Recherche Zen Session 3 : Experiments

Carlos Ramisch and Manon Scholivet Partly based on the course by Adeline Paiement March 29 2023

Research question \rightarrow Experiment

Data creation

Data science experiments

Evaluation metrics

• A research question and its sub-questions

 \rightarrow Precise, concise, feasible, interesting

- Hypotheses related to each sub-question
- They are anchored in the litterature and justified

- A research question and its sub-questions
 - \rightarrow Precise, concise, feasible, interesting
- Hypotheses related to each sub-question
- They are anchored in the litterature and justified

Experiment goals

- 1. To build further evidence that will eventually lead to accepting or rejecting the hypothesis
- 2. Lead to new interesting research questions

- 1. Identify the target hypothesis
 - \rightarrow Prioritise hypotheses wrt. impact and constraints
- 2. Identify the needs of the experiment

 $\rightarrow\,$ Data, datasets, evaluation metrics

3. Instantiate under-specified aspects of the question/hypotheses

 \rightarrow The devil is in the details

4. If the result is X, I will be able to conclude Y

ightarrow Reformulate hypotheses in terms of experiment outcomes

Experiment design : example

Hypothesis

It is possible to learn a model for language L (with no annotations available) from a set of languages L' (with available annotations)

Refining the hypothesis :

- A model for which task? Question answering? Parsing?
- A supervised or unsupervised model?
- What exact set of languages?
- What configurations will be tested?

 \rightarrow $\mathit{L'}$ contains 1 language, 5 languages...

 \rightarrow *L* is similar to a language in *L'* or not?

• How to assess if the model for L is good?

 \rightarrow Evaluation metrics

- Experiments in computer science
- Expriments using data
- \implies Experiments in data science

- Experiments in computer science
- Expriments using data
- \implies Experiments in data science

Data science

Is data science a science?

- Experiments in computer science
- Expriments using data
- \implies Experiments in data science

Data science

Is data science a science?

Disclaimer : This is not a machine learning course

Experimental protocol

- Step-by-step description of the experiment
- "Algorithm" of the experiment

How formal is your protocol?

- Depends on the discipline
- A good protocol description can speed up paper writing
- In any case, to be defined before launching experiments

Making choices

- Beware of the combinatorial explosion
 - \rightarrow # datasets \times # configs \times # models \times # metrics
 - \rightarrow Grid search = experiments run forever
- Choices must be justified
 - \rightarrow An arbitrary justification is better than none
 - \rightarrow E.g. the parameter was chosen after trial and error
- Favour more promising aspects
 - \rightarrow E.g. Metrics are more or less equivalent \implies choose one

Datasets are heterogeneous \implies test all of them

ightarrow Small pilot experiments \implies trends \implies choices

Research question \rightarrow Experiment

Data creation

Data science experiments

Evaluation metrics

Where does data come from?

- Supervised methods require :
 - input x + associated gold/reference prediction y
- Machine learning / NLP courses :

from sklearn.datasets import load_digits
digits = load_digits()
print(digits.target[:20]) # magic !

- Real life :
 - Here's some data (x), apply some learning on it !

Where does data come from?

- Supervised methods require :
 - input x + associated gold/reference prediction y
- Machine learning / NLP courses :

from sklearn.datasets import load_digits
digits = load_digits()
print(digits.target[:20]) # magic !

- Real life :
 - Here's some data (x), apply some learning on it !

Question

- How to obtain gold predictions y?
 - supervision to learn models
 - reference to evaluate models

Data annotation recipe

- 1. Select material to annotate
 - licence, biases, representativity, diversity
- 2. Write annotation guidelines
 - domain expertise, pilot annotation
- 3. Develop or adapt an annotation platform
 - adaptable, easy to use
- 4. Train annotators
 - hard cases, speed, biases
- 5. Evaluate quality
 - inter-rater agreement
- 6. Combine annotations
 - adjudication, averaging
- 7. Export and release
 - stable website, format, documentation, articles

- Similarity with target application data
- Trade-off between realistic vs. artificial

 \rightarrow E.g. newspaper vs. tweets

• Raw data is noisy \implies harder to annotate/exploit

 \rightarrow E.g. dialects, typos, code switching, slang

Example : Text crawling

- Dedicated web-based corpus tools : BootCat, Sketch
 - parallelisation, robots.txt, priority queue, loops
- Start from pre-downloaded web dumps : CommonCrawl
- Pre-processing and cleaning
 - 1. Language identification
 - Document, paragraph, sentence level
 - 2. Deduplication
 - N-gram hashing : Onion
 - 3. Text extraction
 - $\bullet \ \mathsf{HTML} \to \mathsf{text}: \mathsf{Beautiful} \ \mathsf{Soup}$
 - Boilerplate removal : jusText
 - 4. Content filtering
 - Length, stopword ratio, dictionary
 - 5. Paragraph/sentence segmentation, tokenisation

Personal data

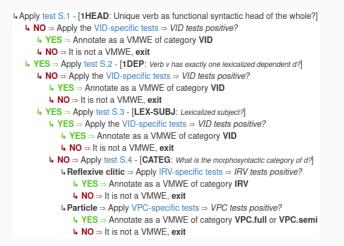
- Anonymisation :
 - Remove all information which allows identifying individuals
 - Aggregate, shuffle
- Pseudo-anonymisation/De-identification
 - Remove identity-related information (name, phone, email)
 - Analysis/crossing could recover individuals identities
- In practice : complete anonymisation is barely impossible Example : DECODA corpus (RATP call center transcriptions) et ma carte vitale et tout tout tout tout quoi c' est c' est à quel nom s'il vous plaît NNAAMMEE ça s' écrit NNAAMMEE ouais NNAAMMEE ah c' est ça NNAAMMEE

Indirect annotation

- Clever way to select data
- Europarl : text + translation
 - translations provided by EU
- Open Subtitles : text + translation
 - provided for free by series/movie fans
- CNN/Daily Mail : text + summary
 - News header as its summary
- Amazon products : text + polarity (positive/negative)
 - Reviews associated with 5-star rating
- Flickr30k : image + description
 - Captions provided by users on Flickr

Annotation guidelines

- Detailed definition of the task :
 - Summarise a text
 - Identify epidemiology events in news
 - Underline named entities


Annotation guidelines

- Detailed definition of the task :
 - Summarise a text
 - \rightarrow how many words/sentences, style, target public, entities
 - Identify epidemiology events in news
 - ightarrow date, place, pathology agent, events per document
 - Underline named entities
 - \rightarrow categories, span, nesting, metonymy
- As objective as possible :
 - \rightarrow Definitions, notation conventions
 - \rightarrow Yes/no tests, decision trees, flowcharts

Annotation guidelines

- Detailed definition of the task :
 - Summarise a text
 - \rightarrow how many words/sentences, style, target public, entities
 - Identify epidemiology events in news
 - ightarrow date, place, pathology agent, events per document
 - Underline named entities
 - \rightarrow categories, span, nesting, metonymy
- As objective as possible :
 - \rightarrow Definitions, notation conventions
 - ightarrow Yes/no tests, decision trees, flowcharts
- Borderline cases
 - \rightarrow Discard input x
 - \rightarrow Arbitrary but consistent decision
- Many examples !
- Several pilot annotation campaigns

Annotation guidelines example : PARSEME

Source: https://parsemefr.lis-lab.fr/parseme-st-guidelines/

Double annotation

- Two (expert/trained) annotators :
 - same trainig, same annotation guidelines
 - annotate the same data
 - no communication while annotating
- Results should be (almost) identical
 - Inter-annotator agreement
 - Adjudication
- High agreement : guide OK, training OK, data quality OK
- Low agreement : restart until high agreement is reached
- \bullet "Low" and "High" \rightarrow Numerical agreement score

Annotation interface

- Generic tools for text
 - Inception, webAnno, brat, FLAT, Arborator
 - Require configuration and administration
- Task-specific interfaces
 - Web forms

		Annotation Editor • Word/Token	
òria?	Entity https://github.com/proycon /parseme-support/raw/master	pondo em risco LVC.cause ~	Select span
a mesma pressão a se		Confidence: (not set)	Ŧ

Items, categories and coders :

- Set of *items* : $\{i | i \in I\}$ and is of cardinality i
- Set of *categories* : $\{k | k \in K\}$ and is of cardinality k
- Set of *coders* (annotators) : $\{c | c \in C\}$ is of cardinality c

Counting annotations :

- n_{ik} number of coders who assigned item *i* to category *k*
- *n_{ck}* number of items assigned by coder *c* to category *k*
- n_k total number of items assigned by all coders to category k

Source: Artstein and Poesio, 2005

Inter-annotator agreement (IAA)

- Simple case : two raters c_1 and c_2
- Observed agreement : proportion of identically annotated items

$$A_O = \frac{1}{\mathsf{i}} \sum_{k \in \mathcal{K}} \delta(\mathsf{n}_{1k}, \mathsf{n}_{2k})$$

Item	Annot1	Annot2	Contingency table			
1	Green	Blue	-	C		Tard
2	Blue	Blue		Green	Blue	Total
_			Green	41	3	44
3	Blue	Green	Blue	0	47	56
4	Green	Green		9	47	50
5	Blue	Blue	Total	50	50	100
6	Blue	Blue		41 .	47	
0	Diuc	Diuc	$A_O = \frac{41 + 47}{100} = 0.88$.88
				100	5	

Adapted from Ron Artstein's slides :

http://ron.artstein.org/publications/2012-artstein-agreement-slides.pdf

Task : diagnose whether patients are ill					
	Healthy		Total		
Healthy	990	5	995		
111	5	0	5		
Total	995	5	1000		

$$A_O = \frac{990}{1000} = 0.99$$

- Most patients are not ill
 - No agreement in ill" category
- High expected agreement A_E
 - How to estimate A_E ?

Kappa inter-annotator agreement

• Proportion of agreement above chance

$$\kappa = \frac{A_O - A_E}{1 - A_E}$$

• Assume each annotator has their distribution

$$A_E^{\kappa} = \frac{1}{\mathsf{i}^2} \sum_{k \in \mathcal{K}} n_{c_1 k} n_{c_2 k}$$

- *i* annotated items in total,
- K possible values per item,
- n_{c_ik} items annotated as k by rater c_j

Adapted from Ron Artstein's slides :

http://ron.artstein.org/publications/2012-artstein-agreement-slides.pdf

Exercise : calculate kappa

	Healthy		Total
Healthy	990	5	995
111	5	0	5
Total	995	5	1000

- i = 1000 annotated items in total,
- n_{c_ik} items annotated as k by rater c_j

$$A_O = \frac{990}{1000} = 0.99 \qquad \kappa = \frac{A_O - A_E}{1 - A_E} \qquad A_E^{\kappa} = \frac{1}{i^2} \sum_{k \in K} n_{c_1 k} n_{c_2 k}$$

1. Calculate the kappa chance-corrected IAA score

Exercise : calculate kappa

	Healthy		Total
Healthy	990	5	995
111	5	0	5
Total	995	5	1000

- i = 1000 annotated items in total,
- n_{c_ik} items annotated as k by rater c_j

$$A_O = \frac{990}{1000} = 0.99 \qquad \kappa = \frac{A_O - A_E}{1 - A_E} \qquad A_E^{\kappa} = \frac{1}{i^2} \sum_{k \in K} n_{c_1 k} n_{c_2 k}$$

1. Calculate the kappa chance-corrected IAA score

$$A_E = \frac{995^2 + 5^2}{1000^2} = 0.995^2 + 0.005^2 = 0.99005 \quad A_O = 0.99 \quad \kappa = -0.005$$

23/60

- More than 2 raters
 - Consider pairs of agreeing annotators
- Sporadic annotations
 - F-score between raters

Consistency checks

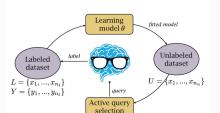
- Vertical data visualisation
 - Aggregate similar units (e.g. by lemma, POS n-gram, etc)
- Adjudicator of expert annotator corrects mistakes

	a contra las leyes de obediencia debida contra los genocidas y abrimos un cam	Loud COON me
VID En el transcurso del de el viaje cambiarán la forma de Isaac, le dará contra las hordas de criaturas, descu	Annotate as VID (idiom) Annotate as LVC.full (light-verb)	 >s tesoros que je le permitirán luchar j supervivencia. 2000
Sin embargo, la aparición recie el desempleo y el aumento de la con para una nueva etapa con una polític	Annotate as LVC.cause (light-verb) Annotate as IRV (reflexive) Annotate as VPC.full (verb-particle)	mo el descenso del de s, le abren el camino más altos.
abrir plazo VID (1)	Annotate as VPC.semi (verb-particle) Annotate as MVC (multi-verb)	
abrir él pasar <mark>VID (1)</mark>	Annotate as IAV (adpositional) Custom annotation	

Adjudication

- Carried out by another expert (not an annotator)
- Dedicated interface
- Documented conflict resolution strategies

PROBLEM: Single annotator DECIDE		
A2: EP-4.1-LEX Les mesures nécessaires	A2 is correct	pour faire face à cette éventualité.
PROBLEM: Conflicting labels DECIDE	Remove annotation	
A1: VID Les mesures nécessaires doiver A2: EP-4.4-ZERO Les mesures nécessaires	Custom annotation Mark as special case	aire face à cette éventualité. e pour faire face à cette éventualité.
Sentence #58		


• Creation of final (adjudicated) dataset

Automatic pre-annotation

- Pre-annotation
 - 1. Annotate a small dataset and train predictive model
 - 2. Predict on the remaining unlabelled data
 - 3. Correct the predictions

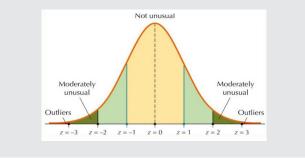
• Active learning

- 1. Annotate a given instance
- 2. Append to training data and train predictive model
- 3. Next instance to annotate chosen automatically
 - Maximise diversity of phenomena
 - Maximise the utility for the model

- Compensate for subjectivity = averave over many annotators
 - Amazon Mechanical Turk, Crowdflower, ...
- Make the task simpler accessible for non experts
 - Remuneration per HIT Human Intelligence Task
- Data quality
 - Qualification pre-task, spammer filtering
- Ethical aspects : unfair remuneration, hard work

Gamification

- Games with a purpose
 - Fun, visually attractive, competition
 - Background : free annotation
- Examples
 - Jeux de mots https://www.jeuxdemots.org/
 - ZombiLingo http://gwap.grew.fr/



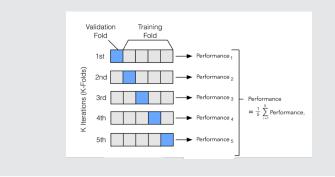
Data cleaning

- Some annotations are outliers
- Cleaning must occur before experiments

Z-score filtering

Remove annotations that are more than \boldsymbol{z} standard deviations away from the mean


Source: Further reading : https://aclanthology.org/W16-1804/


- Evaluation must be carried out on held out data
 - ightarrow Test dataset
- Development must be carried out on held out data
 - \rightarrow Development or validation dataset
 - \rightarrow Attention : it is extremely easy to accidentally tune on test data
- Paramters must be learned from data
 - \rightarrow Training dataset

Fixed split

- Randomly pick 10% for test, 10% for dev, 80% for train
- Comparable across experiments, papers

Data splitting iii

• Expensive : requires training k models instead of 1

Biased split

- Fixed split, but not random
- The test set has controlled characteristics
 - \rightarrow E.g. test instances are unseen in training data

Discussion

• We need to talk about standard splits

 \rightarrow https://aclanthology.org/P19-1267/

• We need to talk about random splits

 \rightarrow https://aclanthology.org/2021.eacl-main.156/

• . . .

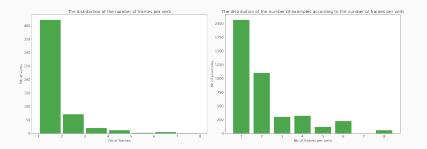
• Open your files!

 \rightarrow Otherwise someone may troll you :

https://medium.com/@yoav.goldberg/

an-adversarial-review-of-adversarial-generation-of-natural-language-409ac

• Don't try to get blood from a turnip


ightarrow Maybe your prediction task is unrealistic

 \rightarrow Maybe you need external resources

 $\rightarrow \dots$

Data analysis

- Distribution of classes, input characteristics
- Useful tool : histogram (e.g. matplotlib.pyplot.hist)
 → Use bins to discretise real-valued attributes

Source: Author : Anna Mosolova

Annotation beyond dataset creation

- Annotating = understanding your problem
 - ightarrow Hard for humans? \implies maybe hard for models
 - ightarrow Low agreement \implies maybe ill-defined problem
 - \rightarrow Annotation guidelines \implies inspiration for features

Research question \rightarrow Experiment

Data creation

Data science experiments

Evaluation metrics

- Supervised, unsupervised, semi-supervised
- Generalisation and amount of supervision

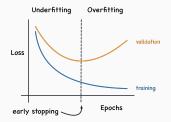
 \rightarrow Zero-shot, one-shot, few-shot

- Model's (hyper-)parameters
 - \rightarrow E.g. Neural network architecture, dimensions, \ldots
 - \rightarrow E.g. Clustering linking criterion, threshold

Baseline and topline i

- A model is never good or bad per se
- Situate the model performance wrt. a simpler model

 \rightarrow Baseline – simple model for the task


- Examples of baseline
 - \rightarrow Random prediction
 - ightarrow Majoritary class
 - ightarrow A good model 5 years ago
 - \rightarrow An interpretable model (rules, thresholds)
 - \rightarrow State-of-the-art model published last month

Baseline and topline ii

- Situate the model performance wrt. a better model
 - \rightarrow Topline upper bound for the performance
- Examples of topline
 - \rightarrow State-of-the-art model published last month
 - \rightarrow Large model released by big tech company
 - \rightarrow Human annotator performance/agreement
 - \rightarrow Same experiment in unrealistic (easy) condition

Overfitting

- The model "overfits" if it memorises the training set
- Tools to prevent overfitting
 - Rule of thumb of pre-neural models :
 - ightarrow Less features than data items
 - Learning curves on dev set
 - Early stopping based in dev set performance

Hyperparameter search

- Some important hyperparameters
 - learning rate
 - epochs/early stopping patience
 - batch size
 - dropout ratios
 - model capacity (hidden layer dimensions)
 - number of stacked layers, attention heads
 - embedding size
- Tuning strategies
 - Grid search
 - Bayesian search
 - Random search
 - ...
- Unavoidable but usually not very intersting

Model instability

- Same hyperparameters, different random seeds
 - weight initialisaiton in fine-tuning layers
 - order of inputs/batches
- Substantially different results
 - Some data orders/initializations consistently better than others
 - Early stopping is effective
- Report averages, error bars, confidence intervals
 - Re-run training several times with different orders/random initialisation seeds

Source: Further reading : https://arxiv.org/abs/2002.06305

Experiment management

Logbook

- experimental conditions for each result
- raw results and links to results
- write down ideas, hypotheses, etc.
- Experiment management platform
 - Tensorboard, RayTune, MLFlow, Lightning
- Git : branches, merge requests, CI for testing
- Overleaf : collaborative LaTeX article writing

Reproducibility vs. replicability

• Results are reproducible

- Data available under open licences
- Model/code shared under open licences
- Parameters and hyperparameters described
- Computational requirements reasonable
- Results are replicable
 - Robust to other datasets
 - Robust to different experimental conditions
 - Robust across conditions

Source: https://acl-reproducibility-tutorial.github.io/

Research question \rightarrow Experiment

Data creation

Data science experiments

Evaluation metrics

- Ideally : measure a hidden variable or phenomenon
- In practice : measure what we can observe $\hfill \rightarrow$ Formulation is simple enough to be interpretable
- Metrics are partial views of the results

Accuracy

Binary detection / classification

Accuracy =
$$\frac{tp+tn}{tp+tn+fp+fn}$$

- Percentage of well classified points
- Incomplete description of the method's performance
- Be careful ! Problem if class sizes are very unequal

[Image : Devin Soni, towardsdatascience.com]

Accuracy is an average

• Data items seen as n i.i.d. Bernoulli variables $Y_1 \dots Y_n$

- \rightarrow $Y_i = 0$ if prediction is wrong
- \rightarrow $Y_i = 1$ if prediction is correct
- Expected value of such variables is p (success probability)
- Expected value can be estimated by the mean :

$$E[Y_i] \approx \frac{1}{n} \sum_{i=1}^n Y_i$$

• This is precisely the definition of accuracy !

 \rightarrow Accuracy is normally distributed (CLT)

Precision, recall, F-score

- Binary detection / classification
- Precision/recall : Complementary measures, report both !
 - Precision

ightarrow tp/(tp + fn)

• Recall = Sensitivity

$$ightarrow$$
 tp/(tp + fn)

• Specificity :

ightarrow tn/(tn + fp)

• F-score : Harmonic mean of precision and recall

 $F = 2. \frac{\text{precision.recall}}{\text{precision} + \text{recall}}$

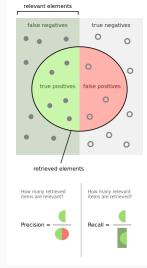
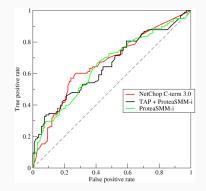
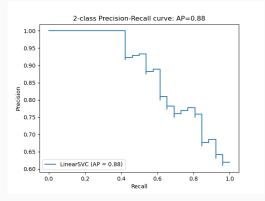
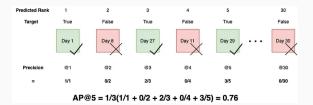



Image from Wikipedia

- Recall can be seen as an average like accuracy
- Precision cannot be seen as an average
 - \rightarrow The denominator depends on the model
 - \rightarrow Models class distribution is unpredictable
- lacksquare \Longrightarrow F-score cannot be assumed to be normally distributed

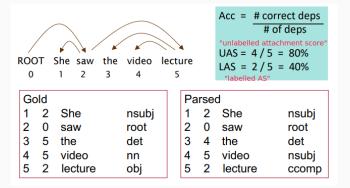

ROC curve

ROC curves (*Receiver Operating Characteristic*) are very useful to chose a threshold.



The AUC (*Area Under ROC*) is often used to estimate the model skill.

Another way to do this is to use the Precision and the Recall instead of using the True positive and the False positive rates.



- Model predicts a numerical score
- Gold class is binary or discrete
- Evaluate without setting a fixed threshold

- How to compare structured objects?
 - $\rightarrow {\rm Sub-sequences}$
 - $\rightarrow {\rm Clusters}$
 - \rightarrow Syntax trees
 - ightarrow Graphs

Structured prediction example : LAS/UAS

Source: https://x-wei.github.io/xcs224n-lecture5.html

"When a measure becomes a target, it ceases to be a good measure"

- Risk : optimise evaluation metric at any expense
 - ightarrow Overfitting, low generalisation
 - \rightarrow Forgetting the research question
 - \rightarrow Frustration with unrealistic goals
 - $\rightarrow \dots$

Source: Thanks to François Hamonic for this slide.

- Cours d'Adeline Paiement
- Wikipedia
- Google images