Recherche Zen Séance 4 : Analyses

Carlos Ramisch and Manon Scholivet Partly based on the course by Adeline Paiement 03 avril 2023

	dataset	metric1	metric2	metric3 ¹
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	95.3	89.8	65.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	80.3	91.1	69.8
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	84.9	78.3	98.1

1. Higher is better

	dataset	metric1	metric2	metric3 ¹
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	95.3	89.8	65.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	80.3	91.1	69.8
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	84.9	78.3	98.1

 \implies Our model is better than state of the art ! 🎉

1. Higher is better

	dataset	metric1	metric2	metric3
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	80.7	76.2	50.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	67.9	nan	49.6
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	79.0	74.1	93.4

	dataset	metric1	metric2	metric3
SOTA model	DS1	82.3	75.9	48.0
Our model	DS1	80.7	76.2	50.4
SOTA model	DS2	67.7	65.2	56.8
Our model	DS2	67.9	nan	49.6
SOTA model	DS3	77.6	74.1	92.8
Our model	DS3	79.0	74.1	93.4

 \Rightarrow Wake up and smell the coffee $\stackrel{ullet}{=}$

- Identify overall trends
- Identify potential sources of problems (or bugs)
- Ensure conclusions are valid, claims are (statistically) sound

Experimental results

- \bullet Diversity of experiments \implies diversity of results
 - ightarrow Task at hand
 - ightarrow Datasets
 - \rightarrow Evaluation metrics
 - $\rightarrow \dots$
- This course : no silver bullet, rather a toolbox
- Focus on examples

Statistics

- A mathematical framework to analyse data
- Solid foundations : probability theory

 \rightarrow Statistics = data + probability theory

• Statistical inference \implies data science, machine learning

ightarrow Also : finances, health, biology, physics, social sciences, \ldots

• Identify trends, check hypotheses, measure correlations,

Finding good learning materials in statistics is hard

Too applied :

Too theoretical :

Weak Law of Large Numbers

The weak law of large numbers (cf. the strong law of large numbers) is a result in probability theory also known as Bernoulli's theorem. Let $X_1, ..., X_k$ be a sequence of independent and identically distributed random variables, each having a mean $(X_i) = \mu$ and standard deviatis σ . Define a new variable

$$X \equiv \frac{X_1 + \ldots + X_n}{n}.$$

Then, as $n \rightarrow \infty$, the sample mean (x) equals the population mean μ of each variable.

$$\langle X \rangle = \left(\frac{X_1 + \dots + X_n}{n} \right)$$

 $= \frac{1}{n} \left(\langle X_1 \rangle + \dots + \langle X_n \rangle \right)$
 $= \frac{n \mu}{n}$
 $= \mu_i$

In addition,

$$\begin{aligned} \operatorname{var}\left(X\right) &= \operatorname{var}\left(\frac{X_1 + \ldots + X_n}{n}\right) \\ &= \operatorname{var}\left(\frac{X_1}{n}\right) + \ldots + \operatorname{var}\left(\frac{X_n}{n}\right) \\ &= \frac{\sigma^2}{n^2} + \ldots + \frac{\sigma^2}{n^2} \\ &= \frac{\sigma^2}{n}. \end{aligned}$$

Therefore, by the Chebyshev inequality, for all $\epsilon > 0$,

$$P(|X - \mu| \ge \epsilon) \le \frac{\operatorname{var}(X)}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}.$$

- A given statistical tool is used without (full) understanding
- Statistical tools applied because supervisor/reviewer asked
- Give up trying to understand, just use it as a blackbox

From scratch : random variables i

- Experiment : flip 3 different coins, note head (H) or tail (T)
- The sample space S contains all possible experiment outcomes \rightarrow The subsets of S are called events E_i
- The random variable X denots the number of heads (H)
 - A variable whose exact value is unknown or irrelevant
 - We know (or estimate) its probability distribution $P\{X = x_i\}$

Ei	$\{HHH\}$	$\{THH, HTH, HHT\}$	$\{TTH, THT, HTT\}$	$\{TTT\}$
$P(E_i)$	1/8	1/8 + 1/8 + 1/8	1/8 + 1/8 + 1/8	1/8
X	0	1	2	3
$P\{X=x_i\}$	1/8	3/8	3/8	1/8

Formalisation

A random variable is a function $X : S \to \mathbb{R}$ such that :

- 1. Discrete random variable :
 - \rightarrow Its set of possible values $X(S) = \{x_i, i \in \mathbb{N}^*\}$ is countable
 - $\rightarrow \text{ For all } x_i \in X(S): \{X = x_i\} \Leftrightarrow \{e_i \in S | X(e_i) = x_i\} \in \mathcal{F}$
 - \rightarrow ${\cal F}$ is the set of all possible events (subsets) of S
 - $\rightarrow p(x_i) = P\{X = x_i\}$ is the probability mass function of X
- 2. Continuous random variable :

 \rightarrow \forall value $x \in (-\infty, +\infty), \ \forall$ interval $B \in \mathbb{R}$

 \rightarrow A non-negative function $P\{X \in B\} = \int_B f(x) dx$ exists

 \rightarrow f(x) is the probability density function of X

- Data items $X_1 \dots X_n$ can be seen as *n* random variables
- We assume that all items come from the same distribution
- We assume that all items are independent, that is : $\rightarrow \forall X_i \neq X_i, \forall a, b \in X_i(S) \quad P\{X_i = a | X_i = b\} = P\{X_i = a\}$
- This is often stated as independent and identically distributed \rightarrow The acronym i.i.d. is usually employed

• The expected value of a discrete random variable :

$$E[X] = p(x_1)x_1 + p(x_2)x_2 + \ldots = \sum_{x_i \in X(S)} p(x_i)x_i$$

• The arithmetic mean of a collection of i.i.d. items $x_1 \dots x_n$:

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n} = \frac{1}{n} \sum_{i=1}^n x_i$$

• The law of large numbers states that $\overline{x} \to E[X]$ for large n

 \rightarrow The (sample) mean \overline{x} is an estimator of the expected value E[X]

 $\rightarrow\,$ The mean summarise the distribution in a single value

Variance, standard deviation i

- Variance characterises the dispersion/spread of a distribution
 - \rightarrow Intuition : average distance from the expected value
 - $\rightarrow x_i \overline{x}$ can be positive or negative \implies square it !

$$Var(X) = E[(X - E[X])^2] = E[X^2] - E[X]^2$$

ightarrow Variance is always positive, expected value not necessarily

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/

Variance, standard deviation ii

- Variance averages squared differences
 - \rightarrow Its absolute value is hard to interpret
 - $\rightarrow\,$ Bring back to original value range $\rightarrow\,$ squared root
- The squared root of variance is called standard deviation

$$\sigma = \sqrt{Var(X)}$$

Variance, standard deviation iii

• Variance for known probability distribution :

$$Var(X) = E[(X - E[X])^2] = \sum_{x_i \in X(S)} (x_i - \overline{x})^2 p(x_i)$$

• Population variance estimator :

$$Var(X) = E[(X - E[X])^2] = \sum_{i=1}^n \frac{(x_i - \overline{x})}{n} \qquad \sigma_X = \sqrt{Var(X)}$$

• Sample variance, unbiased estimator :

$$Var(X) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1}$$
 $s_X = \sqrt{Var(X)}$

Normal distribution

- Well known distribution for continuous random variables
- Probability density function is a Gaussian bell-shaped curve
- Characterised by $E[X] = \mu$ and σ parameters
- Can be used to approximate binomial distribution for large n

• A properly normalised sum of i.i.d. random variables is normally distributed

 \rightarrow Even if the variables are not normally distributed !

• The mean of i.i.d. random variables is normally distributed \rightarrow Comes in handy to analyse metrics when they are means

Standardization

- Normal is hard to integrate analytically
 - \rightarrow Standardize $z = \frac{x-\mu}{\sigma}$
 - \rightarrow Use cumulative function table $\Phi(a)$

17/63

Correlation

Significance

Advanced data analysis

Discussion

- Is a <u>dry run</u> litteraly a <u>run</u> which is <u>dry</u>?
 → not at all ←0 1 2 3 4 5 → absolutely yes
- Compositionality : average over 10-15 annotators
- Datasets : 180 compounds for English, French, Portuguese
 → https://aclanthology.org/J19-1001/

Compositionality of compounds

	compound_lemma	compositionality		
134	poule_mouillé	0.0000		
127	pied_noir	0.1333		
19	carte_blanc	0.2000		
151	septième_ciel	0.2143		
15	bouc_émissaire	0.2308		
0	activité_physique	4.9333		
55	eau_potable	5.0000		
170	téléphone_portable	5.0000		
96	matière_gras	5.0000		
52	eau_chaud	5.0000		
180 rows × 2 columns				

20/63

Simple descriptive statistics

- 180.000000 count
- 2.770321 mean
- std 1.505560
- 0.000000 min
- max

5.000000

Two variables : scatter plot

- Variable X on x-axis, variable Y on y-axis
- plt.scatter(x,y)
- Linear regression can help visualise association

Example : compositionality and frequency

- Hypothesis : frequent compounds are judged less compositional
- How much variation in compositionality can be "accounted for" by variation in frequency?
- Relation between two real-valued random variables

• Covariance is the normalized product of centered values²

$$Cov(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

 \rightarrow Both differences are positive or negative : product is positive \rightarrow Both vary in opposite directions : product is negative

- Expected value of the product of (centered) variables $\rightarrow Cov(X, Y) = E[(X - E[X])(Y - E[Y])] = E[XY] - E[X]E[Y]$
- What if X and Y have very different ranges?

 \rightarrow Covariance is unbounded - ranges from $-\infty$ to $+\infty$

• Indicates whether a linear relation exists, but not its strength

^{2.} Use n in denominator for population covariance

Pearson's linear correlation (r)

• Covariance normalised by individual variances

$$r_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}} = \frac{Cov(X,Y)}{s_X s_Y}$$

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation and standarisation

$$r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y} = \frac{1}{n-1} \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s_X}\right) \left(\frac{y_i - \overline{y}}{s_Y}\right)$$

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

26/63

Correlation interpretation

- Ranges from -1 to +1
 - \rightarrow $r\approx+1$: strong positive association
 - ightarrow r pprox -1 : strong negative association
 - ightarrow r pprox 0 : weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation is unit-less

- Covariance is unbounded, depends on variable ranges
- Correlation : compare metrics with different ranges

 \rightarrow Example : temperature in Celsius or Farehnheit – r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation is symmetric

• Correlation is symmetric

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

• Correlation does not model non-linear association

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

• The actual compared X and Y values may be irrelevant

 \rightarrow Does X rank itmes more or less in the same order as Y?

- Spearman's ρ : linear (Pearson) correlation between ranks \rightarrow Models monotonic correlation
- In the presence of ties, correction is needed

 \rightarrow Assign fractional ranks, for example

Spearman example

$$p = \frac{6\sum d_i^2}{n(n^2 - 1)}$$

IQ, $X_i \blacklozenge$	Hours of TV per week, $Y_i \Leftrightarrow$	rank $x_i \Rightarrow$	rank $y_i \Rightarrow$	$d_i ~\clubsuit~$	$d_i^2 ~\clubsuit~$
86	2	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Source: https://en.wikipedia.org/wiki/Spearman_correlation

32/63

Kendall-tau correlation

- Rank correlation, distinguishes local/distant mismatches
 - ightarrow Ranking an item 5 instead of 3 is not too bad
 - ightarrow Ranking an item 58 instead of 3 is really bad
- Consider all possible pairs (x_i, x_j) and (y_i, y_j) with i < j
 - \rightarrow If $x_i < x_j$ and $y_i < y_j \implies$ concordant
 - \rightarrow If $x_i > x_j$ and $y_i > y_j \implies$ concordant

ightarrow Else, discordant pairs

$$au = rac{\#(ext{concordant pairs}) - \#(ext{discordant pairs})}{\#(ext{total pairs})} = 1 - rac{2 imes \#(ext{discordant pairs})}{\binom{n}{2}}$$

Example : https://www.statisticshowto.com/kendalls-tau/

Confounders

- Suppose X independent and Y dependent variables
- A confounder can influence both X and Y
- Correlation is not causation

Source: https://xkcd.com/552/

Spurious correlations

- Correlations can be found between unrelated variables
- Procrastinate : https://www.tylervigen.com/spurious-correlations
 - ightarrow What possible confounders could explain these correlations?

Correlation

Significance

Advanced data analysis

Discussion

- Incremental research
 - State of the art or baseline system B
 - My own proposal system A
- How can I check if A is better than B?
- What's the probability of drawing a wrong conclusion?

Methodological framework

Take inspiration from health, biology, social siences

Randomised double-blind trial

- Randomly assign people to 2 groups :
 - Group A treatment/vaccin
 - Group *B* placebo
- Define a relevant metric, apply on A and B :
 - e.g. proportion P of healed people
- If $P_A > P_B$ the treatment/vaccin works
- Groups A and B population sample
 - Is this sample large/representative enough?
 - Is the observed difference $P_A P_B$ significant?

- We develop a system A
 - Is it better than baseline/SOTA system B?
- Idea :
 - new/unseen data test set
 - apply A and B on test set
 - compare their performances

Evaluation on held-out test set

- Test set
 - $x = x^{(1)} \dots x^{(m)}$ composed of *m* input examples
 - $y = y^{(1)} \dots y^{(m)}$ reference outputs (gold/correct/ground truth)
- Method :
 - 1. Apply A to x to obtain \hat{y}_A , compare to y
 - Calculate the evaluation metric M(A, x, y) Example : accuracy

$$M(A, x, y) = \frac{1}{m} \sum_{i=1}^{m} \delta(\hat{y}_{A}^{(i)}, y^{(i)})$$

- 3. Do the same for B, obtain M(B, x, y)
- 4. Calculate the difference (effect)

$$\delta_{A-B}(x,y) = M(A,x,y) - M(B,x,y)$$

• $\delta_{A-B}(x,y) > 0 \implies$ system A better than B

Evaluation on held-out test set

- Test set
 - $x = x^{(1)} \dots x^{(m)}$ composed of *m* input examples
 - $y = y^{(1)} \dots y^{(m)}$ reference outputs (gold/correct/ground truth)
- Method :
 - 1. Apply A to x to obtain \hat{y}_A , compare to y
 - Calculate the evaluation metric M(A, x, y) Example : accuracy

$$M(A, x, y) = \frac{1}{m} \sum_{i=1}^{m} \delta(\hat{y}_{A}^{(i)}, y^{(i)})$$

- 3. Do the same for B, obtain M(B, x, y)
- 4. Calculate the difference (effect)

$$\delta_{A-B}(x,y) = M(A,x,y) - M(B,x,y)$$

δ_{A−B}(x, y) > 0 ⇒ system A better than B
 Really ?

P-value

- Could the observed $\delta_{A-B}(x, y) > 0$ be due to chance?
 - x, y is a sample of a joint random variable X, Y
 - What effect/difference would be observed for sample x', y'?
 - What is the probability that A is actually no better than B?

p-value

- Probability of drawing wrong conclusion
 - When stating A better than B
 - Given the observed effect $\delta_{A-B}(x, y)$
- We want to minimise this probability
- Usual threshold : $p < 0.05 \implies$ significant difference

- $H_0: \delta(X, Y) \leq 0 \implies$ if true, then A not better than B
- $H_1: \delta(X, Y) > 0$
- $X, Y \rightarrow$ random variables, all possible test sets
 - Of which x, y is an *m*-sized sample
- Reject $H_0 \implies$ significant difference between the systems
- **P-value** : probability of observing $\delta_{A-B}(x, y)$ while H_0 is true :
 - $p value = P[\delta(X, Y) \ge \delta_{A-B}(x, y)|H_0]$
 - probability to reject H_0 when it is true

Type I and type II error i

• Type I error : false positives

- Rejecting H_0 when it is actually true, OR
- Concluding that the observed difference greater than 0
 (A >> B) but it actually isn't (A ≤≤ B)
- If p-value is below the significance level (usually $\alpha = 0.05$), we say that the difference is statistically significant
- In other words, if probability of making type I errors (p-value) is sufficiently low, we can reject H₀

Type I and type II error ii

• Type II error : false negatives

- Not rejecting H_0 when it is actually false
- Concluding that the observed difference is no greater than 0
 (A ≤≤ B) but it actually is (A >> B)
- A test's power is its probability of avoiding type II errors

Goal :

- Guarantee that probability of type-I errors upper bounded by $\boldsymbol{\alpha}$
- Achieve as high power as possible

Example : Student's *t*-test

• Difference of means

- Accuracy is a mean (Bernoulli trial averaged over *m* instances)
- $M(A, x, y) = \frac{1}{m} \sum_{i=1}^{m} \delta(\hat{y}_{A}^{(i)}, y^{(i)})$

• $m = 25, M(A, x, y) = 0.88, M(B, x, y) = 0.79, SE = 0.08^{3}$

t-stat =
$$\frac{M(A, x, y) - M(B, x, y)}{SE/\sqrt{m}} = 5,625$$

- P-value : check Student's t table, m-1 degrees of freedom
- In practice : scipy stats.ttest_rel

^{3.} SE = standard error, standard deviation of the difference $\hat{y}_{A}^{(i)} - y^{(i)}$.

Non parametric tests

- Problem of *t*-test : assumes $M(A, x, y) \sim$ normally distributed
- Other metrics :
 - Recall R = tp/t linear wrt. tp, t constant

ightarrow *t*-test OK \checkmark

- Precision P = tp/p depends on p, unknown distribution $\rightarrow t$ -test not OK X
- F-score 2PR/(P+R) depends on P, unknown distribution

ightarrow *t*-test not OK **X**

- Alternative : non parametric tests
 - no sampling
 - Fast
 - Conservative, will not state A > B for small δ (not powerful)
 - with sampling (slow, powerful)
 - E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/

Idea : estimate M distribution by random re-sampling in x, y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html

Bootstrap for significance (Efron & Tibshirani 1993)

Input

- test set $x = x^{(1)} \dots x^{(m)}, y = y^{(1)} \dots y^{(m)},$
- predictions $\hat{y}_A^{(i)}$ et $\hat{y}_B^{(i)}$ of systems A and B for each item $x^{(i)}$
- evaluation metric $M(\cdot)$

```
deltaobs = M(A,x,y) - M(B,x,y) # observed difference
1
  for i in range(R) :
                               # R constant 10k - 100k
2
3
    xprim, yprim = sample(x,y,m) # sample m with repetition
4
  deltasample = M(A,xprim,yprim) - M(B,xprim,yprim)
5
  if deltasample > 2 * deltaobs :
6
          r = r + 1
7
 pvalue = r/R
                                  # % of surprising results
8
  return pvalue
```

Evaluation metric M distribution vs. test

- Parametric test (M(A, x, y) from known distribution)
 - Paired Student's t-test
- Non-parametric tests (M(A, x, y) from unknown distribution)
 - No sampling (less powerful)
 - Sign test
 - McNemar's test
 - Wilcoxon signed rank test
 - Sampling (computationally expensive)
 - Permutation (randomized approximation) test
 - Bootstrap test

Which test to apply?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/

- Multiple comparisons : probability of false claims increases
- Bonferroni's correction
 - Divide significance level α by the number of datasets N
- Replicability analysis

P-hacking

A significant $p\mbox{-value}$ can always be obtained for large-enough samples

Community's practice

# papers that do not	117	15
# papers that report significance	63	18
# papers that report significance but use the wrong statistical test	6	0
# papers that report significance but do not mention the test name	21	3
# papers that have to report replicability	110	19
<pre># papers that report replicability</pre>	3	4
# papers that perform cross validation	23	5

Source: Dror et al. 2018

Correlation

Significance

Advanced data analysis

Discussion

- Correlation works well for 2 numerical variables
- What if the variables are categorical?
- Waht if we have more than 2 variables?

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical?
- Waht if we have more than 2 variables?

Further statistical tools

- Information theory
- ANOVA
- Linear models
- Mixed models
- ...

• Entropy : alternative view of variability/skewness

 $ightarrow H = -\sum p(x_i) \log p(x_i) \quad
ightarrow$ amount of uncertainty

 \rightarrow H = max for uniform distribution (unpredictable)

 \rightarrow H = 0 for highly skewed distribution (predictable)

- Other useful notions :
 - $\rightarrow {\rm Cross\ entropy}$
 - \rightarrow Mutual information
 - \rightarrow Kullbak-Leibler divergence (asymmetric)
 - \rightarrow Jensen–Shannon divergence (symmetric)

Models for categorical variables

- ANOVA : Generalise t-test for more than 2 means
- Linear model : predict a linear regression slope

 \rightarrow Is the slope is significantly different from zero?

ightarrow Notation : pitch pprox sex +arepsilon

• Mixed model : more sophisticated for multiple factors

Correlation

Significance

Advanced data analysis

Discussion

- Visual : Excel, Libreoffice, ...
- Python : matplotlib, numpy, scipy, sklearn, ...
- R : multiple libraries including linear models
- Proprietary : Matlab, SPSS, ...

- Characterise the errors in our model
- Scripts to print characteristics of errors
 - \rightarrow Frequency, length, resolution, predicted/gold class, \ldots
 - \rightarrow Example : compounds predicted in wrongest positions
- Manual error annotation : taxonomies, guidelines
 - \rightarrow Gain insight on most promising improvements

- Remember Goodhart's law (metric \neq objective)
- Beating state of the art is good
- Learning something interesting about the problem is better
- From time to time : remember the research question

- Well designed hypothesis have more interesting "negative" results
- Experiments require persistence and some faith
- Source of frustration : publish or perish

 \rightarrow Is it a problem with my results or with the system ?

• Negative results are publishable if sound experimental design

- Tendency to favour interpretations that confirm initial beliefs
- Well studied in psychology
- May lead to cognitive dissonance
- Tool : try to demonstrate the opposite of the initial hypothesis \rightarrow If you fail for long enough, maybe the initial hypothesis is true

- Cours d'Adeline Paiement
- Statistical Significance Testing for NLP (Dror et al. 2020)
- https://bodo-winter.net/tutorials.html (thanks Leonardo Pinto Arata)
- Wikipedia
- Google images