Recherche Zen

Séance 4 : Analyses

Carlos Ramisch and Manon Scholivet
Partly based on the course by Adeline Paiement
03 avril 2023

Expectation. . .

	dataset	metric1	metric2	metric3 1
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	95.3	89.8	65.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	80.3	$\mathbf{9 1 . 1}$	69.8
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	$\mathbf{8 4 . 9}$	$\mathbf{7 8 . 3}$	$\mathbf{9 8 . 1}$

1. Higher is better

Expectation. . .

	dataset	metric1	metric2	metric3 1
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	95.3	89.8	65.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	80.3	91.1	69.8
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	$\mathbf{8 4 . 9}$	$\mathbf{7 8 . 3}$	$\mathbf{9 8 . 1}$

\Longrightarrow Our model is better than state of the art!

1. Higher is better
... Vs. reality!

	dataset	metric1	metric2	metric3
SOTA model	DS1	$\mathbf{8 2 . 3}$	75.9	48.0
Our model	DS1	80.7	$\mathbf{7 6 . 2}$	$\mathbf{5 0 . 4}$
SOTA model	DS2	67.7	$\mathbf{6 5 . 2}$	56.8
Our model	DS2	$\mathbf{6 7 . 9}$	nan	49.6
SOTA model	DS3	77.6	$\mathbf{7 4 . 1}$	92.8
Our model	DS3	$\mathbf{7 9 . 0}$	$\mathbf{7 4 . 1}$	$\mathbf{9 3 . 4}$

... Vs. reality!

	dataset	metric1	metric2	metric3
SOTA model	DS1	$\mathbf{8 2 . 3}$	75.9	48.0
Our model	DS1	80.7	$\mathbf{7 6 . 2}$	$\mathbf{5 0 . 4}$
SOTA model	DS2	67.7	$\mathbf{6 5 . 2}$	$\mathbf{5 6 . 8}$
Our model	DS2	$\mathbf{6 7 . 9}$	nan	49.6
SOTA model	DS3	77.6	$\mathbf{7 4 . 1}$	92.8
Our model	DS3	$\mathbf{7 9 . 0}$	$\mathbf{7 4 . 1}$	$\mathbf{9 3 . 4}$

\Longrightarrow Wake up and smell the coffee

Results analysis

- Identify overall trends
- Identify potential sources of problems (or bugs)
- Ensure conclusions are valid, claims are (statistically) sound

Experimental results

- Diversity of experiments \Longrightarrow diversity of results
\rightarrow Task at hand
\rightarrow Datasets
\rightarrow Evaluation metrics
\rightarrow...
- This course : no silver bullet, rather a toolbox
- Focus on examples

Statistics

- A mathematical framework to analyse data
- Solid foundations : probability theory
\rightarrow Statistics $=$ data + probability theory
- Statistical inference \Longrightarrow data science, machine learning
\rightarrow Also : finances, health, biology, physics, social sciences, ...
- Identify trends, check hypotheses, measure correlations, ...

The problem with statistics

Finding good learning materials in statistics is hard
Too theoretical :

Too applied :

Avec les Nuls, tout devient facile !
Formules et fonctions pour Excel 2019 les nuls

Weak Law of Large Numbers
The weak law of large numbers (cf. the strong law of large numbers) is a result in probability theory also known as Bernoulli's theorem. Let X_{1}, \ldots, X_{n} be a sequence of independent and identically distributed random variables, each having a mean $\left\langle X_{i}\right\rangle=\mu$ and standard deviati σ. Define a new variable

$$
X=\frac{X_{1}+\ldots+X_{n}}{n} .
$$

Then, as $n \rightarrow \infty$, the sample mean $\langle x\rangle$ equals the population mean μ of each variable

$$
\begin{aligned}
& \langle X\rangle=\left\{\frac{X_{1}+\ldots+X_{n}}{n}\right\rangle \\
& =\frac{1}{n}\left(\left\langle X_{1}\right\rangle+\ldots+\left(X_{n}\right)\right) \\
& =\frac{n \mu}{n} \\
& =\mu . \\
& \begin{aligned}
\operatorname{var}(X) & =\operatorname{var}\left(\frac{X_{1}+\ldots+X_{n}}{n}\right) \\
& =\operatorname{var}\left(\frac{X_{1}}{n}\right)+\ldots+\operatorname{var}\left(\frac{X_{n}}{n}\right) \\
& =\frac{\sigma^{2}}{n^{2}}+\ldots+\frac{\sigma^{2}}{n^{2}} \\
& =\frac{\sigma^{2}}{n} .
\end{aligned}
\end{aligned}
$$

In addition,

Therefore, by the Chebyshev inequality, for all $\epsilon>0$,

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{var}(X)}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

What usually happens

- A given statistical tool is used without (full) understanding
- Statistical tools applied because supervisor/reviewer asked
- Give up trying to understand, just use it as a blackbox

From scratch : random variables i

- Experiment : flip 3 different coins, note head (H) or tail (T)
- The sample space S contains all possible experiment outcomes
\rightarrow The subsets of S are called events E_{i}
- The random variable X denots the number of heads (H)
- A variable whose exact value is unknown or irrelevant
- We know (or estimate) its probability distribution $P\left\{X=x_{i}\right\}$

E_{i}	$\{H H H\}$	$\{$ THH, HTH, HHT $\}$	$\{$ TTH, THT, HTT $\}$	$\{T T T\}$
$P\left(E_{i}\right)$	$1 / 8$	$1 / 8+1 / 8+1 / 8$	$1 / 8+1 / 8+1 / 8$	$1 / 8$
X	0	1	2	3
$P\left\{X=x_{i}\right\}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

From scratch : random variables ii

Formalisation

A random variable is a function $X: S \rightarrow \mathbb{R}$ such that:

1. Discrete random variable:
\rightarrow Its set of possible values $X(S)=\left\{x_{i}, i \in \mathbb{N}^{*}\right\}$ is countable
\rightarrow For all $x_{i} \in X(S):\left\{X=x_{i}\right\} \Leftrightarrow\left\{e_{i} \in S \mid X\left(e_{i}\right)=x_{i}\right\} \in \mathcal{F}$
$\rightarrow \mathcal{F}$ is the set of all possible events (subsets) of S
$\rightarrow p\left(x_{i}\right)=P\left\{X=x_{i}\right\}$ is the probability mass function of X
2. Continuous random variable :
$\rightarrow \forall$ value $x \in(-\infty,+\infty), \forall$ interval $B \in \mathbb{R}$
\rightarrow A non-negative function $P\{X \in B\}=\int_{B} f(x) d x$ exists
$\rightarrow f(x)$ is the probability density function of X

Independence assumptions

- Data items $X_{1} \ldots X_{n}$ can be seen as n random variables
- We assume that all items come from the same distribution
- We assume that all items are independent, that is :

$$
\rightarrow \forall X_{i} \neq X_{j}, \forall a, b \in X_{i}(S) \quad P\left\{X_{i}=a \mid X_{j}=b\right\}=P\left\{X_{i}=a\right\}
$$

- This is often stated as independent and identically distributed
\rightarrow The acronym i.i.d. is usually employed

Expected value, mean, law of large numbers

- The expected value of a discrete random variable :

$$
E[X]=p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}+\ldots=\sum_{x_{i} \in X(S)} p\left(x_{i}\right) x_{i}
$$

- The arithmetic mean of a collection of i.i.d. items $x_{1} \ldots x_{n}$:

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- The law of large numbers states that $\bar{x} \rightarrow E[X]$ for large n
\rightarrow The (sample) mean \bar{x} is an estimator of the expected value $E[X]$
\rightarrow The mean summarise the distribution in a single value

Variance, standard deviation

- Variance characterises the dispersion/spread of a distribution
\rightarrow Intuition : average distance from the expected value
$\rightarrow x_{i}-\bar{x}$ can be positive or negative \Longrightarrow square it !

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-E[X]^{2}
$$

\rightarrow Variance is always positive, expected value not necessarily

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/

Variance, standard deviation ii

- Variance averages squared differences
\rightarrow Its absolute value is hard to interpret
\rightarrow Bring back to original value range \rightarrow squared root
- The squared root of variance is called standard deviation

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

https://datatab.net/tutorial/dispersion-parameter

Variance, standard deviation iif

- Variance for known probability distribution :

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=\sum_{x_{i} \in X(S)}\left(x_{i}-\bar{x}\right)^{2} p\left(x_{i}\right)
$$

- Population variance estimator:

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)}{n} \quad \sigma_{X}=\sqrt{\operatorname{Var}(X)}
$$

- Sample variance, unbiased estimator:

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1} \quad s_{X}=\sqrt{\operatorname{Var}(X)}
$$

Normal distribution

- Well known distribution for continuous random variables
- Probability density function is a Gaussian bell-shaped curve
- Characterised by $E[X]=\mu$ and σ parameters
- Can be used to approximate binomial distribution for large n

Central limit theorem

- A properly normalised sum of i.i.d. random variables is normally distributed
\rightarrow Even if the variables are not normally distributed!
- The mean of i.i.d. random variables is normally distributed
\rightarrow Comes in handy to analyse metrics when they are means

Standardization

- Normal is hard to integrate analytically
\rightarrow Standardize $z=\frac{x-\mu}{\sigma}$
\rightarrow Use cumulative function table $\Phi(a)$

Plan

Correlation

Significance

Advanced data analysis

Discussion

Example : compositionality

- Is a dry run litteraly a run which is dry? \rightarrow not at all $\leftarrow 0-1$-2-3-4-5 \rightarrow absolutely yes
- Compositionality : average over 10-15 annotators
- Datasets : 180 compounds for English, French, Portuguese
\rightarrow https://aclanthology.org/J19-1001/

Compositionality of compounds

	compound_lemma	compositionality
$\mathbf{1 3 4}$	poule_mouillé	0.0000
$\mathbf{1 2 7}$	pied_noir	0.1333
$\mathbf{1 9}$	carte_blanc	0.2000
$\mathbf{1 5 1}$	septième_ciel	0.2143
$\mathbf{1 5}$	bouc_émissaire	0.2308
\ldots		\ldots
$\mathbf{0}$	activité_physique	4.9333
$\mathbf{5 5}$	eau_potable	5.0000
$\mathbf{1 7 0}$	téléphone_portable	5.0000
$\mathbf{9 6}$	matière_gras	5.0000
$\mathbf{5 2}$	eau_chaud	5.0000
$\mathbf{1 8 0}$	rows $\times 2$ columns	

Simple descriptive statistics

Two variables : scatter plot

- Variable X on x-axis, variable Y on y-axis
- plt.scatter (x,y)
- Linear regression can help visualise association
(b) FR-comp dataset

Example : compositionality and frequency

- Hypothesis : frequent compounds are judged less compositional
- How much variation in compositionality can be "accounted for" by variation in frequency?
- Relation between two real-valued random variables

Covariance

- Covariance is the normalized product of centered values ${ }^{2}$

$$
\operatorname{Cov}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

\rightarrow Both differences are positive or negative : product is positive
\rightarrow Both vary in opposite directions : product is negative

- Expected value of the product of (centered) variables

$$
\rightarrow \operatorname{Cov}(X, Y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

- What if X and Y have very different ranges?
\rightarrow Covariance is unbounded - ranges from $-\infty$ to $+\infty$
- Indicates whether a linear relation exists, but not its strength

2. Use n in denominator for population covariance

Pearson's linear correlation (r)

- Covariance normalised by individual variances

$$
r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y))}}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}}
$$

Weak Association

Large spread of Y when X is known

Strong Association

Small spread of Y when X is known

Correlation and standarisation

$$
\begin{aligned}
& r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}}=\frac{1}{n-1} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{X}}\right)\left(\frac{y_{i}-\bar{y}}{s_{Y}}\right)
\end{aligned}
$$

Correlation interpretation

- Ranges from -1 to +1
$\rightarrow r \approx+1$: strong positive association
$\rightarrow r \approx-1$: strong negative association
$\rightarrow r \approx 0$: weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation is unit-less

- Covariance is unbounded, depends on variable ranges
- Correlation : compare metrics with different ranges
\rightarrow Example : temperature in Celsius or Farehnheit $-r=0.74$

Correlation is symmetric

- Correlation is symmetric

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation shows linear association

- Correlation does not model non-linear association

[^0]
Spearman's rank correlation

- The actual compared X and Y values may be irrelevant \rightarrow Does X rank itmes more or less in the same order as Y ?
- Spearman's ρ : linear (Pearson) correlation between ranks
\rightarrow Models monotonic correlation
- In the presence of ties, correction is needed
\rightarrow Assign fractional ranks, for example

Spearman example

$$
\rho=\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

| IQ, $X_{i} \hat{*}$ | Hours of TV per week, $Y_{i} \hat{*}$ | rank $x_{i} \hat{*}$ | rank $y_{i} \stackrel{\rightharpoonup}{*}$ | $d_{i} \hat{*}$ | $d_{i}^{2} \hat{*}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 86 | 2 | 1 | 1 | 0 | 0 |
| 97 | 20 | 2 | 6 | -4 | 16 |
| 99 | 28 | 3 | 8 | -5 | 25 |
| 100 | 27 | 4 | 7 | -3 | 9 |
| 101 | 50 | 5 | 10 | -5 | 25 |
| 103 | 29 | 6 | 9 | -3 | 9 |
| 106 | 7 | 7 | 3 | 4 | 16 |
| 110 | 17 | 8 | 5 | 3 | 9 |
| 112 | 6 | 9 | 2 | 7 | 49 |
| 113 | 12 | 10 | 4 | 6 | 36 |

Source: https://en.wikipedia.org/wiki/Spearman_correlation

Kendall-tau correlation

- Rank correlation, distinguishes local/distant mismatches
\rightarrow Ranking an item 5 instead of 3 is not too bad
\rightarrow Ranking an item 58 instead of 3 is really bad
- Consider all possible pairs $\left(x_{i}, x_{j}\right)$ and $\left(y_{i}, y_{j}\right)$ with $i<j$
\rightarrow If $x_{i}<x_{j}$ and $y_{i}<y_{j} \Longrightarrow$ concordant
\rightarrow If $x_{i}>x_{j}$ and $y_{i}>y_{j} \Longrightarrow$ concordant
\rightarrow Else, discordant pairs

$$
\begin{aligned}
\tau & =\frac{\#(\text { concordant pairs })-\#(\text { discordant pairs })}{\#(\text { total pairs })} \\
& =1-\frac{2 \times \#(\text { discordant pairs })}{\binom{n}{2}}
\end{aligned}
$$

Example: https://www.statisticshowto.com/kendalls-tau/

Confounders

- Suppose X independent and Y dependent variables
- A confounder can influence both X and Y
- Correlation is not causation

Source: https://xkcd.com/552/

Spurious correlations

- Correlations can be found between unrelated variables
- Procrastinate : https://www.tylervigen.com/spurious-correlations \rightarrow What possible confounders could explain these correlations?

Divorce rate in Maine \equiv
correlates with
Per capita consumption of margarine

Plan

Correlation

Significance

Advanced data analysis

Discussion

Model/system comparison

- Incremental research
- State of the art or baseline system B
- My own proposal system A
- How can I check if A is better than B ?
- What's the probability of drawing a wrong conclusion?

Methodological framework

Take inspiration from health, biology, social siences

- Randomly assign people to 2 groups :
- Group A - treatment/vaccin
- Group B - placebo
- Define a relevant metric, apply on A and B :
- e.g. proportion P of healed people
- If $P_{A}>P_{B}$ the treatment/vaccin works
- Groups A and B-population sample
- Is this sample large/representative enough ?
- Is the observed difference $P_{A}-P_{B}$ significant ?

NLP system/model comparison

- We develop a system A
- Is it better than baseline/SOTA system B ?
- Idea :
- new/unseen data - test set
- apply A and B on test set
- compare their performances

Evaluation on held-out test set

- Test set
- $x=x^{(1)} \ldots x^{(m)}$ composed of m input examples
- $y=y^{(1)} \ldots y^{(m)}$ reference outputs (gold/correct/ground truth)
- Method :

1. Apply A to x to obtain \hat{y}_{A}, compare to y
2. Calculate the evaluation metric $M(A, x, y)$ - Example : accuracy

$$
M(A, x, y)=\frac{1}{m} \sum_{i=1}^{m} \delta\left(\hat{y}_{A}^{(i)}, y^{(i)}\right)
$$

3. Do the same for B, obtain $M(B, x, y)$
4. Calculate the difference (effect)

$$
\delta_{A-B}(x, y)=M(A, x, y)-M(B, x, y)
$$

- $\delta_{A-B}(x, y)>0 \Longrightarrow$ system A better than B

Evaluation on held-out test set

- Test set
- $x=x^{(1)} \ldots x^{(m)}$ composed of m input examples
- $y=y^{(1)} \ldots y^{(m)}$ reference outputs (gold/correct/ground truth)
- Method :

1. Apply A to x to obtain \hat{y}_{A}, compare to y
2. Calculate the evaluation metric $M(A, x, y)$ - Example : accuracy

$$
M(A, x, y)=\frac{1}{m} \sum_{i=1}^{m} \delta\left(\hat{y}_{A}^{(i)}, y^{(i)}\right)
$$

3. Do the same for B, obtain $M(B, x, y)$
4. Calculate the difference (effect)

$$
\delta_{A-B}(x, y)=M(A, x, y)-M(B, x, y)
$$

- $\delta_{A-B}(x, y)>0 \Longrightarrow$ system A better than B
- Really?

P-value

- Could the observed $\delta_{A-B}(x, y)>0$ be due to chance?
- x, y is a sample of a joint random variable X, Y
- What effect/difference would be observed for sample x^{\prime}, y^{\prime} ?
- What is the probability that A is actually no better than B ?

p-value

- Probability of drawing wrong conclusion
- When stating A better than B
- Given the observed effect $\delta_{A-B}(x, y)$
- We want to minimise this probability
- Usual threshold : $p<0.05 \Longrightarrow$ significant difference

Hypothesis testing

- $H_{0}: \delta(X, Y) \leq 0 \Longrightarrow$ if true, then A not better than B
- $H_{1}: \delta(X, Y)>0$
- $X, Y \rightarrow$ random variables, all possible test sets
- Of which x, y is an m-sized sample
- Reject $H_{0} \Longrightarrow$ significant difference between the systems
- \mathbf{P}-value : probability of observing $\delta_{A-B}(x, y)$ while H_{0} is true :
- $p-$ value $=P\left[\delta(X, Y) \geq \delta_{A-B}(x, y) \mid H_{0}\right]$
- probability to reject H_{0} when it is true

Type I and type II error i

- Type I error : false positives
- Rejecting H_{0} when it is actually true, OR
- Concluding that the observed difference greater than 0 ($A \gg B$) but it actually isn't $(A \leq \leq B)$
- If p-value is below the significance level (usually $\alpha=0.05$), we say that the difference is statistically significant
- In other words, if probability of making type I errors (p-value) is sufficiently low, we can reject H_{0}

Type I and type II error ii

- Type II error : false negatives
- Not rejecting H_{0} when it is actually false
- Concluding that the observed difference is no greater than 0 $(A \leq \leq B)$ but it actually is $(A \gg B)$
- A test's power is its probability of avoiding type II errors

Goal :

- Guarantee that probability of type-I errors upper bounded by α
- Achieve as high power as possible

Example : Student's t-test

- Difference of means
- Accuracy is a mean (Bernoulli trial averaged over m instances)
- $M(A, x, y)=\frac{1}{m} \sum_{i=1}^{m} \delta\left(\hat{y}_{A}^{(i)}, y^{(i)}\right)$
- $m=25, M(A, x, y)=0.88, M(B, x, y)=0.79, S E=0.08^{3}$

$$
\text { t-stat }=\frac{M(A, x, y)-M(B, x, y)}{S E / \sqrt{m}}=5,625
$$

- P-value : check Student's t table, $m-1$ degrees of freedom
- In practice : scipy stats.ttest_rel

3. $\mathrm{SE}=$ standard error, standard deviation of the difference $\hat{y}_{A}^{(i)}-y^{(i)}$.

Non parametric tests

- Problem of t-test : assumes $M(A, x, y) \sim$ normally distributed
- Other metrics :
- Recall $R=t p / t$ linear wrt. $t p, t$ constant
$\rightarrow t$-test OK \checkmark
- Precision $P=t p / p$ depends on p, unknown distribution
$\rightarrow t$-test not OK \boldsymbol{x}
- F -score $2 P R /(P+R)$ depends on P, unknown distribution
$\rightarrow t$-test not OK x
- Alternative : non parametric tests
- no sampling
- Fast
- Conservative, will not state $A>B$ for small δ (not powerful)
- with sampling (slow, powerful)
- E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/

Bootstrap

Idea : estimate M distribution by random re-sampling in x, y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html

Bootstrap for significance (Efron \& Tibshirani 1993)

Input

- test set $x=x^{(1)} \ldots x^{(m)}, y=y^{(1)} \ldots y^{(m)}$,
- predictions $\hat{y}_{A}^{(i)}$ et $\hat{y}_{B}^{(i)}$ of systems A and B for each item $x^{(i)}$
- evaluation metric $M(\cdot)$

```
deltaobs = M(A,x,y) - M(B,x,y) # observed difference
for i in range(R) : # R constant 10k - 100k
    xprim, yprim = sample(x,y,m) # sample m with repetition
    deltasample = M(A,xprim,yprim) - M(B,xprim,yprim)
    if deltasample > 2 * deltaobs :
        r = r + 1
pvalue = r/R
# % of surprising results
```

8 return pvalue

Evaluation metric M distribution vs. test

- Parametric test ($M(A, x, y)$ from known distribution)
- Paired Student's t-test
- Non-parametric tests ($M(A, x, y)$ from unknown distribution)
- No sampling (less powerful)
- Sign test
- McNemar's test
- Wilcoxon signed rank test
- Sampling (computationally expensive)
- Permutation (randomized approximation) test
- Bootstrap test

Which test to apply?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/

Multiple comparisons

- Multiple comparisons : probability of false claims increases
- Bonferroni's correction
- Divide significance level α by the number of datasets N
- Replicability analysis

P-hacking

A significant p-value can always be obtained for large-enough samples

Community's practice

\# papers that do not report significance	117	15
\# papers that report significance	63	18
\# papers that report significance but use the wrong statistical test	6	0
\# papers that report significance but do not mention the test name	21	3
\# papers that have to report replicability	110	19
\# papers that report replicability	3	4
\# papers that perform cross validation	23	5

Source: Dror et al. 2018

Plan

Correlation

Significance

Advanced data analysis

Discussion

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical ?
- Waht if we have more than 2 variables?

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical ?
- Waht if we have more than 2 variables?

Further statistical tools

- Information theory
- ANOVA
- Linear models
- Mixed models

Information theory

- Entropy : alternative view of variability/skewness
$\rightarrow H=-\sum p\left(x_{i}\right) \log p\left(x_{i}\right) \quad \rightarrow$ amount of uncertainty
$\rightarrow H=\max$ for uniform distribution (unpredictable)
$\rightarrow H=0$ for highly skewed distribution (predictable)
- Other useful notions :
\rightarrow Cross entropy
\rightarrow Mutual information
\rightarrow Kullbak-Leibler divergence (asymmetric)
\rightarrow Jensen-Shannon divergence (symmetric)

Models for categorical variables

- ANOVA : Generalise t-test for more than 2 means
- Linear model : predict a linear regression slope
\rightarrow Is the slope is significantly different from zero?
\rightarrow Notation : pitch $\approx \operatorname{sex}+\varepsilon$
- Mixed model : more sophisticated for multiple factors

Correlation

Significance

Advanced data analysis

Discussion

Statistics libraries

- Visual : Excel, Libreoffice, ...
- Python: matplotlib, numpy, scipy, sklearn,...
- R : multiple libraries including linear models
- Proprietary : Matlab, SPSS, ...

Error analysis

- Characterise the errors in our model
- Scripts to print characteristics of errors
\rightarrow Frequency, length, resolution, predicted/gold class, ...
\rightarrow Example: compounds predicted in wrongest positions
- Manual error annotation : taxonomies, guidelines
\rightarrow Gain insight on most promising improvements

Leaderboards, shared tasks

- Remember Goodhart's law (metric \neq objective)
- Beating state of the art is good
- Learning something interesting about the problem is better
- From time to time : remember the research question

Negative results

- Well designed hypothesis have more interesting "negative" results
- Experiments require persistence and some faith
- Source of frustration : publish or perish
\rightarrow Is it a problem with my results or with the system?
- Negative results are publishable if sound experimental design

Confirmation bias

- Tendency to favour interpretations that confirm initial beliefs
- Well studied in psychology
- May lead to cognitive dissonance
- Tool : try to demonstrate the opposite of the initial hypothesis
\rightarrow If you fail for long enough, maybe the initial hypothesis is true

Sources

- Cours d'Adeline Paiement
- Statistical Significance Testing for NLP (Dror et al. 2020)
- https://bodo-winter.net/tutorials.html (thanks Leonardo Pinto Arata)
- Wikipedia
- Google images

[^0]: https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

