Synchronism vs asynchronism in Boolean automata networks

Sylvain Sené

MOVE seminar
18th January 2018
Outline

1. Introduction
2. Main definitions
3. Deterministic periodic updates
4. Non-deterministic updates
1 Introduction

2 Main definitions

3 Deterministic periodic updates

4 Non-deterministic updates
Introduction

BANs, non formally

- A discrete computational model of interaction systems.

- From a theoretical standpoint:
 - Simple setting and representation.
 - Able to capture dynamically a lot of behavioural intricacies and heterogeneities.

- From a more practical/applied standpoint:
 - Originate from neural theoretical modelling (McCulloch, Pitts, 1943).
 - Developed in the context of genetics (Kauffman, 1969; Thomas, 1973).
 - The most used mathematical objects for genetic regulation qualitative modelling.
The causality of events along time depends on the relation between automata updates and "time" but...
- How to define this relation?
- How to study the causal perturbations due to changes of this relation?

Mathematical pertinence:
- Neat problematic at the frontier of dynamical systems, combinatorics, complexity and computability.

Biological pertinence:
- Genetic expression and chromatin dynamics.

A remaining question: does model synchronicity stand for modelled system simultaneity?
Main definitions

1. Introduction

2. Main definitions

3. Deterministic periodic updates

4. Non-deterministic updates
Main definitions

BANs and interaction graphs

A Boolean automata network (BAN) of size n is a function

$$f : \mathbb{B}^n \rightarrow \mathbb{B}^n$$

$$x = (x_0, x_1, \ldots, x_{n-1}) \mapsto f(x) = (f_0(x), f_1(x), \ldots, f_{n-1}(x))$$

where $\forall i \in \{0, \ldots, n-1\}$, $x_i \in \mathbb{B}$ is the state of automaton i, and \mathbb{B}^n is the set of configurations.

The interaction graph of f is the signed digraph $G(f) : (V, E \subseteq V \times V)$ where:

- $V = \{0, \ldots, n-1\}$;
- $(i,j) \in E$ is positive if $\exists x \in \mathbb{B}^n$ s.t.
 $$f_j(x_0, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n-1}) = 0 \text{ and } f_j(x_0, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n-1}) = 1;$$
- $(i,j) \in E$ is negative if $\exists x \in \mathbb{B}^n$ s.t.
 $$f_j(x_0, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n-1}) = 1 \text{ and } f_j(x_0, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n-1}) = 0.$$
Main definitions
BANs and interaction graphs

A *Boolean automata network* (BAN) of size n is a function

$$f : \mathbb{B}^n \rightarrow \mathbb{B}^n$$

$$x = (x_0, x_1, \ldots, x_{n-1}) \mapsto f(x) = (f_0(x), f_1(x), \ldots, f_{n-1}(x))$$

where $\forall i \in \{0, \ldots, n-1\}$, $x_i \in \mathbb{B}$ is the **state** of automaton i, and \mathbb{B}^n is the set of configurations.

$$f : \mathbb{B}^4 \rightarrow \mathbb{B}^4$$

$$f = \begin{cases}
 f_0(x) = \neg x_0 \lor x_1 \land x_3 \\
 f_1(x) = x_0 \land (x_1 \lor x_2) \\
 f_2(x) = \neg x_3 \\
 f_3(x) = x_0 \lor \neg x_1
\end{cases}$$
Automata updates

- \[f_0(x) = \neg x_0 \lor x_1 \land x_3 \]
- \[f_1(x) = x_0 \land (x_1 \lor x_2) \]
- \[f_2(x) = \neg x_3 \]
- \[f_3(x) = x_0 \lor \neg x_1 \]
Main definitions

Automata updates

\[f_0(x) = \neg x_0 \lor x_1 \land x_3 \]

\[f_1(x) = x_0 \land (x_1 \lor x_2) \]

\[f_2(x) = \neg x_3 \]

\[f_3(x) = x_0 \lor \neg x_1 \]

\[\equiv_0 \]

0101
Main definitions

Automata updates

Asynchronous transitions

\[f_0(x) = \neg x_0 \lor x_1 \land x_3 \]

\[f_1(x) = x_0 \land (x_1 \lor x_2) \]

\[f_2(x) = \neg x_3 \]

\[f_3(x) = x_0 \lor \neg x_1 \]
Main definitions

Automata updates

\[
\begin{align*}
0101 \\
\{2\} \\
\{1\} \\
\{3\} \\
\{0, 1\} \\
\{0\}
\end{align*}
\]

\[
\begin{align*}
0001, 0100, 1001, 1101
\end{align*}
\]

\[
\begin{align*}
I & \subseteq \{ x = x_0 \lor x_1 \land x_3 \} \\
f_0(x) & = \neg x_0 \lor x_1 \land x_3 \\
f_1(x) & = x_0 \land (x_1 \lor x_2) \\
f_2(x) & = \neg x_3 \\
f_3(x) & = x_0 \lor \neg x_1
\end{align*}
\]
Main definitions

Automata updates

\[f_0(x) = \lnot x_0 \lor x_1 \land x_3 \]

\[f_1(x) = x_0 \land (x_1 \lor x_2) \]

\[f_2(x) = \lnot x_3 \]

\[f_3(x) = x_0 \lor \lnot x_1 \]

Synchronism vs asynchronism in BANs
Main definitions

Update modes and BAN behaviours

- An **update mode** is a way of organising the automata updates along time.
- It can be deterministic (**periodic** or not) or non-deterministic (**stochastic** or **not**).
- There exists an infinite number of update modes.
Main definitions
Update modes and BAN behaviours

- An update mode is a way of organising the automata updates along time.
- It can be deterministic (periodic or not) or non-deterministic (stochastic or not).
- There exists an infinite number of update modes.

- The update mode defines the network behaviour.
- The behaviour of a BAN f is described by a transition graph

$$\mathcal{G}(f) = (\mathbb{B}^n, T \subseteq \mathbb{B}^n \times (\mathcal{P}(V)\setminus\emptyset) \times \{0, 1\}^n),$$

where \bullet represents a given “fair” update mode.
Main definitions

Some examples

\[f : \mathbb{B}^3 \to \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

Parallel evolution

Sylvain Sené
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

Parallel evolution

- An attractor of \((f, \bullet)\) is a terminal SCC of \(G_\bullet(f)\).
- A fixed point (stable configuration) is a trivial attractor.
- A limit cycle (stable oscillation) is a non-trivial attractor.
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

\((\{0\}, \{1\}, \{2\})\)-sequential evolution
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[
\begin{align*}
 f_0(x) &= x_1 \lor x_2 \\
 f_1(x) &= \neg x_0 \land x_2 \\
 f_2(x) &= \neg x_2 \land (x_0 \lor x_1)
\end{align*}
\]

\(^{(\{0\}, \{1\}, \{2\})\text{-sequential evolution}}\)
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

\{(0, 2), \{1\}\)-block-sequential evolution
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

\[(\{0,2\},\{1\})\text{-block-sequential evolution}\]
Main definitions

Some examples

\[f : \mathbb{B}^3 \to \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

\((\{0, 2\}, \{1\})\)-block-sequential evolution

Number of ordered partitions:

\[\mathcal{B}_n = \sum_{k=0}^{n-1} \binom{n}{k} \mathcal{B}_k \]

with \(\mathcal{B}_0 = 1 \).
Main definitions

Some examples

\[f : \mathbb{B}^3 \rightarrow \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

Asynchronous evolution
Main definitions

Some examples

\[f : \mathbb{B}^3 \to \mathbb{B}^3 \]

\[f = \begin{cases}
 f_0(x) = x_1 \lor x_2 \\
 f_1(x) = \neg x_0 \land x_2 \\
 f_2(x) = \neg x_2 \land (x_0 \lor x_1)
\end{cases} \]

Asynchronous evolution + \{0,2\}-synchronous transitions
Deterministic periodic updates

Outline

1. Introduction
2. Main definitions
3. Deterministic periodic updates
4. Non-deterministic updates
Deterministic periodic updates

Update graphs

Given an interaction graph $G = (V, E)$, a labelled graph is a graph (G, lab), with $\text{lab} : E \rightarrow \{\oplus, \square\}$.

A labelled graph (G, lab) is an update graph if there exist $s : V \rightarrow \{1, \ldots, n\}$ s.t.

$$\forall (i, j) \in E, \text{lab}(i, j) = \begin{cases} \oplus & \text{if } s(i) \geq s(j) \\ \square & \text{if } s(i) < s(j) \end{cases}.$$
Let f be a BAN and $G(f) = (V, E)$ its interaction graph, let π be the parallel update mode, and let $s \neq s'$ be two distinct block-sequential modes different from π.

Theorem 1 (Aracena et al., 2009)

If $G(f, \text{lab}_s) = G(f, \text{lab}_{s'})$ then $\mathcal{G}_s(f) = \mathcal{G}_{s'}(f)$.

Theorem 2 (Tchuente, 1988; Aracena et al., 2009)

If s is defined as $\forall j \in \{0, \ldots, n-1\}, \forall i \text{ s.t. } (i, j) \in E, s(i) \geq s(j)$ then $\mathcal{G}_s(f) = \mathcal{G}_\pi(f)$.

Theorem 3 (Aracena et al., 2009)

Consider s and f s.t. all the loops in $G(f)$ are positive. Then there exists s' such that $\mathcal{G}_s(f)$ and $\mathcal{G}_{s'}(f)$ do not have any common limit cycle.
Deterministic periodic updates

Update graphs and dynamics

Theorem 1 (Aracena et al., 2009)
If $G(f, \text{lab}_s) = G(f, \text{lab}_{s'})$ then $G_s(f) = G_{s'}(f)$.

$$f = \begin{cases} f_0(x) = x_1 \land x_3 \\ f_1(x) = x_0 \\ f_2(x) = x_1 \lor x_2 \\ f_3(x) = x_2 \land x_3 \end{cases}$$

$$s_1 \equiv (\{1\}, \{0\}, \{2\}, \{3\})$$
$$s_2 \equiv (\{1\}, \{2\}, \{0\}, \{3\})$$
$$s_3 \equiv (\{1\}, \{2\}, \{0,3\})$$
Theorem 1 (Aracena et al., 2009)

If \(G(f, \text{lab}_s) = G(f, \text{lab}_{s'}) \) then \(G_s(f) = G_{s'}(f) \).

\[
f = \begin{cases}
 f_0(x) &= x_1 \land x_3 \\
 f_1(x) &= x_0 \\
 f_2(x) &= x_1 \lor x_2 \\
 f_3(x) &= x_2 \land x_3
\end{cases}
\]

\(s_1 = (\{1\}, \{0\}, \{2\}, \{3\}) \)

\(s_2 = (\{1\}, \{2\}, \{0\}, \{3\}) \)

\(s_3 = (\{1\}, \{2\}, \{0,3\}) \)
2 types of interaction cycles, the **positive** and the **negative** ones:

- **Positive cycle** (C^+_6) with an even number of negative arcs
- **Negative cycle** (C^-_6) with an odd number of negative arcs

Seminal results:

Theorem 4 (Robert, 1986)

If $G(f)$ is acyclic, then f admits a unique attractor which is a fixed point.

Theorem 5 (Thomas, 1981; Richard, Comet, 2007)

If there are no positive cycles in $G(f)$, f admits no more than one fixed point.
Deterministic periodic updates
Impact of update modes on cycles

Block-sequential mode
$s \equiv \{0, 1\}, \{2\}$

$s(0) = 1$

$s(2) = 2$

$s(1) = 1$
Deterministic periodic updates

Impact of update modes on cycles

Block-sequential mode
$s \equiv (\{0, 1\}, \{2\})$

$s(0) = 1$
$s(1) = 1$
$s(2) = 2$

$x_0(t + 1) = f_0(x_2(t))$
$x_1(t + 1) = f_1(\neg x_0(t))$
Deterministic periodic updates

Impact of update modes on cycles

Block-sequential mode

\[s \equiv (\{0, 1\}, \{2\}) \]

\[s(0) = 1 \]

\[x_0(t + 1) = f_0(x_2(t)) \]

\[x_1(t + 1) = f_1(\neg x_0(t)) \]

\[x_2(t + 1) = f_2(x_1(t + 1)) = f_2(f_1(\neg x_0(t))) \]

\[s(2) = 2 \]

\[s(1) = 1 \]
Deterministic periodic updates

Impact of update modes on cycles

Block-sequential mode

\[s \equiv (\{0, 1\}, \{2\}) \]

Interaction graph \(G(f, s) = (V, E(s)) \)

Each arc \((i, j) \in E(s)\) represents the dependence of \(x_j(t+1)\) on \(x_i(t)\).
Deterministic periodic updates

Impact of update modes on cycles

\[\text{inv}(s) = \{(i, i+1) \mid s(i) < s(i+1)\} \]
Deterministic periodic updates

Impact of update modes on cycles

\[\text{inv}(s) = \{(i, i+1) | s(i) < s(i+1)\} \]
Deterministic periodic updates

Impact of update modes on cycles

\[\text{inv}(s) = \{(i,i+1) \mid s(i) < s(i+1)\} \]

Theorems (Goles, Noual, 2010)

- The dynamics induced by two update modes \(s \) and \(s' \) are equal iff \(\text{inv}(s) = \text{inv}(s') \).

\[\Rightarrow \text{Given a cycle of size } n, \text{ the total number of distinct dynamics induced by block-sequential update modes is:} \]

\[\sum_{k=0}^{n-1} \binom{n}{k} = 2^n - 1. \]

- \(\text{inv}(s) \neq \text{inv}(s') \implies \) no common limit cycles.

- Iterating a cycle of size \(n \) with an update mode \(s \) with \(|\text{inv}(s)| = k \) corresponds to iterating a cycle of same sign and of size \(n - k \) in parallel.
Deterministic periodic updates

Impact of update modes on cycles

Theorem 6 (Goles, Noual, 2010)

\(\text{inv}(s) \neq \text{inv}(s') \implies \text{no common limit cycles.} \)

Proof

First, let us note that \(\forall i, j \in V, f[j, i] : \begin{cases} f_j \circ f_{j-1} \circ \cdots \circ f_i & \text{if } i \leq j \\ f_j \circ f_{j-1} \circ \cdots \circ f_0 \circ f_{n-1} \circ \cdots \circ f_i & \text{if } i > j \end{cases} \).

Suppose that \((i, i + 1) \in \text{inv}(s) \setminus \text{inv}(s') \) and that \(\exists x = x^s(t) = x^{s'}(t) \) s.t. \(x^s(t + 1) = x^{s'}(t + 1) \). Then:

\[x_{i+1}^s(t + 2) = f_{i+1}(x_i^s(t + 2)) = f[i + 1, i^* + 1](x_{i^*}^s(t + 1)), \]

and

\[x_{i+1}^{s'}(t + 2) = f_{i+1}(x_i^{s'}(t + 2)) = f_{i+1}(x_i^s(t + 1)) = f[i + 1, i^* + 1](x_{i^*}^{s'}(t)), \]

where \(i^* = \max(\{k < i \mid s(k) \geq s(k + 1)\}) \).

By the injectivity of \(f[i + 1, i^* + 1] \), if \(x^s(t + 2) = x^{s'}(t + 2) \) then \(x_{i^*}(t + 1) = x_{i^*}(t) \). Now, if \(x \) belongs to an attractor that is induced identically by both \(s \) and \(s' \), then \(x^s(t) = x^{s'}(t) \) \(\forall t \). As result, in this case, \(\forall t, x_{i^*}^s(t + 1) = x_{i^*}^{s'}(t) = x_{i^*}^s(t) \). In other terms, the state of node \(i^* \) is fixed in the attractor. Hence the states of all nodes are fixed in the attractor which therefore is a fixed point.

\(\square \)
Deterministic periodic updates
Update graphs other related results

Q: Is a labelled graph an update graph?

Labelled graph \((G, \text{lab})\)

Reduced labelled graph \((G, \text{lab})^\oplus\)

Reversed labelled graph \((G, \text{lab})^\ominus_R\)
Deterministic periodic updates

Update graphs other related results

Q: Is a labelled graph an update graph?

<table>
<thead>
<tr>
<th>Labelled graph</th>
<th>Reduced labelled graph</th>
<th>Reversed labelled graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>((G, \text{lab}))</td>
<td>((G, \text{lab})^\oplus)</td>
<td>((G, \text{lab})^\oplus_R)</td>
</tr>
</tbody>
</table>

Theorem 7 (Aracena et al., 2011)

A labelled digraph \((G, \text{lab})\) is an update graph iff \((G, \text{lab})^\oplus_R\) does not contain any forbidden cycle.

Idea

\[
\begin{align*}
s(1) < s(2) \\
s(1) \geq (s(0) = s(4)) \\
s(3) < (s(0) = s(4)) \\
s(3) \geq s(2)
\end{align*}
\]

\[
\implies s(1) < s(3) \\
s(3) < s(1)
\]
Question: How to find the most compact update mode on (G, lab)?

(G', lab)

$(G', \text{lab})^\oplus$

$(G', \text{lab})^R_{\oplus}$
Deterministic periodic updates

Update graphs other related results

¿: How to find the most compact update mode on \((G, \text{lab})\)?

\[(G', \text{lab}) \]

\[(G', \text{lab})^{\oplus} \]

\[(G', \text{lab})^{\otimes}_{R} \]

\[s \equiv (\{0,4\}, \{1,3\}, \{2\}) \]

Algorithm

Init. Take \(G' := (G, \text{lab})^{\otimes}_{R}\) and \(t := 1\).

1. Compute the paths \(P_{\square} = \{P \mid \#(\square \in P) \text{ is max.}\}\) on \(G'\). If \(P_{\square} = \emptyset\), goto (4).

2. The targets \(T\) of the last negative arc of each \(P\) of \(P_{\square}\), and their successors \(S(T)\) are scheduled at time step \(t\). \(t := t + 1\).

3. Remove \(T, S(T)\) and all their incoming arcs from \(G'\), and go back to (1).

4. All the remaining nodes are scheduled all at once, at time step \(t\).
Outline

1. Introduction

2. Main definitions

3. Deterministic periodic updates

4. Non-deterministic updates
Non-deterministic updates

Basic definitions and notations

\(\forall x = (x_0, \ldots, x_{n-1}) \in \mathbb{B}^n, \forall i \in V, \overline{x}^i = (x_0, \ldots, x_{i-1}, \neg x_i, x_{i+1}, \ldots, x_{n-1}) \)

\(\forall x \in \mathbb{B}^n, \forall W = W' \cup \{i\} \subseteq V, \quad \overline{x}^W = (\overline{x}^i)^{W'} = (\overline{x}^{W'})^i \)

The sign of an influence of \(i \) on \(j \) in \(x \) is

\[
\text{sign}_x(i,j) = \frac{f_j(x) - f_j(\overline{x}^i)}{x_i - \overline{x}^i} = s(x_i) \cdot (f_j(x) - f_j(\overline{x}^i)),
\]

where \(s : b \in \mathbb{B} \mapsto b - b \in \{-1, 1\} \).

Given \(x, y \in \mathbb{B}^n, \quad D(x,y) = \{i \in V \mid x_i \neq y_i\} \) and \(d(x,y) = |D(x,y)| \).

\(E(x) = \{(i,j) \in V \times V \mid \text{sign}_x(i,j) \neq 0\} \) represents the set of effective influences of \(G(f) \) in \(x \), which formally means that

\[
\forall i,j \in V, \exists x \in \mathbb{B}^n, f_j(x) \neq f_j(\overline{x}^i) \iff (i,j) \in E.
\]
Non-deterministic updates

Monotonicity, unstabilities and frustrations

A local function f_i is **locally monotonic** in j if either:

\[
\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \leq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})
\]

or:

\[
\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \geq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})
\]

Example:

\[
f = \begin{cases}
 f_0(x) = x_1 \land x_3 \\
 f_1(x) = \neg x_0 \\
 f_2(x) = x_1 \lor x_2 \\
 f_3(x) = \neg x_2 \lor x_3
\end{cases}
\]

is monotonic.

\[
g = \begin{cases}
 g_0(x) = x_1 \land x_3 \\
 g_1(x) = \neg x_0 \\
 g_2(x) = x_1 \oplus x_2 \\
 g_3(x) = \neg x_2 \lor x_3
\end{cases}
\]

is not.
Non-deterministic updates

Monotonicity, unstabilities and frustrations

A local function f_i is **locally monotonic** in j if either:

$$\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \leq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})$$

or:

$$\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \geq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})$$

An automaton $i \in V$ is **unstable** (resp. **stable**) in $x \in \mathbb{B}^n$ if it belongs to the set

$$U(x) = \{i \in V \mid f_i(x) \neq x_i\} \quad (\text{resp. } \overline{U}(x) = V \setminus U(x)).$$

Example:

$$f = \begin{cases} f_0(x) = \neg x_1 \\ f_1(x) = x_0 \end{cases}$$

<table>
<thead>
<tr>
<th>x</th>
<th>$f_0(x)$</th>
<th>$f_1(x)$</th>
<th>$U(x)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0,0)</td>
<td>1</td>
<td>0</td>
<td>{0}</td>
</tr>
<tr>
<td>(0,1)</td>
<td>0</td>
<td>0</td>
<td>{1}</td>
</tr>
<tr>
<td>(1,0)</td>
<td>1</td>
<td>1</td>
<td>{1}</td>
</tr>
<tr>
<td>(1,1)</td>
<td>0</td>
<td>1</td>
<td>{0}</td>
</tr>
</tbody>
</table>
Non-deterministic updates

Monotonicity, unstabilities and frustrations

A local function f_i is locally monotonic in j if either:

$$\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \leq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})$$

or:

$$\forall x, f_i(x_0, \ldots, x_{j-1}, 0, x_{j+1}, \ldots, x_{n-1}) \geq f_i(x_0, \ldots, x_{j-1}, 1, x_{j+1}, \ldots, x_{n-1})$$

An automaton $i \in V$ is unstable (resp. stable) in $x \in \mathbb{B}^n$ if it belongs to the set

$$U(x) = \{i \in V \mid f_i(x) \neq x_i\} \quad (\text{resp. } \overline{U}(x) = V \setminus U(x))$$

An influence $(i,j) \in E$ is frustrated in x iff it belongs to

$$\text{FRUS}(x) = \{(i,j) \in E \mid s(x_i) \cdot s(x_j) = -\text{sign}(i,j)\}$$

$$f = \begin{cases}
 f_0(x) = x_2 \\
 f_1(x) = x_0 \lor \neg x_1 \\
 f_2(x) = \neg x_0 \land x_1
\end{cases}$$

FRUS(000) = \{(0,2)\}
FRUS(001) = \{(1,2), (2,0)\}
FRUS(010) = \{(0,1), (0,2), (1,2)\}
FRUS(011) = \{(0,1), (2,0)\}
Non-deterministic updates

Relations between unstabilities and frustrations

Remark (Noual, S., 2017)

If \(j \in U(x) \) then \(\exists i \in V^-(j), (i,j) \in \text{FRUS}(x) \).

\[
\begin{align*}
f &= \begin{cases}
f_0(x) = \neg x_0 \\
f_1(x) = x_0 \lor \neg x_2 \\
f_2(x) = x_1
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{FRUS}(000) &= \{ (0,0), (2,1) \} \\
\text{FRUS}(001) &= \{ (0,0), (1,2) \} \\
\text{FRUS}(110) &= \{ (0,0), (1,2) \} \\
\text{FRUS}(111) &= \{ (0,0), (2,1) \}
\end{align*}
\]

N.B: The reciprocal does not hold.

\[
\begin{align*}
f &= \begin{cases}
f_0(x) = x_2 \\
f_1(x) = x_0 \lor \neg x_1 \\
f_2(x) = \neg x_0 \land x_1
\end{cases}
\end{align*}
\]

\[
\begin{align*}
\text{FRUS}(000) &= \{ (0,2) \} \\
\text{FRUS}(001) &= \{ (1,2), (2,0) \} \\
\text{FRUS}(010) &= \{ (0,1), (0,2), (1,2) \} \\
\text{FRUS}(011) &= \{ (0,1), (2,0) \}
\end{align*}
\]
Non-deterministic updates

Relations between unstabilities and frustrations

Lemma 1 (Noual, S., 2017)
Adding frustrated influences incoming an unstable automaton cannot stabilise it. Formally, noting $V_{\text{FRUS}}(x)(j) = V^-(j) \cap \{i \in V \mid (i, j) \in \text{FRUS}(x)\}$, we have:

$$\forall x, y \in \mathbb{B}^n, j \in U(x) \land \left(V_{\text{FRUS}}(x)(j) \subseteq V_{\text{FRUS}}(y)(j) \right) \implies j \in U(y).$$

Proof
Input provided by i to j: $b^i_j(x) = b(\text{sign}(i, j) \cdot s(x_i)) = \begin{cases} x_j & \text{if } (i, j) \notin \text{FRUS}(x) \\ \neg x_j & \text{otherwise} \end{cases}$. By local monotonicity,

$$f_j(x) = \bigwedge_{k \leq m} c_k(x) = \bigwedge_{k \leq m} \left(\bigvee_{i \in V_k^j} b^i_j(x) = \bigvee_{i \in V_k^j} \neg x_j \lor \bigvee_{(i, j) \notin \text{FRUS}(x)} x_j \right),$$

where V_k^j is the set of in-neighbours of j involved in the kth clause.

Let x be unstable, admitting thus at least one frustrated incoming influence. Let y be such that it admits at least one more frustrated incoming influence than x. Since f_j can be written as a conjunction of disjunctive clauses, the values of these clauses for y are necessarily the same as for x. □
Non-deterministic updates

Critical cycles

Let f be a BAN, $G = (V, E)$ its interaction graph, and x a configuration in \mathbb{B}^n. A cycle $C = (V_C, E_C)$ of G is x-critical if $E_C \subseteq \text{FRUS}(x)$. A cycle C is critical if it is x-critical for some x.

Proposition 1 (Noual, S., 2017)

A critical cycle is a NOPE-cycle, i.e. negative of odd length or positive of even length.

Proof

Let $x \in \mathbb{B}^n$. By definition of frustrated influences, if $C = (V_C, E_C)$ is x-critical, has length ℓ and sign s then:

$$\prod_{(i,j) \in E_C} -\text{sign}(i,j) = (-1)^\ell \times s = \prod_{(i,j) \in E_C} s(x_i) \cdot s(x_j) = 1.$$
Non-deterministic updates

Transitions and trajectories

<table>
<thead>
<tr>
<th>Name</th>
<th>Notation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asynchronous</td>
<td>$x \rightarrow y$</td>
<td>$d(x, y) \leq 1$</td>
</tr>
<tr>
<td>Synchronous</td>
<td>$x \rightarrow y$</td>
<td>$d(x, y) > 1$</td>
</tr>
<tr>
<td>Elementary</td>
<td>$x \rightarrow y$</td>
<td>$x \rightarrow y \in {x \rightarrow y} \cup {x \rightarrow y}$</td>
</tr>
<tr>
<td>Non-sequentialisable</td>
<td>$x \rightarrow y$</td>
<td>$x \rightarrow y$ not decomposable into smaller elementary transitions</td>
</tr>
</tbody>
</table>

For all $x, y \in \mathbb{B}^n$ s.t. $x \neq y$, x is willing (resp. unwilling) towards y if $D(x, y) \subseteq U(x)$ (resp. $D(x, y) \cap U(x) = \emptyset$).

A trajectory from x to y is a path $x \rightarrow \ldots \rightarrow y$ in the transition graph.

Let $x = x(0) \rightarrow x(1) \rightarrow \ldots \rightarrow x(m-1) \rightarrow y = x(m)$ be a trajectory from x to y. If $\forall t < m$, $D(x(t+1), y) \subsetneq D(x(t), y)$, this trajectory is direct. It performs no reversed changes, i.e. $\forall t < m$, $x(t)_i = y_i \implies \forall t < t' \leq m$, $x(t')_i = y_i$.
Proposition 2 (Noual, S., 2017)

Let \(x \) a willing configuration towards \(y \).

1. If there are no asynchronous trajectories from \(x \) to \(y \), then \(D(x,y) \) induces a NOPE-cycle that is \(x \)-critical.

2. If \(D(x,y) \) does not induce an \(x \)-critical cycle, then there is a direct asynchronous trajectory from \(x \) to \(y \).
Proposition 2 (Noual, S., 2017)

Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then $D(x,y)$ induces a NOPE-cycle that is x-critical.

2. If $D(x,y)$ does not induce an x-critical cycle, then there is a direct asynchronous trajectory from x to y.

$$
\begin{array}{cccc}
\text{x} & f_0(x) & f_1(x) & \text{U}(x) \\
(0,0) & 1 & 1 & \{0,1\} \\
(0,1) & 0 & 0 & \{1\} \\
(1,0) & 1 & 1 & \{1\} \\
(1,1) & 1 & 1 & \emptyset \\
\end{array}
$$

$$
f = \begin{cases}
 f_0(x) = x_0 \lor \neg x_1 \\
 f_1(x) = x_0 \lor \neg x_1
\end{cases}
$$
Proposition 2 (Noual, S., 2017)

Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then $D(x, y)$ induces a NOPE-cycle that is x-critical.

2. If $D(x, y)$ does not induce an x-critical cycle, then there is a direct asynchronous trajectory from x to y.

Implication

When m local changes are possible in x, then, unless there is a NOPE-cycle of size m, these m changes can be made asynchronously without risking a deadlock, i.e. a situation in which some transitions would have transformed x into a configuration $x(t)$ from which y is not reachable anymore.
Non-deterministic updates

Results relating trajectories and critical cycles

Proposition 2 (Noual, S., 2017)

Let x a willing configuration towards y.

1. If there are no asynchronous trajectories from x to y, then $D(x, y)$ induces a NOPE-cycle that is x-critical.

2. If $D(x, y)$ does not induce an x-critical cycle, then there is a direct asynchronous trajectory from x to y.

Corollary 1 (Noual, S., 2017)

If $x \rightarrow y$ exists, then $D(x, y)$ induces a NOPE-cycle which is x-critical.

Implication

In a BAN with no NOPE-cycles of size smaller or equal than $m \in \mathbb{N}$, any synchronous change affecting no more than m automata states can be totally sequentialised.
Non-deterministic updates

Structural sensitivity: impact of synchronism

<table>
<thead>
<tr>
<th>Class N</th>
<th>Class F</th>
</tr>
</thead>
<tbody>
<tr>
<td>"null" sensitivity</td>
<td>"weak" sensitivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class G</th>
<th>Class D</th>
</tr>
</thead>
<tbody>
<tr>
<td>"medium" sensitivity</td>
<td>"strong" sensitivity</td>
</tr>
</tbody>
</table>

Sylvain Sené

Synchronism vs asynchronism in BANs
Theorem 8 (Noual, S., 2017)

1) Synchronism-sensitivity requires the existence of a NOPE-cycle.

2) Significant sensitivity requires the existence of a NOPE-cycle of length strictly smaller than the BAN size as well as of a negative cycle.

3) In the absence of a Hamiltonian NOPE-cycle and positive loops on all automata, little sensitivity also requires a NOPE-cycle of length strictly smaller than the BAN size.

A monotonic BAN belonging to sensitivity class D:

\[
\begin{align*}
 f_0(x) &= x_2 \vee (x_0 \land \neg x_1) \\
 f_1(x) &= x_3 \vee (\neg x_0 \land x_1) \\
 f_2(x) &= \neg x_0 \land x_1 \\
 f_3(x) &= x_0 \land \neg x_1
\end{align*}
\]
Non-deterministic updates

Structural sensitivity: main result

Theorem 8 (Noual, S., 2017)

1) Synchronism-sensitivity requires the existence of a NOPE-cycle.
2) Significant sensitivity requires the existence of a NOPE-cycle of length strictly smaller than the BAN size as well as of a negative cycle.
3) In the absence of a Hamiltonian NOPE-cycle and positive loops on all automata, little sensitivity also requires a NOPE-cycle of length strictly smaller than the BAN size.

A monotonic BAN belonging to sensitivity class D:

\[\{ x \in \mathbb{B}^4 \mid x_0 \lor x_1 = 1 \} \]

asynchronous limit cycle

0000

fixed point
Non-deterministic updates

Class \mathcal{D} and local (non-)monotonicity

\(\mathcal{Q} \): How are these two BANs related?

\[
\begin{align*}
 f &= \begin{cases}
 f_0(x) &= x_2 \lor (x_0 \land \neg x_1) \\
 f_1(x) &= x_3 \lor (\neg x_0 \land x_1) \\
 f_2(x) &= \neg x_0 \land x_1 \\
 f_3(x) &= x_0 \land \neg x_1
 \end{cases} \\
 g &= \begin{cases}
 g_0(x) &= x_0 \oplus x_1 \\
 g_1(x) &= x_0 \oplus x_1
 \end{cases}
\end{align*}
\]

(S., 2012)
References

