ∈ N1(e1)∪N1(e2) where e1 and e2 are assumed adjacent.
In the worst case e3 is the ending edge of a path in S containing both e1 and e2. Assuming
that e2 is between e1 and e3 in this path we obtain e∗ ∈ N1(e2). In conclusion, we deduce:

∑

{e∈S}

f(e, e∗) ≥
3

∑

i=1

f(ei, e
∗) ≥ 1

2
+ 2

1

4
= 1

• N−1(e∗) = {e1, e2, e3, e4}. Then:

∑

{e∈S}

f(e, e∗) ≥
4

∑

i=1

f(ei, e
∗) ≥ 4

1

4
= 1

�

Theorem 1 locim is a 1/2-approximation algorithm and this ratio is tight.

Proof. By lemmas 1 and 2, we have 2|S| ≥∑

e∈S g(e) ≥ |S∗|. �

Tightness of Analysis of locim We describe a parameterized instance which shows that
the analysis of locim is assymptotically tight. Given an integer l ≥ 2, the complete graph is
composed of 6l−1 vertices {v0, . . . , v2l}∪{v′1, . . . , v′2l−1}∪{v′′1 , . . . , v′′2l−1}. The edges are labeled
as follows (see Fig. 3 for an illustration).

• For i = 1, . . . , 2l − 2: L([v′i, vi]) = ci+2 if i is even, L([v′i, vi]) = c∗i+2 if i is odd.

• For i = 1, . . . , 2l − 2: L([v′′i , vi]) = ci+3 if i is even, L([v′′i , vi]) = c∗i+3 if i is odd.

• For i = 0, . . . , 2l − 1: L([vi, vi+1]) = ci+1.
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′
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2l−3 v
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2l−2 v

′
2l−1

Figure 3: A critical instance for locim.

• L([v′2l−1, v2l−1]) = c1, L([v′′2l−1, v2l−1]) = c2, and the other edges have label c1.

Let S = {[vi, vi+1] | i = 0, . . . , 2l − 1} and S∗ = {[v′i, vi] | i = 1, . . . , 2l − 1} ∪ {[v′′i , vi] | i =
1, . . . , 2l − 1}. We first show that S can be returned by locim.

Since adding an edge with label in {c∗1, . . . , c∗2l} would induce a node with degree 3, no 1-
improvement of S is possible. A 2-improvement consists in removing an edge of S and insert
two edges with new labels. Suppose that we remove [vi, vi+1] for some i ∈ {1, . . . , 2l− 1}. Since
L([vi, vi+1]) = ci, we must add two edges with labels in NEW = {c∗1, . . . , c∗2l} ∪ {ci}. If i is
even (resp. odd) then two edges having their label in NEW are adjacent to vi+1 (resp. vi)
whereas the label of the edges adjacent to vi (resp. vi+1) are already used in S. Thus, no
2-improvement is possible if we remove [vi, vi+1] where i ∈ {1, . . . , 2l − 1}. If we remove [v0, v1]
(resp. [v2l−1, v2l]) then the label of every edge adjacent to v0 and v1 (resp. v2l−1 and v2l) are
already used in S. Thus, no 2-improvement is possible if we remove one of these edges.

As a consequence, no local improvement is possible and locim can return S. Since |S| =
2l +1 and |S∗| = 4l−2, the approximation ratio tends towards 1/2 when l tends towards +∞.

3.2 Greedy 1
3
-approximation

In this paragraph we analyze a greedy heuristic that is simpler and faster than algorithm locim,
with only moderately worse approximation performance. We refer to it as Labeled Neighbor (ln).
Starting from an arbitrary vertex x = v0, ln grows a prospective hamiltonian path by visiting
a neighbor y of x such that edge [x, y] is labeled with a so far unused color, if possible. If no
such edge is incident to x, ln selects y arbitrarily. Once a hamiltonian path is constructed,
its endpoints are linked to yield a tour (see Algorithm 1 for a formal description). When the
partial solution is a path of length ℓ, growing it requires n− ℓ− 1 operations. Thus ln runs in
time O(n2).

Theorem 2 ln is 1/3-approximate and the result is asymptotically tight.

Proof. Let T be the tour returned byln and T ∗ be an optimum tour. Let C and C∗ denote
the set of colors used by T and T ∗ respectively. For every vertex x we define succ(x) to be the
vertex visited by ln after x. We choose a direction for T ∗ and define accordingly succ∗(x). By
succi and succi

∗ we denote composition of succ/succ∗ i times. By construction, T will consist
of:

T = {[v0, succ(v0)], . . . , [succn−2(v0), succn−1(v0)], [succn−1(v0), succn(v0)]}

We assume that v0 = succ0(v0) and v0 = succn(v0). Similarly, the following n edges are
contained in T ∗:

T ∗ = {[v0, succ∗(v0)], . . . , [succn−2
∗ (v0), succn−1

∗ (v0)], [succn−1
∗ (v0), succn

∗ (v0)]}

7



Algorithm 1: ln

Input: A graph G = (V, E) and a labelling function L
Output: A tour T
choose v0 ∈ V arbitrarily;
set p← v0; T ← ∅; K ← ∅, V ISITED← {v0} ;
while V ISITED 6= V do

if ∃v ∈ V \ V ISITED such that L([p, v]) /∈ K then

K ← K ∪ {L([p, v])} ;
else

choose v ∈ V \ V ISITED arbitrarily ;
end

T ← T ∪ {[p, v]}; V ISITED← V ISITED ∪ {v}; p← v;
end

return T ∪ {[p, v0]} ;

For each c ∈ C define d(c) = min{i | L([succi(v0), succi+1(v0)]) = c}, to be the position
of the current vertex when ln “discovered” color c for the first time. Accordingly for c ∈ C∗

define d∗(c) = min{i | L([succi
∗(v0), succi+1

∗ (v0)]) = c}. Let V ′ = {succd(c)(v0) | c ∈ C} and
V ∗ = {succd∗(c)(v0) | c ∈ C∗}. By definition, we have |C| = |V ′| (resp., |C∗| = |V ∗|) since each
color in C (resp., C∗) has its corresponding vertex.

Let V ∗
1 = {v ∈ V ∗\V ′ | L(v, succ∗(v)) ∈ C} and V ∗

2 = {v ∈ V ∗\V ′ | L(v, succ∗(v)) /∈
C}. We have |V ∗

1 | ≤ |V ′| because |V ∗
1 | ≤ |C| = |V ′|. We also have |V ∗

2 | ≤ |V ′| because
v ∈ V ∗

2 ⇒ succ∗(v) ∈ V ′. Indeed, if the algorithm inserts v ∈ V ∗
2 before succ∗(v) without taking

the edge [v, succ∗(v)] (because L([v, succ∗(v)]) ∈ C∗ \ C), this means that color L([v, succ(v)])
was new when [v, succ(v)] was added. Then, v ∈ V ′ and v /∈ V ∗

2 , contradiction. If the al-
gorithm inserts v ∈ V ∗

2 after succ∗(v) without taking the edge [v, succ∗(v)], this means that
color L([succ∗(v), succ(succ∗(v))]) was new when [succ∗(v), succ(succ∗(v))] was added. Then
succ∗(v) ∈ V ′. By adding inequalities |V ∗

1 | ≤ |V ′|, |V ∗
2 | ≤ |V ′| and |V ∗ ∩ V ′| ≤ |V ′|, we obtain:

|V ∗
1 |+ |V ∗

2 |+ |V ∗ ∩ V ′| ≤ 3|V ′| (1)

Since V ∗
1 , V ∗

2 and V ∗ ∩ V ′ form a partition of V ∗, (1) becomes |V ∗| ≤ 3|V ′|. We replace |V ∗|
by |C∗| (resp., |V ′| by |C|) and the result follows. �

Tightness of Analysis We turn to the (asymptotic) tightness of the analysis by considering
a family of instances depending on a parameter i (an integer). For a fixed i, the graph has 3i
vertices {v1, . . . , vi} ∪ {v′1, . . . , v′i} ∪ {v′′1 , . . . , v′′i } and uses 3i labels {c1, . . . , ci} ∪ {c′1, . . . , c′i} ∪
{c′′1 , . . . , c′′i }. For i = 2, . . . , i we set L([vi−1, vi]) = ci. For i = 1, . . . , i we set L([vi, v

′
i]) = c′i

and L([vi, v
′′
i ]) = c′′i . Every edge whose label is not defined above has label c1. See Figure 4

for an illustration of the graph. The tour T = v1 v2 v3 . . . vi v
′
i v′i−1v

′
i−2 . . . v′1 v′′i v′′i−1 . . . v′′1 uses

i+2 labels {c1, c2, . . . , ci}∪{c′′1 , c′i}. It is not difficult to see that T can be returned by ln. The
(optimal) tour T ∗ = v′1 v1 v′′1 v′2 v2 v′′2 . . . v′i vi v′′i uses all 3i colors {c1, c2, . . . , ci}∪{c′1, c′2, . . . , c′i}∪
{c′′1 , c′′2 , . . . , c′′i }. Because (i + 2)/(3i) tends to 1/3 as i tends to ∞, the result follows.

3.3 Complexity of Approximation

The previous paragraphs established approximability of MaxLTSP within constant factor. We
prove additionally the following result, which entirely establishes the complexity of the problem.

Theorem 3 MaxLTSP is APX-hard.

Proof. We carry out an L-reduction from the maximum hamiltonian path problem on graphs
with distances 1 and 2 (MaxHPP1,2), which involves finding the “longest” hamiltonian path of
the complete input graph with edge distances 1 and 2, and is known to be APX-complete.
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Figure 4: Asymptotically tight instance for MaxLTSP. Undrawn edges have label c1.

Given an instance I = (G, d) with d : E(G) → {1, 2} on n vertices of MaxHPP1,2, we
construct an instance I ′ = (G′,L) of MaxLTSP as follows. G′ is a complete graph with vertex
set V ′ = V (G) ∪ {v0} where v0 is a new node. The labeling function is defined as L(e) = ce if
e ∈ E(G) and d(e) = 2, and L(e) = c0 otherwise.

Given a feasible solution (hamiltonian path) P to I with total length d(P ) =
∑

e∈P d(e), we
can derive a tour T ′ for I ′ using exactly d(P ) − n + 2 labels, just by linking both endpoints of
P to v0. Thus:

|L(T ′)| = d(P )− n + 2 (2)

Conversely, given a feasible solution (hamiltonian tour) T ′ to I ′, using |L(T ′)| labels, we can
derive a hamiltonian path for I of length |L(T ′)| + n − 2 by simply removing the two edges
incident to v0. Hence:

d(P ) = |L(T ′)|+ n− 2 (3)

We denote by OPT the cost of an optimal solution to MaxHPP1,2 and by OPT ′ the number
of labels used by an optimal solution to MaxLTSP. It follows from equalities (2) and (3) that
OPT − d(P ) = OPT ′ − |L(T ′)|.

Since every edge incident to v0 in G′ has label c0, we know that the optimal tour like any
other tour uses at most n labels. Hence, OPT ′ ≤ n. Since every edge of G has weight 1 or 2,
we deduce that the optimum solution to I, like any other hamiltonian cycle, has total weight
at least n− 1. Hence, OPT ≥ n− 1. In conclusion, OPT ′ ≤ 3

2OPT for n ≥ 3 which concludes
the proof. �

Corrolary 1 MaxLTSP is APX-complete.

4 MinLTSP: Hardness and Approximation

We show that the MinLTSP is generally inapproximable, unless P = NP: MinLTSP(r) where
r is any increasing function of n is not r1−ǫ approximable for any ǫ > 0. We focus subsequently
on fixed color frequency r, and show that a simple greedy algorithm exhibits a tight non-trivial
approximation ratio equal to (r + Hr)/2, where Hr is the harmonic number of order r. Finally
we consider the simple case of r = 2, for which the algorithm’s approximation ratio becomes 7

4 ,
and show that MinLTSP(2) is APX-hard.

4.1 Hardness of MinLTSP

Without restrictions on color frequency, any algorithm for MinLTSP will trivially achieve an
approximation factor of n. We show that this ratio is optimal, unless P=NP, by reduction from
the hamiltonian s− t-path problem which is defined as follows: given a graph G = (V,E) with
two specified vertices s, t ∈ V , decide whether G has a hamiltonian path from s to t. See [8]
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(problem [GT39]) for this problem’s NP-completeness. The restriction of the hamiltonian
s− t-path problem on graphs where vertices s, t are of degree 1 remains NP-complete. In the
following let OPT (·) be the optimum solution value to some problem instance.

Theorem 4 For all ε > 0, MinLTSP is not n1−ε-approximable unless P=NP, where n is the
number of vertices.

Proof. Let ε > 0 and let I = (G, s, t) be an instance of the hamiltonian s − t-path problem
on a graph G = (V,E) with two specified vertices s, t ∈ V having degree 1 in G. Let p =
⌈1

ε
⌉ − 1. We construct the following instance I ′ = (G′,L) of MinLTSP: take a graph G′

consisting of np copies of G, where the i-th copy is denoted by Gi = (Vi, Ei) and si, ti are the
corresponding copies of vertices s, t. Set L(e) = c0 for every e ∈ ∪np

i=1Ei, L([ti, si+1]) = c0 for
all i = 1, . . . , np − 1, and L([tnp , s1]) = c0. Complete this graph by taking a new color per
remaining edge. This construction can obviously be done in polynomial time, and the resulting
graph has np+1 vertices.

If G has a hamiltonian s−t-path, then OPT (I ′) = 1. Otherwise, G has no hamiltonian path
for any pair of vertices, since vertices s, t ∈ V have a degree 1 in G. Hence OPT (I ′) ≥ np + 1,
because for each copy Gi either the restriction of an optimal tour T ∗ (with value OPT (I ′)) in
copy Gi is a hamiltonian path, and T ∗ uses a new color (distinct of c0) or T ∗ uses at least two new
colors linking Gi to the other copies. Since |V (Knp+1)| = np+1, we deduce that it is NP-complete

to distinguish between OPT (I ′) = 1 and OPT (I ′) ≥ |V (Knp+1)|1−
1

p+1 + 1 > |V (Knp+1)|1−ε. �

The hamiltonian s − t-path problem is also NP-complete in graphs of maximum degree 3
(problem [GT39] in [8]). Applying the reduction given in Theorem 4 to this restriction, we
deduce that the color frequency r of I ′ is upper bounded by (3n+2

2 )np = O(np+1). Thus, when
r increases with n we obtain:

Corrolary 2 There exists constant c > 0 such that for all ε > 0, MinLTSP is not c r1−ε-
approximable where r is the color frequency, unless P=NP.

4.2 The Case of Fixed Color Frequency

We describe and analyze a greedy approximation algorithm (referred to as Greedy Tour - algo-
rithm 2) for the MinLTSP(r), for fixed r = O(1). In the description of the algorithm Greedy
Tour we use the notion of a valid subset of edges which do not induce vertices of degree three or
more and also do not induce a cycle of length less than n. The algorithm augments iteratively
a valid subset of edges by a chosen subset E′, until a feasible tour of the input graph is formed.
It initializes the set of colors K and iteratively identifies the color that offers the largest valid
set of edges with respect to the current (partial) tour T ; it adds this set to the tour and elimi-
nates the selected color from the current set of colors. We remind the reader that validity of an
edge set excludes vertices of induced degree more than 2 and cycles of length less than n. For
constant r ≥ 1 Greedy Tour is of polynomially bounded complexity proportional to O(nr+1).
We introduce some definitions and notations that we use in the analysis of Greedy Tour. Let
T ∗ denote an optimum tour and T be a tour produced by Greedy Tour.

Definition 1 (Blocks) For j = 1, . . . , r, the j-block with respect to the execution of Greedy
Tour is the subset of iterations during which it was |E′| ≥ j. Let Tj be the subset of edges selected
by Greedy Tour during the j-block and Vj = V (Tj) be the set of vertices that are endpoints of
edges in Tj .

Definition 2 (Color Degree) For a color c ∈ L(T ∗) define its color degree fj(c) in Vj to be
fj(c) =

∑

v∈Vj
dGc

(v), where Gc = (V,L−1(c) ∩ T ∗) and dGc
(v) is the degree of v in graph Gc.
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Algorithm 2: Greedy Tour

Let T ← ∅;
Let K ← {c1, . . . , cq};
while T is not a tour do

Consider cj ∈ K maximizing |E′| such that E′ ⊆ L−1(cj) and T ∪ E′ is valid;
T ← T ∪E′;
K ← K \ {cj};

end
return T ;

c1

x

y

c2

c1

z

c1
c2

c2

Figure 5: Graphical illustration of definitions: if c1, c2 ∈ Lj(T
∗), apart from vertices x, y, z, the

remaining endpoints of paths are black terminals. Inner vertices are white terminals (drawn
white), while vertices outside the paths are optional vertices.

For j ∈ {2, . . . , r} let Lj(T
∗) be the set of colors that appear at least j times in T ∗: Lj(T

∗) =
{c ∈ L(T ∗) : |L−1(c)∩T ∗| ≥ j}. In general Tj contains k ≥ 0 paths (in case k = 0, Tj is a tour).
We consider p vertices {v1, . . . , vp} ⊆ Vj of degree 1 in Tj (i.e. they are endpoints of paths),
such that each such vertex is adjacent to two edges of T ∗ that have colors in Lj(T

∗). We refer
to vertices of {v1, . . . vp} as black terminals. We refer to vertices in Vj \ {v1, . . . , vp} as white
terminals and to vertices in V \ Vj as optional (see Fig. 5 for an illustration). We also assume
the existence of q ≥ 0 path endpoints of Tj adjacent to one edge of T ∗ with color in Lj(T

∗).
Clearly p + q ≤ 2k.

We consider a partition of Lj(T
∗): L∗j,in and L∗j,out. A color c ∈ Lj(T

∗) belongs in L∗j,out if
there is an edge with this color incident to a black terminal of Vj. Then L∗j,in = Lj(T

∗) \L∗j,out.

Lemma 3 (Color Degree Lemma) For any j = 2, . . . , r the following hold:

(i) If c ∈ L∗j,in, then fj(c) ≥ |L−1(c) ∩ T ∗|+ 1− j.

(ii)
∑

c∈L∗

j,out

fj(c) ≥
∑

c∈L∗

j,out

(|L−1(c) ∩ T ∗|+ 1− j) + p.

Proof. (i): Except of the |L−1(c) ∩ T ∗| ≥ j edges of color c in T ∗, at most j − 1 valid
ones (with respect to Tj) may be missing from Tj (and possibly collected in Tj−1): if there are
more than j − 1, then they should have been collected by Greedy Tour in Tj. Then at least
|L−1(c) ∩ T ∗| − (j − 1) edges of color c must have one endpoint in Vj , and the result follows.

(ii): First we note an important fact for each color c ∈ L∗j,out: exactly one of the two edges
incident to a black terminal (suppose one with color c) belongs to the set of at most j − 1 valid
c-colored edges, that were not collected in Tj. Using the same argument as in statement (i),
we have that at least |L−1(c) ∩ T ∗| − (j − 1) c-colored edges that are incident to at least one
vertex of Vj .

The fact that we mentioned can help us tighten this bound even further, by counting to
the color degree the contribution of one edge belonging to the set of at most j − 1 valid ones:
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an edge incident to a black terminal is also incident to either an optional vertex, or a terminal
(black or white). Take one black terminal vi of the two edges [x, vi], [vi, y] of T ∗ incident to it,
and consider the cases:

• If x is a white or black terminal: then the color degree must be increased by one, because
this edge can be counted twice in the color degree. The same fact also holds for y.

• If x and y are optional vertices: then the color degree must be increased by at least one,
because each edge set {[x, vi]} ∪ Tj or {[vi, y]} ∪ Tj is valid (and was subtracted from
|L−1(c)∩T ∗| with the at most j−1 valid ones). However, if the both edges have the same
color, the color degree only increases by one unit since the set {[x, vi], [vi, y]} ∪ Tj is not
valid.

Therefore we have an increase of one in the color degree of some colors in L∗j,out and, in fact, of
p of them at least. Thus statement (ii) follows. �

Let y∗i and yi be the number of colors appearing exactly i times in T ∗ and T respectively. Then
we show that:

Lemma 4 For j = 2, . . . , r:
r

∑

i=j

(i + 1− j)y∗i ≤
r

∑

i=j

2i yi.

Proof. We prove the inequality by upper and lower bounding F ∗
j =

∑

c∈Lj(T ∗) fj(c). A lower
bound stems from Lemma 3:

F ∗
j ≥

r
∑

i=j

(i + 1− j)y∗i + p (4)

Assume now that Tj consists of k disjoint paths. Then |Vj | =
∑r

i=j iyi+k and the number of
internal vertices on all k paths of Tj is:

∑r
i=j iyi− k. Each internal vertex of Vj may contribute

at most twice to F ∗
j . Furthermore, each black terminal of Tj , i.e. each vertex of {v1, . . . , vp},

also contributes twice by definition. Assume that there are q endpoints of paths in Tj , each
contributing once to F ∗

j . Clearly p + q ≤ 2k. Then:

F ∗
j ≤ 2(

r
∑

i=j

iyi − k) + 2p + q ≤
r

∑

i=j

i2yi + p (5)

The result follows by combination of (4) and (5). �

We prove the approximation ratio of Greedy Tour by using Lemma 4:

Theorem 5 For any fixed r ≥ 1, Greedy Tour yields a r+Hr

2 −approximation for MinLTSP(r)

and the analysis is tight.

Proof. By summing up inequality of Lemma 4 with coefficient 1
2(j−1)j for j = 2, . . . , r, we

obtain:

r
∑

j=2

r
∑

i=j

i + 1− j

2j(j − 1)
y∗i ≤

r
∑

j=2

r
∑

i=j

i

j(j − 1)
yi (6)

For the right-hand part of inequality (6) we have:
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r
∑

j=2

r
∑

i=j

i

j(j − 1)
yi =

r
∑

i=2

i yi

i
∑

j=2

1

j(j − 1)
=

r
∑

i=2

i yi

i
∑

j=2

(
1

j − 1
− 1

j
)

=
r

∑

i=2

i yi(1−
1

i
) =

r
∑

i=2

(i− 1)yi

For the left-hand part of inequality (6) we obtain:

r
∑

j=2

r
∑

i=j

i + 1− j

2j(j − 1)
y∗i =

r
∑

i=2

y∗i
2

i
∑

j=2

i + 1− j

j(j − 1)
(7)

But we also have:

i
∑

j=2

i + 1− j

j(j − 1)
=

i
∑

j=2

(
i− (j − 1)

j − 1
− i− j

j
)− (Hi − 1) = i−Hi (8)

where Hi =
∑i

k=1
1
k
. Therefore relation (7) becomes by (8):

r
∑

j=2

r
∑

i=j

i + 1− j

2j(j − 1)
y∗i =

r
∑

i=2

i−Hi

2
y∗i (9)

By plugging the right-hand equality and (9) into inequality (6), we obtain:

r
∑

i=2

i−Hi

2
y∗i ≤

r
∑

i=2

(i− 1)yi (10)

Denote by APX and OPT the number of colors used by Greedy Tour and by the optimum
solution respectively. Then:

OPT =
r

∑

i=1

y∗i , APX =
r

∑

i=1

yi, and
r

∑

i=1

iyi =
r

∑

i=1

iy∗i = n (11)

where n = |T | = |T ∗| is the number of vertices of the graph. By (11) we can write APX =
n−∑r

i=2(i− 1)yi, and using inequality (10), we deduce:

APX ≤
r

∑

i=1

iy∗i −
r

∑

i=2

i−Hi

2
y∗i =

r
∑

i=1

i + Hi

2
y∗i

Finally, since i + Hi ≤ r + Hr when i ≤ r, we obtain:

APX ≤ r + Hr

2

r
∑

i=1

y∗i =
r + Hr

2
OPT

Fig. 6 illustrates tightness for r = 2. Only colors appearing twice are drawn. The optimal tour
uses colors c1 to c4, whereas Greedy Tour takes c5 and completes the tour with 6 new colors
appearing once. This yields factor 7

4 = 2+H2

2 approximation. A detailed example for r ≥ 3 is
given in the next paragraph. �

We show next that MinLTSP(2) proves as hard to approximate as the min-cost hamiltonian
path on a complete graph with edge costs 1 and 2 (MinHPP1,2 - [ND22] in [8]).

Theorem 6 A ρ-approximation for MinLTSP(2) can be polynomially transformed into a (ρ +
ε)-approximation for MinHPP1,2, for all ε > 0.
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c4 c4

c5

c5

Figure 6: Only colors appearing twice are shown. The rest appear once.

Proof. Let I be an instance of MinHPP1,2, with V (Kn) = {v1, . . . , vn}, and d : E(Kn) →
{1, 2}. We construct an instance I ′ of MinLTSP(2) on K2n as follows. The vertex set of K2n

is V (K2n) = {v1, . . . , vn} ∪ {v′1, . . . , v′n}. For every edge e = [x, y] ∈ E(Kn) with d(x, y) = 1
we define two edges [x, y], [x′, y′] ∈ E(K2n) with the same color L([x, y]) = L([x′, y′]) = ce. We
complete the coloring of K2n by adding a new color for each of the rest of the edges K2n.

Let P ∗ be an optimum hamiltonian path (with endpoints s and t) of Kn with cost OPT (I).
Build a tour T ′ of K2n by taking P ∗, the edges [x, x′], [y, y′] and a copy of P ∗ on vertices
{v′1, . . . , v′n}. Then |L(T ′)| = OPT (I) + 2, and:

OPT (I ′) ≤ OPT (I) + 2 (12)

Now let T ′ be a feasible solution of I ′. Assume that n2 colors appear twice in T ′ (thus 2n− 2n2

colors appear once in T ′). In Kn, the set of edges with these colors corresponds to a collection
of disjoint paths P1, . . . , Pk with edges of distance 1. Then, by adding exactly n− 1− n2 edges
we obtain a hamiltonian path P of Kn with cost at most:

d(P ) ≤ |L(T ′)| − 2 (13)

where d(P ) =
∑

e∈P d(e). Using inequalities (12) and (13), we deduce OPT (I ′) = OPT (I) + 2.
Now, if T is a ρ-approximation for MinLTSP(2), we deduce d(P ) ≤ ρOPT (I) + 2(ρ − 1) ≤
(ρ + ε)OPT (I) when n is large enough. �

Since the traveling salesman problem with distances 1 and 2 (MinTSP1,2) is APX-hard [16]
(then, MinHPP1,2 is also APX-hard), we conclude by Theorem 6 that MinLTSP(2) is APX-
hard. Moreover, MinLTSP(2) belongs to APX because any feasible tour is 2-approximate.

Corrolary 3 MinLTSP(2) is APX-complete.

4.3 Tightness of Analysis of Greedy Tour

We consider the case of fixed r ≥ 3. Take a complete graph of n = 2r(r!) vertices where
r! = 1 · 2 · . . . · r. We define the following subsets of colors appearing in the graph:

1. Colors appearing r times: there are 2(r!) + (r − 1)! such colors, each denoted by c∗i ,
i = 1, . . . , 2(r!) and cr,i, i = 1, . . . , (r − 1)!.

2. Colors appearing j times: for j = 2, . . . , r − 1 and i = 1, . . . , r!
j

let color cj,i appear j

times (there are r!
j

colors appearing j times).

3. Colors appearing once: there are 2(r!)2 − 3(r!) − (r − 1)(r!) such colors.

We will exhibit an instance of MinLTSP(r) for fixed r ≥ 3 in which the optimal tour T ∗ uses
colors c∗i for i = 1, . . . , 2(r!) (i.e. exactly 2(r!) colors), and the tour constructed by Greedy Tour
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algorithm uses colors cj,i for j = 2, . . . , r and i = 1, . . . , r!
j

and exactly 2r(r!)− (r− 1)(r!) colors

appearing once. Then the Greedy Tour solution value will be: 2r(r!)− (r − 1)(r!) +
∑r

j=2
r!
j

=

2(r!)(r − r−1
2 + Hr−1

2 ) = 2(r!) r+Hr

2 , i.e. exactly (r + Hr)/2 times the optimum value.
Let us explain how Greedy Tour constructs a feasible tour T , by concurrently deciding how

edges of the considered colors are placed on the graph. In the beginning, during the r-block,
Greedy Tour includes in Tr edges of colors cr,i, i = 1, . . . , (r − 1)! (each of these colors appears
exactly r times in the graph). Edges of these colors ((r − 1)!× r = r! in total) are arranged in
such a way, that r!− 1 paths are formed: r!− 2 paths consisting of a single edge each, and one
path consisting of 2 edges. We place edges of colors c∗i , i = 3, . . . , 2(r!), in such a way that they
are incident to vertices of these r! − 1 paths. More precisely, for each endpoint of the r! − 1
paths two edges with distinct colors c∗i , c∗j are incident to the endpoint. One edge of color c∗1
and one of color c∗2 are incident to the middle vertex of the length-2 path. Observe that by this
construction we cannot take r times any color c∗i in the r-block.

During the (r − 1)-block we assume that Greedy Tour takes valid edges of colors cr−1,i,
i = 1, . . . , r!

r−1 , each color appearing r − 1 times, so that in Tr−1 the r! − 1 paths of Tr are
connected into one long path with extreme edges of colors cr−1,i. See Fig. 7 and 9 for an
illustration.

Tr−1

· · ·
Tr

· · ·

Figure 7: Construction of the r-block Tr and the (r − 1)-block Tr−1.

Finally we let two edges of color c∗1 be incident to one endpoint of the path Tr−1 and two
edges of color c∗2 be incident to the other endpoint of Tr−1. Now notice that none of the colors
c∗i can be added r−1 times to Tr−1. See Fig. 8 for an illustration of how edges of T ∗ are incident
to Tr and Tr−1.

Tr−1

· · ·
c∗4

c∗4c∗3

c∗3 c∗5

c∗5

c∗1 c∗2 c∗6

c∗6

c∗7

c∗7

c∗8

c∗8

c∗2(r!)

c∗2(r!)

c∗2(r!)−1

c∗2(r!)−1

· · ·
c∗4

c∗4c∗3

c∗3 c∗5

c∗5

c∗1 c∗2 c∗6

c∗6

c∗7

c∗7

c∗8

c∗8

c∗2(r!)

c∗2(r!)

c∗2(r!)−1

c∗2(r!)−1

c∗1

c∗1

c∗2

c∗2

Tr

Figure 8: The colors of T ∗ adjacent to Tr and Tr−1.

Example r = 3. At this point we can illustrate the value of our construction by considering
the case of r = 3: the path of T2 is going to be completed into a tour by insertion of a batch
of edges of distinct colors appearing only once. A tour consists of 2 × 3 × 3! = 36 edges, and
Greedy Tour has already picked (up to construction of T2) 12 = 2× 3! edges for colors c3,i (for
i = 1, 2, 3) and c2,i (for i = 1, 2) and needs to include exactly 24 more edges of distinct colors,
while the optimum tour will contain 2×(3!) = 12 colors. Thus it will be |L(T )| = 24+2+3 = 29,
whereas |L(T ∗)| = 12 and the ratio is 29/12 = (3 + H3)/2.

Continuing, during by completion of the (r − 2)-block Greedy Tour has added iteratively
edges of colors cr−2,i by maintaining a path with Tr−1 in such a way that each color added
forms a path of length r − 2 which is linked to an endpoint (by alternating the endpoints) of
the path constructed previously. Thus, Tr−2 is a path and Tr−2 \ Tr−1 forms two paths, each
using exactly r!

2(r−2) colors of type cr−2,i. To each internal vertex of the two paths of Tr−2 \Tr−1
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Figure 9: Construction of T ∗ from Tr and Tr−1.

the colors among {c∗5, . . . , c∗2(r!)} are added in such a way that each of these 2(r!)− 4 colors are

counted once in total. It is possible because |Tr−2 \ Tr−1| = r! and there are 2 paths (so, r!− 2
internal vertices). Finally, color c∗3 is added twice to one endpoint of path Tr−2 whereas color
c∗4 is added twice to the other endpoint. Like previously, none of the colors of T ∗ can be added
r − 2 times.

In general, for each j-block, j = 2, . . . , r− 3, Greedy Tour proceeds alike. The set Tj \ Tj+1

consists of 2 paths with |Tj \Tj+1| = r! edges in total. Edges of T ∗ with colors in {c∗1, . . . , c∗2(r!)}\
{c∗2r−2j−3, . . . , c

∗
2r−2j+1} are made incident to internal vertices of the two paths Tj \Tj+1, so that

one edge per color is incident to Tj \Tj+1. Two edges of color c∗2r−2j are incident to one endpoint
of the path Tj and two edges of color c∗2r−2j+1 are incident to its other endpoint. Notice that
this is possible because r ≥ 3. Furthermore, by this pattern, for each path Tj , j = 2, . . . , r−3 no
color c∗i can be included j times. This way, Greedy Tour will have used, up to completion of the
2-block, (r − 1)(r!) edges for colors cj,i with j = 2, . . . , r! and must use 2r(r!)− (r− 1)(r!) new
edges each having a distinct new color to complete the tour. Thus the value of the constructed
tour will be |L(T )| = 2r(r!)− (r − 1)(r!) +

∑r
j=2

r!
j

= r(r!) + (r!)Hr as indicated previously.
In concluding our construction let us describe the structure of the optimal tour T ∗. Edges of

T ∗ incident to T2 can be “patched” in pairs, in order to form a unique path of length 2(r−1)(r!)+
2 (see Fig. 9 for an illustration of this construction from Tr and Tr−1). This path is completed
into a tour by addition of 2(r!) − 2 edges, one for each color in {c∗1, . . . , c∗2(r!)} \ {c∗2r−3, c

∗
2r−4}

(this is possible because r ≥ 3). Then, each color in {c∗1, . . . , c∗2(r!)} appears r times in T ∗ and

we have |L(T ∗)| = 2(r!).

5 Open Questions

Is there a better approximation algorithm for MinLTSP(r), when r is a fixed small constant
(e.g. r = 2)? For MaxLTSP, using k−improvements for fixed k ≥ 3 could yield better
performance but analysis appears quite non-trivial. It is also interesting to study MaxLTSP(r)

with bounded color frequency r.
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[5] B. Couëtoux, L. Gourvès, J. Monnot, and O. Telelis. On Labeled Traveling Salesman
Problems. In Proceedings of the International Symposium on Algorithms and Computation
(ISAAC), Springer LNCS 5369, pages 776–787, 2008.
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