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Expectation. . .

dataset metric1 metric2 metric3 1

SOTA model DS1 82.3 75.9 48.0
Our model DS1 95.3 89.8 65.4

SOTA model DS2 67.7 65.2 56.8
Our model DS2 80.3 91.1 69.8

SOTA model DS3 77.6 74.1 92.8
Our model DS3 84.9 78.3 98.1

=⇒ Our model is better than state of the art !

1. Higher is better
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. . . Vs. reality !

dataset metric1 metric2 metric3
SOTA model DS1 82.3 75.9 48.0
Our model DS1 80.7 76.2 50.4

SOTA model DS2 67.7 65.2 56.8
Our model DS2 67.9 nan 49.6

SOTA model DS3 77.6 74.1 92.8
Our model DS3 79.0 74.1 93.4

=⇒ Wake up and smell the coffee
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Results analysis

• Identify overall trends

• Identify potential sources of problems (or bugs)

• Ensure conclusions are valid, claims are (statistically) sound
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Experimental results

• Diversity of experiments =⇒ diversity of results
→ Task at hand

→ Datasets

→ Evaluation metrics

→ . . .

• This course : no silver bullet, rather a toolbox
• Focus on examples
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Statistics

• A mathematical framework to analyse data
• Solid foundations : probability theory

→ Statistics = data + probability theory

• Statistical inference =⇒ data science, machine learning
→ Also : finances, health, biology, physics, social sciences, . . .

• Identify trends, check hypotheses, measure correlations, . . .

5/63

5



The problem with statistics

Finding good learning materials in statistics is hard

Too applied :
Too theoretical :
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What usually happens

• A given statistical tool is used without (full) understanding

• Statistical tools applied because supervisor/reviewer asked

• Give up trying to understand, just use it as a blackbox

7/63

7



From scratch : random variables i

• Experiment : flip 3 different coins, note head (H) or tail (T)

• The sample space S contains all possible experiment outcomes
→ The subsets of S are called events Ei

• The random variable X denots the number of heads (H)
• A variable whose exact value is unknown or irrelevant
• We know (or estimate) its probability distribution P{X = xi}

Ei {HHH} {THH,HTH,HHT} {TTH,THT ,HTT} {TTT}
P(Ei ) 1/8 1/8 + 1/8 + 1/8 1/8 + 1/8 + 1/8 1/8
X 0 1 2 3

P{X = xi} 1/8 3/8 3/8 1/8
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From scratch : random variables ii

Formalisation
A random variable is a function X : S → R such that :

1. Discrete random variable :
→ Its set of possible values X (S) = {xi , i ∈ N∗} is countable

→ For all xi ∈ X (S) : {X = xi} ⇔ {ei ∈ S |X (ei ) = xi} ∈ F

→ F is the set of all possible events (subsets) of S

→ p(xi ) = P{X = xi} is the probability mass function of X

2. Continuous random variable :
→ ∀ value x ∈ (−∞,+∞), ∀ interval B ∈ R

→ A non-negative function P{X ∈ B} =
∫
B
f (x) dx exists

→ f (x) is the probability density function of X
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Independence assumptions

• Data items X1 . . .Xn can be seen as n random variables

• We assume that all items come from the same distribution

• We assume that all items are independent, that is :
→ ∀Xi ̸= Xj , ∀a, b ∈ Xi (S) P{Xi = a|Xj = b} = P{Xi = a}

• This is often stated as independent and identically distributed
→ The acronym i.i.d. is usually employed
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Expected value, mean, law of large numbers

• The expected value of a discrete random variable :

E [X ] = p(x1)x1 + p(x2)x2 + . . . =
∑

xi∈X (S)

p(xi )xi

• The arithmetic mean of a collection of i.i.d. items x1 . . . xn :

x =
x1 + x2 + . . .+ xn

n
=

1
n

n∑
i=1

xi

• The law of large numbers states that x → E [X ] for large n

→ The (sample) mean x is an estimator of the expected value E [X ]

→ The mean summarise the distribution in a single value
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Variance, standard deviation i

• Variance characterises the dispersion/spread of a distribution
→ Intuition : average distance from the expected value
→ xi − x can be positive or negative =⇒ square it !

Var(X ) = E [(X − E [X ])2] = E [X 2]− E [X ]2

→ Variance is always positive, expected value not necessarily

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/
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Variance, standard deviation ii

• Variance averages squared differences
→ Its absolute value is hard to interpret

→ Bring back to original value range → squared root

• The squared root of variance is called standard deviation

σ =
√
Var(X )

https://datatab.net/tutorial/dispersion-parameter
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Variance, standard deviation iii

• Variance for known probability distribution :

Var(X ) = E [(X − E [X ])2] =
∑

xi∈X (S)

(xi − x)2p(xi )

• Population variance estimator :

Var(X ) = E [(X − E [X ])2] =
n∑

i=1

(xi − x)

n
σX =

√
Var(X )

• Sample variance, unbiased estimator :

Var(X ) =
n∑

i=1

(xi − x)2

n − 1
sX =

√
Var(X )
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Normal distribution

• Well known distribution for continuous random variables

• Probability density function is a Gaussian bell-shaped curve

• Characterised by E [X ] = µ and σ parameters

• Can be used to approximate binomial distribution for large n
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Central limit theorem

• A properly normalised sum of i.i.d. random variables is
normally distributed
→ Even if the variables are not normally distributed !

• The mean of i.i.d. random variables is normally distributed
→ Comes in handy to analyse metrics when they are means
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Standardization

• Normal is hard to integrate analytically
→ Standardize z = x−µ

σ

→ Use cumulative function table Φ(a)

17/63

17



Plan

Correlation

Significance

Advanced data analysis

Discussion

18/63

18



Example : compositionality

• Is a dry run litteraly a run which is dry ?
→ not at all ←0 - 1 - 2 - 3 - 4 - 5 → absolutely yes

• Compositionality : average over 10-15 annotators

• Datasets : 180 compounds for English, French, Portuguese
→ https://aclanthology.org/J19-1001/
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Compositionality of compounds
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Simple descriptive statistics

count 180.000000
mean 2.770321
std 1.505560
min 0.000000
max 5.000000
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Two variables : scatter plot

• Variable X on x-axis, variable Y on y -axis

• plt.scatter(x,y)

• Linear regression can help visualise association
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Example : compositionality and frequency

• Hypothesis : frequent compounds are judged less compositional

• How much variation in compositionality can be “accounted for”
by variation in frequency ?

• Relation between two real-valued random variables
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Covariance

• Covariance is the normalized product of centered values 2

Cov(X ,Y ) =

∑n
i=1(xi − x)(yi − y)

n − 1

→ Both differences are positive or negative : product is positive

→ Both vary in opposite directions : product is negative

• Expected value of the product of (centered) variables
→ Cov(X ,Y ) = E [(X − E [X ])(Y − E [Y ])] = E [XY ]− E [X ]E [Y ]

• What if X and Y have very different ranges ?
→ Covariance is unbounded - ranges from −∞ to +∞

• Indicates whether a linear relation exists, but not its strength

2. Use n in denominator for population covariance
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Pearson’s linear correlation (r)

• Covariance normalised by individual variances

rX ,Y =
Cov(X ,Y )√

Var(X )Var(Y ))
=

Cov(X ,Y )

sX sY

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation and standarisation

rX ,Y =
Cov(X ,Y )

sX sY
=

1
n − 1

∑n
i=1(xi − x)(yi − y)

sX sY

=
1

n − 1

n∑
i=1

(
xi − x

sX

)(
yi − y

sY

)

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
26/63

26

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf


Correlation interpretation

• Ranges from −1 to +1
→ r ≈ +1 : strong positive association

→ r ≈ −1 : strong negative association

→ r ≈ 0 : weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation is unit-less

• Covariance is unbounded, depends on variable ranges

• Correlation : compare metrics with different ranges
→ Example : temperature in Celsius or Farehnheit – r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation is symmetric

• Correlation is symmetric

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation shows linear association

• Correlation does not model non-linear association

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Spearman’s rank correlation

• The actual compared X and Y values may be irrelevant
→ Does X rank itmes more or less in the same order as Y ?

• Spearman’s ρ : linear (Pearson) correlation between ranks
→ Models monotonic correlation

• In the presence of ties, correction is needed
→ Assign fractional ranks, for example
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Spearman example

ρ =
6
∑

d2
i

n(n2 − 1)

Source: https://en.wikipedia.org/wiki/Spearman_correlation
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Kendall-tau correlation

• Rank correlation, distinguishes local/distant mismatches
→ Ranking an item 5 instead of 3 is not too bad

→ Ranking an item 58 instead of 3 is really bad

• Consider all possible pairs (xi , xj) and (yi , yj) with i < j

→ If xi < xj and yi < yj =⇒ concordant

→ If xi > xj and yi > yj =⇒ concordant

→ Else, discordant pairs

τ =
#(concordant pairs)−#(discordant pairs)

#(total pairs)

= 1 − 2 ×#(discordant pairs)(n
2

)
Example : https://www.statisticshowto.com/kendalls-tau/
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Confounders

• Suppose X independent and Y dependent variables

• A confounder can influence both X and Y

• Correlation is not causation

Source: https://xkcd.com/552/
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Spurious correlations

• Correlations can be found between unrelated variables

• Procrastinate : https://www.tylervigen.com/spurious-correlations

→ What possible confounders could explain these correlations ?
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Model/system comparison

• Incremental research
• State of the art or baseline system B
• My own proposal system A

• How can I check if A is better than B ?

• What’s the probability of drawing a wrong conclusion ?

Methodological framework
Take inspiration from health, biology, social siences
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Randomised double-blind trial

• Randomly assign people to 2 groups :
• Group A - treatment/vaccin
• Group B - placebo

• Define a relevant metric, apply on A and B :
• e.g. proportion P of healed people

• If PA > PB the treatment/vaccin works

• Groups A and B - population sample
• Is this sample large/representative enough ?
• Is the observed difference PA − PB significant ?
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NLP system/model comparison

• We develop a system A

• Is it better than baseline/SOTA system B ?

• Idea :
• new/unseen data - test set
• apply A and B on test set
• compare their performances
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Evaluation on held-out test set

• Test set
• x = x (1) . . . x (m) composed of m input examples
• y = y (1) . . . y (m) reference outputs (gold/correct/ground truth)

• Method :
1. Apply A to x to obtain ŷA, compare to y

2. Calculate the evaluation metric M(A, x , y) - Example :
accuracy

M(A, x , y) =
1
m

m∑
i=1

δ(ŷ
(i)
A , y (i))

3. Do the same for B, obtain M(B, x , y)

4. Calculate the difference (effect)

δA−B(x , y) = M(A, x , y)−M(B, x , y)

• δA−B(x , y) > 0 =⇒ system A better than B

• Really ?
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P-value

• Could the observed δA−B(x , y) > 0 be due to chance ?
• x , y is a sample of a joint random variable X ,Y

• What effect/difference would be observed for sample x ′, y ′ ?
• What is the probability that A is actually no better than B ?

p-value

• Probability of drawing wrong conclusion
• When stating A better than B

• Given the observed effect δA−B(x , y)

• We want to minimise this probability

• Usual threshold : p < 0.05 =⇒ significant difference
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Hypothesis testing

• H0 : δ(X ,Y ) ≤ 0 =⇒ if true, then A not better than B

• H1 : δ(X ,Y ) > 0

• X ,Y → random variables, all possible test sets
• Of which x , y is an m-sized sample

• Reject H0 =⇒ significant difference between the systems

• P-value : probability of observing δA−B(x , y) while H0 is
true :

• p − value = P[δ(X ,Y ) ≥ δA−B(x , y)|H0]

• probability to reject H0 when it is true
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Type I and type II error i

• Type I error : false positives
• Rejecting H0 when it is actually true, OR
• Concluding that the observed difference greater than 0

(A >> B) but it actually isn’t (A ≤≤ B)

• If p-value is below the significance level (usually α = 0.05), we
say that the difference is statistically significant

• In other words, if probability of making type I errors (p-value)
is sufficiently low, we can reject H0
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Type I and type II error ii

• Type II error : false negatives
• Not rejecting H0 when it is actually false
• Concluding that the observed difference is no greater than 0

(A ≤≤ B) but it actually is (A >> B)

• A test’s power is its probability of avoiding type II errors

Goal :

• Guarantee that probability of type-I errors upper bounded by α

• Achieve as high power as possible
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Example : Student’s t-test

• Difference of means
• Accuracy is a mean (Bernoulli trial averaged over m instances)
• M(A, x , y) = 1

m

∑m
i=1 δ(ŷ

(i)
A , y (i))

• m = 25,M(A, x , y) = 0.88,M(B, x , y) = 0.79,SE = 0.08 3

t-stat =
M(A, x , y)−M(B, x , y)

SE/
√
m

= 5, 625

• P-value : check Student’s t table, m − 1 degrees of freedom

• In practice : scipy stats.ttest_rel

3. SE = standard error, standard deviation of the difference ŷ
(i)
A − y (i).

45/63

45



Non parametric tests

• Problem of t-test : assumes M(A, x , y) ∼ normally distributed
• Other metrics :

• Recall R = tp/t linear wrt. tp, t constant
→ t-test OK ✓

• Precision P = tp/p depends on p, unknown distribution
→ t-test not OK ✗

• F-score 2PR/(P + R) depends on P, unknown distribution
→ t-test not OK ✗

• Alternative : non parametric tests
• no sampling

• Fast
• Conservative, will not state A > B for small δ (not powerful)

• with sampling (slow, powerful)
• E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/
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Bootstrap

Idea : estimate M distribution by random re-sampling in x , y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html
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Bootstrap for significance (Efron & Tibshirani 1993)

Input

• test set x = x (1) . . . x (m), y = y (1) . . . y (m),

• predictions ŷ
(i)
A et ŷ (i)B of systems A and B for each item x (i)

• evaluation metric M(·)

1 deltaobs = M(A,x,y) - M(B,x,y) # observed difference
2 for i in range(R) : # R constant 10k - 100k
3 xprim , yprim = sample(x,y,m) # sample m with repetition
4 deltasample = M(A,xprim ,yprim) - M(B,xprim ,yprim)
5 if deltasample > 2 * deltaobs :
6 r = r + 1
7 pvalue = r/R # % of surprising results
8 return pvalue
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Evaluation metric M distribution vs. test

• Parametric test (M(A, x , y) from known distribution)
• Paired Student’s t-test

• Non-parametric tests (M(A, x , y) from unknown distribution)
• No sampling (less powerful)

• Sign test
• McNemar’s test
• Wilcoxon signed rank test

• Sampling (computationally expensive)
• Permutation (randomized approximation) test
• Bootstrap test
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Which test to apply ?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/
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Multiple comparisons

• Multiple comparisons : probability of false claims increases

• Bonferroni’s correction
• Divide significance level α by the number of datasets N

• Replicability analysis

P-hacking
A significant p-value can always be obtained for large-enough
samples
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Community’s practice

Source: Dror et al. 2018
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Advanced data analysis

• Correlation works well for 2 numerical variables

• What if the variables are categorical ?

• Waht if we have more than 2 variables ?

Further statistical tools

• Information theory

• ANOVA

• Linear models

• Mixed models

• . . .
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Information theory

• Entropy : alternative view of variability/skewness
→ H = −

∑
p(xi ) log p(xi ) → amount of uncertainty

→ H = max for uniform distribution (unpredictable)

→ H = 0 for highly skewed distribution (predictable)

• Other useful notions :
→ Cross entropy

→ Mutual information

→ Kullbak-Leibler divergence (asymmetric)

→ Jensen–Shannon divergence (symmetric)
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Models for categorical variables

• ANOVA : Generalise t-test for more than 2 means
• Linear model : predict a linear regression slope

→ Is the slope is significantly different from zero ?

→ Notation : pitch ≈ sex +ε

• Mixed model : more sophisticated for multiple factors

Source: https ://bodo-winter.net/tutorials.html
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Statistics libraries

• Visual : Excel, Libreoffice, . . .

• Python : matplotlib, numpy, scipy, sklearn, . . .

• R : multiple libraries including linear models

• Proprietary : Matlab, SPSS, . . .
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Error analysis

• Characterise the errors in our model

• Scripts to print characteristics of errors
→ Frequency, length, resolution, predicted/gold class, . . .

→ Example : compounds predicted in wrongest positions

• Manual error annotation : taxonomies, guidelines
→ Gain insight on most promising improvements
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Leaderboards, shared tasks

• Remember Goodhart’s law (metric ̸= objective)

• Beating state of the art is good

• Learning something interesting about the problem is better

• From time to time : remember the research question
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Negative results

• Well designed hypothesis have more interesting “negative”
results

• Experiments require persistence and some faith

• Source of frustration : publish or perish
→ Is it a problem with my results or with the system ?

• Negative results are publishable if sound experimental design
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Confirmation bias

• Tendency to favour interpretations that confirm initial beliefs

• Well studied in psychology

• May lead to cognitive dissonance

• Tool : try to demonstrate the opposite of the initial hypothesis
→ If you fail for long enough, maybe the initial hypothesis is true
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Sources

• Cours d’Adeline Paiement

• Statistical Significance Testing for NLP (Dror et al. 2020)

• https://bodo-winter.net/tutorials.html (thanks
Leonardo Pinto Arata)

• Wikipedia

• Google images
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