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Welcome to Budapest!

hu Pálinkás jó reggelt!
‘Good morning with palinka!’
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‘The pig killing is no offence’
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Setting the scene

• Human languages are full of multiword expressions (MWEs)
→ Difficult for humans =⇒ difficult for computers

• Language technology has made enormous advances
• Language technology still has trouble dealing with MWEs

2/40



Setting the scene

• Human languages are full of multiword expressions (MWEs)
→ Difficult for humans =⇒ difficult for computers

• Language technology has made enormous advances

• Language technology still has trouble dealing with MWEs

2/40



Setting the scene

• Human languages are full of multiword expressions (MWEs)
→ Difficult for humans =⇒ difficult for computers

• Language technology has made enormous advances
• Language technology still has trouble dealing with MWEs

Source: https://translate.google.com July 12, 2023
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1. Linguistic notions

Call a spade a spade



Intuitive definition

Multiword expressions
Words that belong together
Des mots qui vont bien ensemble

• Related notions
→ Collocations
→ Metaphors
→ Compounds
→ Constructions
→ Phrasemes
→ Named entities
→ Terminology
→ …
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Working definition (Savary et al., 2018)

Multiword expressions
1. Contain at least two component words which are lexicalised
2. Include a head and at least one other syntactically related word
3. Display some degree of lexical, morphological, syntactic or
semantic idiosyncrasy
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Working definition (Savary et al., 2018)

Multiword expressions
1. Contain at least two component words which are lexicalised
2. Include a head and at least one other syntactically related word
3. Display some degree of lexical, morphological, syntactic or
semantic idiosyncrasy

• Lexicalised components (in boldface)
→ en He takes the/a/this shower
→ en She took the cake ‘she won’ ̸= ?She took this cake
→ Components that cannot be replaced nor omitted
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Working definition (Savary et al., 2018)

Multiword expressions
1. Contain at least two component words which are lexicalised
2. Include a head and at least one other syntactically related word
3. Display some degree of lexical, morphological, syntactic or
semantic idiosyncrasy

• Syntactic backbone: dependency
→ fr suite à ‘aǒter’ → fixed (UD)
→ fr ne parle pas ‘do not speak’
→ Recurrent dependency subgraphs
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Working definition (Savary et al., 2018)

Multiword expressions
1. Contain at least two component words which are lexicalised
2. Include a head and at least one other syntactically related word
3. Display some degree of lexical, morphological, syntactic or
semantic idiosyncrasy

• Idiosyncrasy
→ en flower child ‘hippie’ → semantically non compositional
→ en truth be told ‘honestly’ → syntactically irregular
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Working definition (Savary et al., 2018)

Multiword expressions
1. Contain at least two component words which are lexicalised
2. Include a head and at least one other syntactically related word
3. Display some degree of lexical, morphological, syntactic or
semantic idiosyncrasy

In short: Exceptions that occur when words get together
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MWE categories

• Broad definition → heterogeneous configurations
• UD-inspired taxonomy based on syntactic function

Verbal idiom

definitions taken for granted

getting our hands dirty

Light-verb construction

the progress made in UD

received less attention

Verb-particle construction

the words that make it up

carrying out research on

Inherently reflexive verb

(fr) il s'évanouit 'he faints'

help yourself to the cookies

Inherently clitic verb

(it) prenderle 'to get beaten'

Multi-verb construction

cannot make do with less

Nominal MWE

Nominal idiom

MWE definitions: a rat's nest

a sort of "MWE hotline"

Multiword pronoun

no one tries to kill a pig

dependent on each other

Modifier MWE

Multiword adverbial

MWEs in a nutshell

notation out of the way

Multiword adjective

worth their weight in gold

full-fledged robust semantic

Multiword conjunction

even though they are

as well as the co-authors

Multiword adposition

In spite of huge progress

MWEs with respect to total

Multiword determiner

broke a bunch of equipment

and a few examples of some

Clausal MWE
C

on
te

nt
 M

W
E

Functional MWE
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Computational tasks (Constant et al., 2017)

“MWE processing is composed of two main subtasks that are oǒten
confused in the literature: MWE discovery and MWE identification”
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Why study MWEs in NLP?

• A whole lot of them
→ Up to 44% Open Wordnet entries
→ One MWE every 20 tokens (PARSEME-FR)

• Flowing like a river
• Getting to the meaning
• There is beauty in chaos
• MWEs in the era of LLMs
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Why study MWEs in NLP?

• A whole lot of them
• Flowing like a river
• Getting to the meaning

→ Difficult to model and process
→ Challenge computational meaning representations

• There is beauty in chaos
• MWEs in the era of LLMs
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Why study MWEs in NLP?

• A whole lot of them
• Flowing like a river
• Getting to the meaning
• There is beauty in chaos

→ Link to linguistic community’s culture
→ Plays with words, irony, ads, songs, …

• MWEs in the era of LLMs
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Why study MWEs in NLP?

• A whole lot of them
• Flowing like a river
• Getting to the meaning
• There is beauty in chaos
• MWEs in the era of LLMs

→ Role of linguistics in NLP
→ Data curation, evaluation protocols
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2. Discovery of MWEs

Ivory towers not made of ivory



Challenges in MWE discovery

• MWE discovery: association scores, patterns, substitution, …
→ (Choueka, 1988; Church and Hanks, 1990; Smadja, 1993; Justeson and Katz, 1995)

• Distinguish idiomatic from topical co-occurrence
→ en dry run ‘rehearsal’ vs. dry summer

Challenge:

1. Compositionality continuum
→ en swimming pool is a pool for swimming
→ fr carte bleue lit. ‘card blue’⇒‘credit card’ is a card but it is not blue
→ pt pé-quente lit. ‘foot-hot’⇒‘lucky person’ is neither hot nor a foot
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Compositionality prediction

• Compositionality prediction for MWE discovery
→ Some method generates MWE candidates
→ Each candidate gets a compositionality prediction
→ Less compositional =⇒ lexicon entry

Graded compositionality
• Given a word combination

→ ivory tower ‘privileged situation’

• Proportion of whole’s meaning predictable from components?
→ Comp(ivory_tower, ivory, tower) = 10%
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Research questions

Q1 How to build a dataset with reference compositionality scores?

→ Resources

Q2 How to use word embeddings to predict compositionality?

→ Methods
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Nominal compounds dataset

Question
Q1 How to build a dataset with reference compositionality scores?

• 180 nominal compounds in French, Portuguese and English
→ en pocket book ‘small book’
→ fr petite nature lit. ‘small nature’⇒‘fragile person’
→ pt gato pingado lit. ‘cat dropped’⇒‘few people’
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Compositionality annotation

• Out-of-context annotation of each compound

• Scale from 0 (totally idiomatic) to 5 (totally compositional)
→ Head (book), modifier (pocket), compound (pocket book)

• Average across 15-20 crowdsourcing workers
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Resulting scores

compound head mod. compound

Di
sa
gr
ee
+

match nul 4.4 ±1.3 2.2 ±2.3 2.5 ±2.1
mort né 4.6 ±1.1 3.5 ±1.8 3.2 ±2.0
carte grise 4.5 ±0.9 3.2 ±2.0 3.1 ±1.9
second degré 1.7 ±1.9 2.4 ±2.1 1.4 ±1.9
grippe aviaire 4.6 ±1.4 3.8 ±1.9 3.6 ±1.9

Ag
re
e+

eau chaude 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
eau potable 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
matière grasse 4.8 ±0.4 5.0 ±0.0 5.0 ±0.0
poule mouillée 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0
téléphone portable 4.9 ±0.5 4.9 ±0.3 5.0 ±0.0

• Analyses confirm linguistic intuitions
• Alternative ways to get compositionality scores: future work

Source: Cordeiro et al. (2019)
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Compositionality prediction

Question
Q2 How to use word embeddings to predict compositionality?

Static word embeddings

• Distributional hypothesis: co-occurence ≈ meaning (Harris, 1954)

→ Embed usual contexts of occurrence in corpora

• Vectors in d-dimensional space: mathematical operations
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Underlying hypothesis

Source: ESSLLI 2018 course MWEs in a nutshell
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Underlying hypothesis

Source: ESSLLI 2018 course MWEs in a nutshell
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Prediction method

• Combine: −→w1 ⊕ −→w2 = −→w1 + −→w2
• Compare: pc = cosine(−−−→w1_w2, −→w1 ⊕ −→w2))

1 7 3 5 2

0 7 9 0 3

9 0 1 1 3

ivory_tower

ivory

tower

+

~ score

mwetoolkit+sem

Embeddings

combine

compare
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Evaluation protocol

Source: ESSLLI 2018 course MWEs in a nutshell
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Compositionality prediction results

⊕ combination functions (−→w1 ⊕ −→w2)
uniform max-sim geom arith head mod

English .726 .730 .677 .718 .555 .677
French .702 .693 .699 .703 .617 .645
Portuguese .602 .590 .580 .598 .558 .486

• Factors influencing prediction:
→ 1B-word corpus, lemmatisation, frequent compounds (Cordeiro et al., 2019)

• Useful in downstream task: MWE identification (Scholivet et al., 2018)
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3. Identification of MWEs

Looking for needles in a haystack



Challenges in MWE identification

MWE identification is not rocket science ‘easy’!
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Challenges in MWE identification

1. Discontinuities
→ fr prendre tout cela en compte ‘take all this into account’
→ pt tirei mais da metade das fotos ‘I took more than half of the photos’

2. Ambiguity
→ en the exam was a piece of cake
→ en I ate a piece of cake and leǌt

3. Variability
→ en truth be told ‘honestly’ → ?truth was told
→ en put/puts/putting a/his/her/my/our finger on ‘understand’
→ en decisions which we made
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Research questions

MWE identification
• Corpus-based machine learning methods

→ Model patterns of discontinuity, ambiguity, variability

Q1 How do we annotate MWEs across many languages?

→ Resources

Q2 How can we build MWE identifiers from annotated corpora?

→ Methods

PARSEME: a science odyssey
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Verbal MWE annotation

Question
Q1 How do we annotate MWEs across many languages?

• Verbal MWEs: hardest and most interesting
• Fully cross-lingual unified terminology and guidelines
• Community of volunteers

→ Coordination, training, infrastructure, documentation, etc.
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PARSEME annotation guidelines

• Linguistic tests + decision flowcharts
• 141 printed pages, examples in 29 languages, 33 authors, …
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PARSEME corpora

References #lang #sent #token #VMWE

v1.0 (Savary et al., 2017) 18 274,376 5.4M 62,218
http://hdl.handle.net/11372/LRT-2282

v1.1 (Ramisch et al., 2018a) 20 280,838 6.1M 79,326
http://hdl.handle.net/11372/LRT-2842

v1.2 (Ramisch et al., 2020) 14 279,785 5.5M 68,503
http://hdl.handle.net/11234/1-3367

v1.3 (Savary et al., 2023a) 26 455,629 9.3M 127,498
http://hdl.handle.net/11372/LRT-5124
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PARSEME shared tasks

• Three editions in 2017, 2018, and 2020
• A framework to evaluate MWE identification
• 7 to 12 teams each edition

→ Rankings and analyses

• Focus on unseen MWEs (2020 edition)
→ Generalisation of systems
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MWE identification systems

Question
Q2 How can we build MWE identifiers from annotated corpora?

• Veyn: sequence tagging (Scholivet and Ramisch, 2017; Zampieri et al., 2018)

• Seen2Seen: handcraǒted + optimised rules (Pasquer et al., 2020b)
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Veyn: modelling discontinuities

Jean prend de longues douches
douche

NOUN

~ ~ ~ ~ ~

O B-LVC G G I-LVC

Sentence

Label

long

ADJ

de

DET

prendre

VERB

Jean

PROPN

Lemma

POS

Concatenation

2 recurrents layers
biGRU

CRF layer
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A note on ambiguity (Savary et al., 2019)

• Literal occurrence
→ en you can look it up in the dictionary
→ en to see the clouds, you must look up

• Coincidental occurrence
→ en how do you look when you wake up?

German Greek Basque Polish Portug.

idiomatic 3,823 2,405 3,823 4,843 5,536

coincidental 24 126 1110 203 668
literal 79 52 91 98 258

Rate Lit/(Lit+Idio)

2% 2% 2% 2% 4%

28/40



A note on ambiguity (Savary et al., 2019)

• Literal occurrence
→ en you can look it up in the dictionary
→ en to see the clouds, you must look up

• Coincidental occurrence
→ en how do you look when you wake up?

German Greek Basque Polish Portug.

idiomatic 3,823 2,405 3,823 4,843 5,536

coincidental 24 126 1110 203 668
literal 79 52 91 98 258

Rate Lit/(Lit+Idio)

2% 2% 2% 2% 4%

28/40



A note on ambiguity (Savary et al., 2019)

• Literal occurrence
→ en you can look it up in the dictionary
→ en to see the clouds, you must look up

• Coincidental occurrence
→ en how do you look when you wake up?

German Greek Basque Polish Portug.

idiomatic 3,823 2,405 3,823 4,843 5,536

coincidental 24 126 1110 203 668
literal 79 52 91 98 258

Rate Lit/(Lit+Idio) 2% 2% 2% 2% 4%

28/40



Seen2Seen: focus on variants

1. Extract list of normalised MWEs annotated in training corpus
→ en she made many bad decisions → {decision, make}

2. Locate all matching co-occurrences in the test corpus
→ en …decision is hard to make …
→ en …making plans before they announce their decision …

3. Filter by applying a combination of rules
4. Select the optimal filter combination on dev
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Seen2Seen: focus on variants

1. Extract list of normalised MWEs annotated in training corpus
2. Locate all matching co-occurrences in the test corpus
3. Filter by applying a combination of rules
4. Select the optimal filter combination on dev

Second best (among 9) at PARSEME shared task 1.2
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Current state of affairs

Seen2Seen MTLB-struct
1.2 1.3 1.2 1.3

Arabic 50.99 60.49
Bulgarian 65.76 73.89
Czech 74.18 84.27
German 69.09 71.41 76.17 72.96
Greek 66.93 66.31 72.62 71.66
English 59.96 65.65
Spanish 55.6 55.86
Basque 76.94 82.18 80.03 80.69
Farsi 71.90 86.37
French 78.63 78.79 79.42 80.36
Irish 26.89 26.67 30.07
Hebrew 42.90 46.91 48.3 45.56
Hindi 53.99 58.7 73.62 72.57

Seen2Seen MTLB-struct
1.2 1.3 1.2 1.3

Croatian 75.39
Hungarian 32.02
Italian 64.92 65.05 63.76 63.35
Lithuanian 48.95 54.12
Maltese 16.54 13.69
Polish 81.85 82.53 81.02 80.51
Portuguese 72.79 74.06 73.34 73.95
Romanian 82.25 74.87 90.46
Slovene 41.84 35.84
Serbian 62.08 65.57
Swedish 70.68 82.25 71.58 77.06
Turkish 63.46 65.07 69.46 70.72
Chinese 49.28 35.07 69.63 63.18

Source: adapted from Savary et al. (2023a)
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4. Conclusions

Curtain falls



Theoretical contributions

• Concept definitions
→ Multiword expressions (Ramisch, 2015; Ramisch and Villavicencio, 2018)
→ Literal and coincidental occurrences (Savary et al., 2019)

• Task definitions
→ MWE discovery and identification (Constant et al., 2017)
→ Compositionality prediction (Cordeiro et al., 2019)

• Annotation guidelines
→ Nominal compound compositionality (Ramisch et al., 2016a)
→ Verbal MWEs across languages (Savary et al., 2017)
→ French functional expressions (Ramisch et al., 2016b)
→ French MWEs across categories (Candito et al., 2021)
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Methodological and empirical contributions

• MWE identification framework
→ Corpus formats (Ramisch et al., 2018a)
→ Evaluation metrics (Savary et al., 2017)
→ Generalisation (Ramisch et al., 2020)
→ Significance (Ramisch et al., 2023)
→ Interoperability with UD (Savary et al., 2023b)

• Experimental results
→ Explicit MWE encoding helps parsing (Nasr et al., 2015; Scholivet et al., 2018)
→ Word embeddings can model compositionality (Cordeiro et al., 2016a, 2019)
→ Neural models can identify discontinuous MWEs (Zampieri et al., 2018, 2019)
→ Handcraǒted rules work almost as well (Pasquer et al., 2020b,a)
→ …
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Resources and soǒtware

• Compositionality datasets in 3 languages (Ramisch et al., 2016a)
• Literal and coincidental occurrences in 5 languages (Savary et al., 2019)
• PARSEME corpora in 26 languages (Savary et al., 2018, 2023a)

→ Brazilian Portuguese version (Ramisch et al., 2018b)

• Sequoia corpus with MWEs + NEs in French (Candito et al., 2021)

• mwetoolkit extensions (Cordeiro et al., 2015, 2016b; Ramisch, 2020)
• MWE identifiers (Zampieri et al., 2018; Pasquer et al., 2018, 2020b)

Open science
GPL or Creative Commons licences, repositories, FAIR principles
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(Un)related contributions

• Interpretable supersense-based embeddings (Aloui et al., 2020)
• Specialised frame extraction (Cárdenas and Ramisch, 2019)

• Cross-lingual UD parsing with typology (Scholivet et al., 2019)
• Epidemiological event extraction (Bouscarrat et al., 2020, 2021)

Ongoing supervisions
• Cognitive models of multiword sequence processing (Pinto-Arata)
• Unsupervised sense and frame induction (Mosolova)
• Language models and lexical semantics (Ivan)
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MWE community
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5. Future research

Time will tell



PARSEME 2030

• Corpus development
→ More (typologically diverse) languages
→ Better annotations, better guidelines
→ Regular releases

• Enhanced MWE descriptions: non-verbal MWEs
• In-context fine-grained MWE semantics

→ Link with MWE lexicons
→ Link with lexical functions

https://gitlab.com/parseme/corpora/wikis/
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Semantic lexicon induction

• Sense and frame induction for single words and MWEs
→ Trade-off between contextual and static embeddings

• Semi-supervised clustering
→ Weak supervision from Wiktionary
→ Contextual embeddings from language models

• Lexicons are interpretable and cover diverse phenomena

SELEXINI (ANR, 2022-2026)
https://selexini.lis-lab.fr
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Universality and diversity

• Reconcile language diversity and NLP
→ Synergies between PARSEME and similar initiatives (e.g. UD)
→ Establish clearer links between MWEs and construction grammar
→ Ground language technology on language typology research

• Highly multilingual environment

UniDive (COST, 2022-2026)
https://unidive.lisn.upsaclay.fr/
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Harder, better, faster, stronger

pt Pára o mundo que eu quero descer!
‘Stop the world, I want to get off!’
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Harder, better, faster, stronger

“Then it doesn’t matter which way you go,” said the Cat.
“—so long as I get somewhere,” Alice added as an explanation.
“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

Source: Lewis Carroll, Alice’s adventures in wonderland
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Muito obrigado!

Illustrations: https://www.midjourney.com/

https://www.midjourney.com/
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Backup slides



Words and tokens: first things first

• Tokens: result of a computational process
→ Split the text into minimal units for further processing

• Lexemes: elementary units of meaning for linguistic description
→ Linguistic notion: basic block of a language’s lexicon

• Ideally, lexemes = tokens, but:
• Compounds: whitespace
• Contractions: don’t
• Orthography conventions: pre-existing, part-of-speech tag
• Challenging tokenisation: 获取到

• Multiword tokens can be MWEs (wallpaper, snowman)
• Multi-token words are not always MWEs (Anna␣’s, aujourd␣’hui)



Notation and glossing (Markantonatou et al., 2021)



Resulting scores

compound head mod. compound

En
gl
is
h

brass ring 3.9 ±2.0 3.7 ±1.9 3.7 ±1.8
fish story 4.8 ±0.4 1.5 ±1.8 1.7 ±1.8
tennis elbow 4.3 ±1.3 2.2 ±1.8 2.5 ±1.8

engine room 5.0 ±0.0 4.9 ±0.3 4.9 ±0.3
climate change 4.8 ±0.4 4.9 ±0.3 5.0 ±0.2
insurance company 4.9 ±0.5 5.0 ±0.0 5.0 ±0.0

Fr
en
ch

match nul 4.4 ±1.3 2.2 ±2.3 2.5 ±2.1
mort né 4.6 ±1.1 3.5 ±1.8 3.2 ±2.0
carte grise 4.5 ±0.9 3.2 ±2.0 3.1 ±1.9

matière grasse 4.8 ±0.4 5.0 ±0.0 5.0 ±0.0
poule mouillée 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0
téléphone portable 4.9 ±0.5 4.9 ±0.3 5.0 ±0.0

Po
rt
ug
ue
se

pavio curto 1.6 ±1.8 1.1 ±1.9 1.9 ±2.3
sexto sentido 4.0 ±1.4 2.5 ±2.1 2.8 ±2.2
gelo-seco 3.2 ±1.6 3.2 ±1.8 3.0 ±2.1

sentença judicial 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
tartaruga-marinha 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0
vôo internacional 5.0 ±0.0 5.0 ±0.0 5.0 ±0.0



Corpus preparation

CUPT format – extension of UD’s CoNLL-U

# columns = ID FORM LEMMA UPOS XPOS […] PARSEME:MWE
# text = - si vous présentez ou avez récemment présenté un …
1 - - PUNCT _ _ 4 punct _ _ *
2 si si SCONJ _ _ 4 mark _ _ *
3 vous il PRON _ _ 4 nsubj _ _ *
4 présentez présenter VERB _ _ 0 root _ _ 1:LVC.full
5 ou ou CCONJ _ _ 8 cc _ _ *
6 avez avoir AUX _ _ 8 aux _ _ *
7 récemment récemment ADV _ _ 8 advmod _ _ *
8 présenté présenter VERB _ _ 4 conj _ _ 2:LVC.full
9 un un DET _ _ 10 det _ _ *
10 saignement saignement NOUN _ _ 4 obj _ _ 1;2

… … … … … … … … … …

• Edition 1.2: split into train/dev/test
→ 300 unseen VMWEs in the test wrt. train+dev parts



Annotating MWEs

Consistency checks



PARSEME shared tasks

Question
Q3 How can we evaluate systems that identify MWEs automatically?

• PARSEME shared tasks
→ Evaluation metrics
→ Significance analyses



Evaluation metrics

• Precision, recall and F-measure
→ MWE-based: predictions with perfect span match
→ Token-based: predictions with partial match

• Account for discontinuous, nesting, single-token MWEs

Example
Gold: make segmentation decisions in order to split sentences into lexical units

System: make segmentation decisions in order to split sentences into lexical units

• MWE-based:
?

TP = 1 P = 1/4 R = 1/3 F = 2/7 ≈ 0.28

• Token-based:
?

TP = 5 P = 5/7 R = 5/7 F = 5/7 ≈ 0.71

• Phenomenon-specific evaluation metrics: discontinuous,
variants, unseen
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VarIDE: candidate extraction + filtering

1. Candidates: combinations with lemmas + POS sequence
identical to annotated VMWEs in the training corpus

2. Absolute features: candidate length, syntactic relations, etc.
3. Comparative features: compared to (other) annotated VMWEs
4. Filtering: NaiveBayes classifier

• Ranked 5th out of 13 submissions at PARSEME shared task 1.1
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Significance analyses (Ramisch et al., 2023)

• Only 2/40 surveyed papers report significance
• Tool to estimate p-values for two CUPT predictions

→ https://gitlab.com/parseme/significance

• Compare all system pairs and metrics of PARSEME 1.2
→ 2,728 p-values, 783 above α = 0.05 (29%)

Systems TRAVIS-multi Seen2Unseen TRAVIS-mono
F1 0.6911 0.6892 0.6709

MTLB-STRUCT 0.7158 0.025 0.038 0.0
TRAVIS-multi 0.6911 0.464 0.081
Seen2Unseen 0.6892 0.103

P-values for MWE-based F1 in Swedish

https://gitlab.com/parseme/significance


Ambiguity of MWEs

Question
Q2 Is idiomatic/compositional ambiguity frequent in corpora?

• Verbal MWEs, 5 languages
• Corpus with idiomatic occurrences annotated (Ramisch et al., 2018a)

• Automatically extract candidates for literal occurrences
• Fine-grained manual annotation



Annotation of literal readings

1. coincidental: candidate contains the correct lexemes, but
dependencies are not the same as in the idiomatic occurrence.

• The lexemes do the job ‘to achieve the required result’ co-occur in why you like the
job and do a little bit […], but they do not form a connected dependency tree

2. literal-morph: candidate is a literal occurrence; differences
from idiomatic occurrence are morphological

• The MWE get going ‘continue’ requires a gerund going, which does not occur in At
least you

::
get to

::
go to Florida

3. literal-synt: candidate is a literal occurrence; differences from
idiomatic occurrence are syntactic

• The MWE to have something to do with selects the preposition with, absent in […] we

:::
have better things

:
to

::
do.

4. literal-other: candidate is a literal occurrence; differences from
idiomatic occurrence are semantic or extra-linguistic

• we’ve
:::
come out

:
of
:
it good friends is an LO of the MWE to come of it ‘to result’, but it is

unclear what kind constraint could distinguish it from an IO.



Idiomaticity rate analysis

German Greek Basque Polish Portug.

Idiomatic 3,823 2,405 3,823 4,843 5,536
Literal cand. 926 451 2,618 332 1,997

err-false-idiomatic 21.5% 12.0% 9.4% 0.0% 3.8%
err-skipped-idiomatic 27.0% 47.5% 17.3% 5.4% 10.7%
nonverbal-idiomatic 0.0% 0.0% 0.2% 0.0% 0.5%
missing-context 0.3% 0.2% 0.5% 2.1% 0.7%
wrong-lexemes 40.1% 0.9% 26.7% 1.8% 38.1%
coincidental 2.6% 27.9% 42.4% 61.1% 33.5%
literal 8.5% 11.5% 3.5% 29.5% 12.9%
↪→ literal-morph 0.8% 5.5% 1.9% 1.2% 3.7%
↪→ literal-synt 1.5% 2.0% 0.7% 8.1% 2.2%
↪→ literal-other 6.3% 4.0% 0.8% 20.2% 7.1%

Idiomaticity rate

98% 98% 98% 98% 96%
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Dataset analyses

Source: Silvio Cordeiro’s PhD defense slides
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Empirical findings

• Explicit MWE encoding helps parsing (Nasr et al., 2015; Scholivet et al., 2018)

• Word embeddings can predict compositionality (Cordeiro et al., 2016a)
→ 1B-word corpus, lemmatisation, frequent compounds (Cordeiro et al., 2019)

• Neural models can identify MWEs (Zampieri et al., 2018, 2019)
→ Also in non-standard language (Zampieri et al., 2022)

• Handcraǒted rules work almost as well (Pasquer et al., 2020b,a)
• …
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