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Résumé

Il existe de nombreux défis en traitement automatique des langues (TAL),
comme par exemple la traduction automatique de textes, les résumés automa-
tiques ou encore la détection des sentiments dans un texte. Mais pour parvenir
à faire exécuter ces tâches correctement par un programme, il convient tout
d’abord de retrouver la structure de notre texte. Pour segmenter et retrouver
la structure syntaxique d’un texte de façon correcte, il faut se pencher sur le
cas particulier des expressions polylexicales. Une expression polylexicale est un
groupe de tokens qui doit être considéré comme une unique unité lexicale, et qui
possède un certain niveau d’idiosyncrasie d’ordre lexicale, syntaxique, séman-
tique, pragmatique et/ou statistique. Ce mémoire présente le développement
d’un étiqueteur permettant d’identifier efficacement des expressions polylexi-
cales dans un texte à l’aide de techniques d’apprentissage profond. Cet éti-
queteur est fondé sur un réseau de neurones récurrent et utilise, entre autres,
une pré-initialisation de plongements de mots pré-entraînés (plus couramment
appelés word embeddings). Nous testerons plusieurs architectures de système
ainsi que deux représentations différentes pour les données, pour trouver le sys-
tème répondant du mieux possible à notre tâche de détection des expressions
polylexicales. Nos tests se feront sur différents corpus, en différentes langues et
avec plusieurs types d’expressions polylexicales (verbales ou non, contiguës ou
non). Nous montrerons que cette approche permet d’obtenir des résultats com-
parables voire même parfois supérieurs aux méthodes de l’état de l’art obtenus
lors d’une campagne d’évaluation internationale récente. Nous ferons également
une analyse d’erreurs qui nous permettra de mettre en évidence les avantages et
inconvénients de la méthode proposée par rapport à un étiqueteur probabiliste
fondé sur une représentation symbolique des données.

Mots-clés : Identification d’expressions polylexicales, étiqueteur, réseaux de
neurones, couches récurrentes, plongement de mots (embeddings).



1 Introduction
In today’s world in which every place is reachable in a few hours only, one major
problem appears when you want to create links with people around the world:
language. Translation is a real problem nowadays, and that is the reason why
so many people are interested in using computers for automatic translation.

There are many sub-issues within automatic translation, and an especially
difficult one is the translation of Multiword Expressions (MWEs). First of all,
we can ask: what is a MWE? A MWE is a group of lexical units (tokens) which
must be considered as an unique lexical unit, and displaying lexical, syntactic,
semantic, pragmatic and/or statistical idiomaticity (Baldwin and Kim, 2010).
Examples of MWEs include verbal idioms (to make ends meet, to strike while
the iron is hot), particle verbs (to give up, to throw away), nominal compounds
(dead end, ivory tower), light-verb constructions (to make a presentation, to
take a walk), complex adverbials (by the way, in fact, at stake), and so on.

So one cannot simply translate an expression taking each part of the expres-
sion separately. Translated literally, an expression is often nonsense. You can
always try to tell a French speaker “Il pleut des chiens et des chats aujourd’hui!”
(It’s raining cats and dogs today in English), but he/she will probably look at
you sceptically. But if you tell this person “Il pleut des cordes aujourd’hui!” (It’s
raining ropes today literally in English), the conversation will run its course as
if nothing had happened.

Unfortunately, MWEs are a really frequent phenomenon, so we cannot just
ignore them (Baldwin and Kim, 2010). However, before wondering how to
translate our MWEs, the first step will be to detect them. Identifying MWEs
could appear as an easy task if one takes a lexicon and looks for each occurrence
in the text. But many problems come into play, such as the inflection of each
word or the variability of the MWE as a whole. Even worse, some MWEs can
be ambiguous, like the French expression Les carottes sont cuites. In the case of
a MWE, this sentence means The jig is up, but if someone is cooking and uses
that sentence, the translation will probably literally be The carrots are cooked.

As part of an internship last year, we had the opportunity to work on this
subject, and developed a tagger based on Conditional Random Fields (CRF)
(Lafferty et al., 2001) to try to identify highly ambiguous MWEs without using
syntactic trees to train our model (Scholivet and Ramisch, 2017). This was a
follow-up of the paper by Nasr et al. (2015), in which a parser was used for the
same task. We have showed that, while sequence models such as CRF taggers
can adequately model some MWE phenomena (e.g. ADV+que conjunctions),
other require syntactic trees to be disambiguated (e.g. partitive determiners).

This dissertation reports on the work developed during the Masters’s intern-
ship which took place this year. The goal of the present work is to develop and
evaluate a Recurrent Neural Network (RNN) model to perform the identifica-
tion of MWEs. Indeed, our first hypothesis is that an RNN is able to generalise
better than a CRF, which can generally detect only MWEs that it has already
seen once. We also would like to investigate the impact of pre-trained word
embeddings (see Section 3) on the performance of the RNN, as well as differ-
ent architecture and hyper-parameter choices. Furthermore, we also believe that
the RNN could learn cross-lingual MWE identification models, but this question
will not be dealt with in this dissertation.

In this work, we will present an RNN tagger for MWE identification, and
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its performance on different corpora. In Section 2 we will present the state of
the art, in Section 3 we will describe our RNN system. We will present our
results in Section 4, and finally, we will conclude and explain our future work
in Section 5.

2 Related Work
Currently, Google Translate, to cite the most famous automatic translation ser-
vice, uses statistical machine translation methods (Koehn, 2010). It means that
Google Translate does not use grammar rules, but that the system learns a sta-
tistical model thanks to a large amount of parallel corpora (using, among others,
corpora from the European Parliament and from the United Nations). Nonethe-
less, even Google does not have parallel corpora for each pair of languages. That
is the reason why it often uses English as an interlingua, translating the source
language into English, then translating from English into the target language.

However, in November 2016, Google announced that it began to switch to
the Google Neural Machine Translation system, a deep learning system based on
a recurrent neural networks, supposedly more fluent and accurate than previous
models (Johnson et al., 2016). Since April 2017, the system has been able
to support around twenty languages, and Google has been adding languages
gradually.

This is an example of a situation in which deep learning revolutionises the
domain of Natural Language Processing (NLP). Since we used to use statistical
models for the MWE identification task, it seems to be a natural evolution
to start using neural network models, as it was the case for for the machine
translation task.

More specifically, currently the task of identifying MWEs is usually carried
out using two main kinds of approaches : sequence taggers (as in Constant and
Sigogne (2011)) and parsers (as in Nasr et al. (2015)).

The MWE identification can be seen as a tagging problem. Sequence tag-
gers use different stochastic models such as Conditional Random Fields (CRFs)
(Constant and Sigogne, 2011)), structured perceptron (Schneider et al., 2014;
Riedl and Biemann, 2016) or structured support-vector machines. Data are
represented with a BIO representation (see Section 3.1), and many features are
used, including local context information or sometimes external resources such
as MWE lexicons.

Parser-based methods build a parse tree for the sentence to represent its
syntactic structure. During the construction of the parse tree, parsers detect
MWEs thanks to special syntactic nodes and/or arcs.. These methods give quite
good results, specially for discontinuous expressions such as to take something
into account (Nasr et al., 2015; Constant and Nivre, 2016; Vincze, 2012). In
sum, while sequence taggers are usually easier to train and appropriate to model
contiguous expressions, parsers can take into account relations between words
and features which are far from one another while building the parse tree.

In a previous paper, we have proposed an adaptation of a standard CRF to
identify ambiguous and contiguous MWEs, supposing that sophisticated parsers
are not essential to deal with these expressions (Scholivet and Ramisch, 2017).
At that occasion, we decided to work with CRFs instead of parsers, since se-
quence models do not require treebanks to be trained.
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Using machine learning for MWE identification is also nowadays possible
thanks to the availability of corpora annotated with MWEs to train these mod-
els, released in recent shared tasks. We will focus on the DiMSUM shared
task1 and the PARSEME shared task2. Those two tasks provide us corpora
annotated with MWEs. DiMSUM was a shared task whose aim was to predict
the segmentation into minimal semantic units, and labelling of some of those
units with semantic classes known as supersenses (Schneider et al., 2016). The
supersense aspect was ignored in this work, as we are interested only in the seg-
mentation into minimal semantic units, that is, words and MWEs. This corpus
is in English and contains 3,812 sentences for 3,483 annotated MWEs.

The PARSEME shared task is also particularly interesting since, for that
task, a European research network created a universal terminology and annota-
tion guidelines for 18 languages (Savary et al., 2017). Thus, we have 18 corpora
annotated with verbal MWEs (VMWEs) in different languages. Each VMWEs
is additionally tagged with its VMWE category (5 categories, explained in Sec-
tion 3.1). Two participants of this shared task submitted system quite similar
to those we propose. The first one, ADAPT (Maldonado et al., 2017) is a
CRF, and MUMULS (Klyueva et al., 2017) using a bidirectional recurrent neu-
ral network. The ADAPT system obtained good results in the shared task,
since MUMULS had less good results, more especially in the languages we are
interested in (French, Brazilian Portuguese and Romanian). That is the reason
why we do not consider this system in Section 4.1, where we will compare our
system to other ones.

3 RNN-Based MWE tagger
One of the goals of our work is to develop a tagger for MWE identification based
on an RNN. Therefore, we first describe the data encoding used (Sec. 3.1),
then we briefly survey the fundamentals of neural networks (Sec. 3.2) before
presenting the architecture of our system (Sec. 3.3), and finally we describe the
experimental setup in which the system is evaluated (Sec. 3.4).

3.1 Data representation
Parseme-tags representation To begin with, we will explain how our data
are represented. First, we will be interested in the data from the PARSEME
shared task. The provided corpora contain sentences, and on top of each sen-
tence, human annotators have provided information about VMWEs present in
that sentence. For each language, we have a train and a test corpus in the
parseme-tsv format.

Each sentence starts with two comment lines, the first one containing the
sentence ID, and the raw text on the next one. Then, we simply have a kind
of CoNLL format, with one token per line, and an empty line to separate each
sentence. Every line starts with the ID of the token followed by the wordform
(all separated by tabulations), a column indicating whether the current token is
adjacent to the next one (nsp), and the information of whether the token belongs
to a VMWE. This information is represented as a code formed by the number

1http://dimsum16.github.io
2http://multiword.sf.net/sharedtask2017
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Figure 1: The parseme-tsv format on a French sentence containing two overlap-
ping LVC annotations: jouent finale and jouent demi-finales, sharing the token
jouent.

of the VMWE in the sentence, and, if it is the initial token of the VMWE, we
add the category of the latter. If the token is part of many VMWEs, multiple
codes are separated with a semicolon. There are 5 different possible categories
for the VMWEs, as described in Savary et al. (2017):

• idioms (let the cat out of the bag), abbreviated as ID,

• light-verb constructions (make a decision), abbreviated as LVC,

• verb-particle constructions (give up), abbreviated as VPC,

• inherently reflexive verbs (se suicider ’to suicide’ in French), abbreviated
as IReflV, and

• other expressions, abbreviated as OTH.

An example of this format is shown on Figure 1. Here, we can see that the
second token of the sentence is the initial token of an LVC MWE, whose second
token is number 7. It also illustrated partial overlap as this last token is also in
a second LVC MWE (starting in token number 5).

Most of the time, we also have an aligned CoNLL-U file3 for the train and
test, which provides information such as the lemma or the part of speech (POS)
of each token.4

BIO representation In some tests, we kept the representation of the VMWEs
provided by the parseme-tsv file. But for all other tests, we used a BIO repre-
sentation for the tags (Ramshaw and Marcus, 1995). In a BIO representation,
every token has the information B, I or O. If the tag is B, it means the token is
the Beginning of an MWE. In the I case, it means the token is Inside an MWE.
Finally, if the token’s tag is O, it means the token is Outside the expression,
and does not belong to an MWE.

We had to slightly modify this representation which was thought for con-
tiguous MWEs. We simply add the number of the MWE to the tag, so that we

3http://universaldependencies.org/format.html
4The lemma is the canonical form of a word, for instance, the lemma of eating is eat. The

part of speech is the morphosyntactic category of a word (verb, noun, pronoun, etc.), for
instance, the POS of eating is verb.
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i: 1 2 3 4 5 6 7 8 9
wi: Les demi-finales et la finale se jouent à Copenhague

First MWE: O B1 O O O O I1 O O
Second MWE: O O O O B1 O I1 O O

Figure 2: Example of BIO tagging, where the sentence had to be duplicated
since there is an overlap. As in Figure 1, the MWEs are jouent finale and
jouent demi-finales.

can identify to which MWE the token belongs. In this case, we consider that a
token can only belong to a single MWE. For the training corpus, we duplicate
each sentence containing overlaps as many times as the number of overlapping
MWEs. An example of this BIO representation is shown on Figure 2.

3.2 Neural Networks
Since a large part of this work was done with neural network, it is important to
understand well the idea behind this system.

To begin with, a neural network is named in this way because the base idea
is to imitate the behaviour of our brain, more especially our neurons. We would
like to have many neurons which each “learns” little things.

A neural network is composed of one or several layers of artificial neurons
(Lecun et al., 1998; Goldberg, 2015). Each neuron has a set of weights, which are
updated during the training process. Neurons are organised in layers, and each
layer is connected to one another. Here, we will focus on multilayer perceptrons,
in other words, neural networks with more than one layer, and whose weights
can vary.

To train a neural network, we have to give it examples with the correct tags
we want to predict. Thanks to the principle of backpropagation, if the system
fails to predict the right answer, it will correct its neurons’ weights in order
to try to minimize the loss function. The loss function is the function which
calculates the difference between the predicted tag and the correct one.

During training, the system can adjust the neurons’ weights after each sam-
ple, or after each batch of samples. In this case, we have to define the size of
batch : the bigger it is, the faster the training will be, but it might be less ac-
curate. Moreover, learning is done while scanning through the training corpus
several times. The number of times it learns on the training corpus is called the
number of epochs.

In our problem of detecting MWEs, the history of the previous inputs and
tags is important. That is the reason why we decided to use recurrent neural
networks (RNN), using GRU and LSTM modules (Cho et al., 2014; Chung et al.,
2014; Huang et al., 2015). These layers can take into account the previous events
to make their decision. But sometimes, we even need the next inputs to decide
the current tag. Therefore, we used a bidirectional layer wrapper (Graves and
Schmidhuber, 2005), which enables the system to read the sentence in the both
directions.

Finally, we have to talk about vectorial word representation, also called word
embeddings (Mikolov et al., 2013b,a). As input for our neural network, we will
give words, lemmas or POS. But a neural network takes as argument only real
numbers. So we will transform our inputs into vectorial representations. These
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Input (POS)
128 neurons

Input 
(lemmas)

128 neurons

Embedding
64 neurons

Embedding
250 neurons

Concatenate

Bidirectional(GRU)
512 neurons

TimeDistributed(Dense)

Activation
(softmax)

Figure 3: Architecture of our baseline RNN, with two inputs, lemmas and POS
and initialising our lemma’s input with pre-trained embedding of size 250

vectors can be pre-trained to represent the meaning of the words depending on
their contexts, and so, the closer the words are, the closer their vectors will be
too.

3.3 MWE tagger architecture
In this Section, we will explain the architecture of our baseline RNN system,
and then, we will specify the extensions we will add.

3.3.1 Baseline

Now, we will examine the architecture of our RNN. Figure 3 shows the archi-
tecture of the system which was used as our baseline.

First, our network takes 2 different inputs: the first one corresponds to the
lemma of each token, and the second to its POS. We considered that each
sentence contains 128 tokens. If our sentence is smaller, we pad it with 0 until
we reach 128 tokens in the sentence. However, if it is longer, we simply cut the
sentence. By default, there are 64 neurons in embedding layers, if we do not use
pre-trained embeddings as input to the system (more information in Sec. 3.3.2
about the pre-trained embeddings). The embeddings layers transform inputs,
which are positive integers (codes of tokens’ features) into dense vectors of fixed
size. The embeddings layers are the first trainable layers in a model.

Once we have created an embedding layer for both inputs, we concatenate
them, because the recurrent layer can take only one input. Next, we create
the recurrent layer, which is bidirectional. This layer contains 512 neurons,
and uses the option return_sequences, which enables the layer, with the help
of the next layer (TimeDistributed), to predict one tag per token, and not one
per sentence. The TimeDistributed wrapper allows us to apply a layer (here,
a dense layer, which is a classic layer of neurons) to every temporal slice of an
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input. Finally, the activation layer used a softmax function to transform results
into probabilities for each possible token. We will choose the tags with the best
probability.

For the loss function, we used the sparse_categorical_crossentropy, and we
used Nadam as optimizer. We decided to carry out our tests with 10 epochs
and batch with size 128. We used the Python library Keras5 to implement our
system, using tensorflow6 as backend. We trained our model thanks to a cluster
with GPU nodes.

3.3.2 Extensions

We performed some extra experiments which made us modify the structure of
our base architecture. First of all, we tried to initialise the embedding layer with
pre-trained embeddings. Consequently, we adjusted the number of neurons on
those layers to the dimension of pre-trained vectors (in our case, 250 or 300
depending on the language). We also tried to replace the GRU layer with a
LSTM layer, and then we tried to stack up recurrent layers: we test with 1, 2
and 3 layers. Each bidirectional recurrent layer is followed by a TimeDistributed
layer, always in order to predict a tag for each token. More explanations about
these extensions will be found in Section 4.

3.4 Experimental Setup
Corpora In order to evaluate our systems, we decided to test it on 5 different
corpora: PARSEME-FR, PARSEME-PT, PARSEME-RO, the French treebank
and the English corpus from DiMSUM shared task. Each of these corpora have
their own interesting characteristics.

Corpora from the PARSEME shared task have the particularity to be anno-
tated with verbal expressions only, which are not necessarily contiguous. More-
over, common annotation guideline have been written for all the languages of the
shared task, and used for the manual annotations, which provide a quite good
homogeneity in data. Most of those languages are accompanied by a CoNLL-
U file, which provides information for each token, such as lemma or POS. We
decide to focus on 3 corpora from the PARSEME shared task: French (FR),
Brazilian Portuguese (PT) and Romanian (RO). We chose those languages be-
cause we could make an error analysis with the French and Brazilian and find
some interesting or ambiguous cases, and we have some pre-trained embeddings.
The Romanian corpus was the biggest one of the shared task (45,469 sentences
for 4,040 VMWEs in training), but we did not have pre-trained embeddings.
We used it to test the importance of the size of the training corpus.

We used a modified version of the French Treebank from SPMRL shared task
(Seddah et al., 2013), which does not annotate only verbal MWEs. However, in
this corpus, all the MWEs are contiguous. The corpus contains 14,759 sentences
for 23,658 MWEs in training.

Finally, we used the DiMSUM corpus (Schneider et al., 2016) (3,812 sen-
tences for 3,483 MWEs), to test our results on a task with little data, contain-
ing all types of MWEs, including non-contiguous ones. Furthermore, we have
pre-trained embeddings for English. The task associated with DiMSUM is quite

5https://keras.io/
6https://www.tensorflow.org/
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hard, the best system on this task obtaining an F-measure of 57.24% on MWEs
identification.

Evaluation In order to have results comparable with those from the PARSEME
shared task, we decide to use their evaluation script, which provides us with two
different evaluations: the one based on MWEs, and the one based on tokens.

Both of them correspond to an F-measure. The MWE-based measure verifies
that all the tokens on the MWE have been found, whereas the TOKEN-based
measure will be calculated relying on each token.

It is important to notice that there is a notion of randomness in neural net-
works. Variabilities of our results led us to launch each of our test around 20
times. The results we present are the average on these tests for each measure
(precision, recall and F-measure). That is the reason why we decided to high-
light the standard deviation for each test, because some of them are more stable
than others, and we believe that this variation must be taken into account.

4 Evaluation
We will now describe the results our systems obtained. First we will detail
results while focusing on 4 main questions, then, we will carry out an error
analysis to better understand our results.

4.1 Results
To evaluate our system, we will focus on the 4 main hypotheses that we would
like to verify:

• What is the influence on performance of word embedding pre-initialisation?

• What is the influence on performance of the architecture (e.g. number and
type of layers) and of hyper-parameter values (e.g. size of layers, number
of epochs) for different configurations?

• What is the influence on performance of the data representation?

• How does the RNN model compare to other models?

We will present our results on graphics summarizing different experiments,
answering the questions above. In each graphic we show two measures for ev-
ery experiment: the MWE-based measure, and the TOKEN-based measure. In
Appendix A, we show a table giving the precision and recall for each of these
measures for every experiment. For each measure, you will find the standard
deviation as error bars, since our results are an average, as explained in Sec-
tion 3.4.

Each experiment code shown in the X axis of a graph corresponds to a corpus
and an architecture. For example, when we treat the French Treebank with the
basic configuration, the corresponding experiment code is FTB_B. Thus, FTB
corresponds to the French Treebank, Dim to DiMSUM, PBIO to PARSEME-FR
with BIO tags, P to PARSEME-FR with the original tags, PT to PARSEME-
PT and finally, RO corresponds to PARSEME-RO. For the second part of the
code, which corresponds to the model configuration, B simply refers to the basic
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Figure 4: Influence of pre-initialising lemma’s embeddings

configuration described in Section 3.3, E to the tests when we add pre-trained
embeddings, 2GRU when we decide to stack up two layers of GRU, 3GRU for
three layers of GRU, LSTM is when we test with a LSTM layer instead of a
GRU layer, WF is when we decide to add in inputs the wordforms (not having
pre-trained embeddings for them), and diffParam is when we test a completely
different configuration (number of neurons on hidden layers, number of epochs,
etc... ) and eventually, 20epochs means we test 20 epochs instead of 10. Details
about these configurations will be given in the corresponding experiments.

Pre-initialisation of embeddings To begin with, we think it is important to
remind that embeddings are used to represent the meaning of each word thanks
to a simple vector which represents its co-occurrence profile. We have two ways
to estimate the values of this vector: either we initialise them randomly and
then refine them directly during the training of our recurrent neural network,
or we can pre-train our vectors on a large quantity of plain text, and then, we
continue to train them while we train our RNN.

With the second method, a problem may arise because some words of our
training and test corpus have never been seen in the corpus used to pre-initialise
the embeddings. This is quite rare, since we most words do occur in a huge
corpus of plain texts. However, some words will never have been seen, so we
initialise them randomly.

In order to pre-initialise the embedding layer of our network, we retrieve
existing lemma embeddings, in French, English and Portuguese. In French and
Portuguese, our vectors are in 250 dimensions, trained using word2vec on web
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Figure 5: Influence of the number of GRU layers

corpora of around 2 billion words for each language, as described in Cordeiro
et al. (2016). In English, we use the embeddings available on GloVe website7

(Pennington et al., 2014) trained on Wikipedia 2014 + Gigaword 5 (6B tokens,
400K vocab, uncased, in 300 dimensions).

Results of experiments that evaluate the influence of the pre-initialisation of
our lemma embeddings can be found on Figure 4. We clearly observe that in
all experiments, the pre-initialisation of the embeddings considerably improves
the results. Even better, the standard deviation sharply decreased, particularly
in the case of the French Treebank. This reduction of the standard deviation
reveals much about the importance of initialising our lemma’s input with pre-
trained embedding to make our results converge much faster than with no pre-
initialisation.

For the following experiments, we take as a reference the results with em-
bedding pre-initialisation, in order to be more coherent with the importance of
these inputs.

Architecture Here, we focused on the importance of the architecture of our
system. We will start to linger over the influence of the number of GRU layers
(Figure 5). The first interesting thing to notice is that, when we put a second
GRU layer, the results increase overall, in all the different experiments. More
specifically, we notice that it is the MWE-based measure which increases the
most, whereas the TOKEN-based measure remains quite stable, although it
tends to increase a little. The explanation would probably be that the TOKEN-

7https://nlp.stanford.edu/projects/glove/
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Figure 6: Influence of the architecture

based measure increases even when we only find a part of a MWE. With a single
GRU layer, we identified some important characteristics of the structure of the
MWE. With the second GRU layer, we identified the entire MWE in a better
way. For example, in PARSEME-FR with BIO, in the sentence : "... accomplir
de multiples tâches et démarches...", the word accomplir is a part of two MWEs :
accomplir tâche and accomplir démarche. With a single GRU layer, our system
manages to find that accomplir is part of an MWE, but does not find anything
else. With two GRU layers, our system finds the complete MWE accomplir
tâche! However, the BIO tag system is not expected to predict several MWE
tags on only one token. That is the reason why the VMWE accomplir démarche
cannot be found at the same time as the first VMWE accomplir tâche. Though,
with the parseme-tag system, our RNN could have predicted two MWEs on a
single token, but since this case is rare enough, even with this representation,
the system did not predict both VMWEs.

As a complementary experiment, we have also tested the use of three GRU
layers for the PARSEME-FR corpus with BIO tags (configuration PBIO_E+3GRU).
Nevertheless, we can notice that the test with three GRU layers is negative,
since it reduces performances compared to two GRU layers. Further exper-
iments would be required to confirm this tendency for other languages and
configurations.

Now, we will discuss the results present in Figure 6. This time, we present
results showing the influence of some hyper-parameters, or their values in dif-
ferent configurations, in order to make some sanity checks. First, we compare
our reference, PARSEME-FR with BIO tags and pre-trained embeddings, with
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the same RNN, but with a LSTM layer instead of a GRU one. Besides being
slower to train, (108 seconds for one epoch with the LSTM against 88 seconds
with GRU) the GRU architecture obtains better results. For the second test, we
verified if adding wordforms as an additional input could be useful. We noticed
that the results are not significantly different, but standard deviation slightly
decreased, so we can suppose that wordforms help the training to converge
faster, but they do not help increase the performances.

Then, we carried out tests with different hyper-parameter values, automat-
ically inferred on a development set (diffParam). We tested values for batch
size of 16, 32 or 64, number of neurons in the hidden layers from 128 or 250,
number of epochs between 1 and 20, and embedding dimensions from 6, 8 or 10.
The dimension of embeddings is small because we consider we used pre-trained
embeddings, so the default value is applied only to POS, which have only 17
possible values. The chosen values are: number of neurons in the hidden layer =
250, batch size = 16, number of neurons in the recurrent layer = 128,embedding
dimensions = 8, and number of training epochs = 4. As expected, the standard
deviation increased since we only had 4 epochs, so it converged slower. However,
we can also notice the results are quite comparable : around 1% difference only
between the two TOKEN-based measures. Our system does not need many
epochs to learn a basic model, since with only 4, we obtained those results.

Our last test was realised on DiMSUM corpus, and tested again the influence
of the number of epochs. Once again, we observed that the results did not change
significantly, but the standard deviation clearly decreased. It is quite certain
that the more epochs we have, the more stable our results are.

Data representation This time, we will concentrate on the difference of
results between two identical models, but different representation of the tags,
show in Figure 7. The first representation is the BIO system, and the second
system keeps the tags’ system from the PARSEME task (for more information,
see section 3.1). Notice that, in the configuration where the system is learned
on the original data representation, the category of the MWE is also predicted
(ID, LVC, IReflV, etc), which provides a richer output with respect to the BIO
tags.

The first thing these tests allow us to say is that the TOKEN-based measure
does not vary much between the two representations, even if the BIO system has
slightly better results. However, when we concentrate on MWE-based measures,
the BIO representation systematically obtains better results. Furthermore, we
observe that the standard deviation is lower in the case of BIO system, and
so, the RNN converges faster with BIO tags, probably because there are less
different tags to predict in the case of BIO.

Surprisingly, the use of the original data representation provides reasonably
good results, only slightly inferior to BIO. We discovered this because we were
looking for a new representation to replace the BIO scheme, and we tried the
original tags by chance. We never thought we could have results so close to the
BIO system, and if we had had more time, we would have liked to pursue these
experiments to find a representation that would be even more adequate to this
problem.
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Figure 7: Influence of the data representation

Figure 8: Comparison between models

14



Comparison with other models Finally, we will compare our systems to
other ones (Figure 8). We will focus on our best system which is the one with
pre-trained embeddings initialisation and two GRU layers. We compare our
best system with a sequence tagging model based on conditional random fields
(CRF) developed earlier (Scholivet and Ramisch, 2017).

There is no randomness in the CRF system, so there is no error bar for the
standard deviation. We also report the results of the two best systems from the
PARSEME-FR shared-task, ADAPT (Maldonado et al., 2017), a system based
on a CRF too, and the TRANSITION system (Al Saied et al., 2017), based
on a transition-based parsing system. We did not re-implement or re-run the
ADAPT and TRANSITION systems, but instead we use the results published
on the PARSEME shared task website.8

We can notice that, for the TOKEN-based measure, our BIO system obtains
the best results: 62.33%, for 61.43% for the system of PARSEME tags, 59.61%
for our CRF, ADAPT obtains 61.52% and TRANSITION 60.28%. However,
in the case of MWE-based measure, we can note the TRANSITION system
obtained the best results. Despite that, our system has rather good results, even
better than the ADAPT system. It is interesting to see that the MWE-based and
the TOKEN-based measures are really close in the TRANSITION system and
in the CRF system. Nevertheless, the difference between the TOKEN-based
and the MWE-based measure in our best system is still large, even with the
second GRU layer. It would be very interesting to try to reduce this difference
in results, as future work.

4.2 Error Analysis
Now, we will focus on concrete examples our RNN succeeds in predicting, or
not. The goal of this error analysis is to understand what kinds of errors are
made, so that we can focus on them for future work suggestions.

Never Previously Seen MWEs Before starting, it is interesting to notice
that in Maldonado et al. (2017), Table 1 gives indication about Previously Seen
(PS) MWEs in the training set. We notice that in the French PARSEME
corpus, the percentage of MWEs that were in the training corpus is only 28%.
Just after Slovene, with only 5.51%, French is the language with the least PS
MWEs. Despite this, we obtain quite good results in French, indicating that
the model is able to generalise well and learn a model which is able to identify
MWEs which were never seen in the training data.

First, we wondered if our CRF or our RNN could predict some MWEs they
never encountered in the training corpus. We will focus on the case of Never
Previously Seen (NPS) MWEs in the training corpus.

In the test corpus, we find many NPS VMWEs. For example, we find in
the sentence : “La musique n’adoucit pas toujours les moeurs.” the VMWE
La musique adoucit les moeurs, which is an idiomatic expression. None of our
systems (CRF, PBIO_E+2GRU and P_E+2GRU) was able to predict this
NPS VMWE.

8http://multiword.sourceforge.net/PHITE.php?sitesig=CONF&page=CONF_05_MWE_
2017___lb__EACL__rb__&subpage=CONF_50_Shared_Task_Results
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However, in the sentence "... M. Soyer a fait l’historique de l’école maternelle
...", we find the NPS VMWE faire historique. In this case, the CRF was not
able to predict it, but the two RNN system did. And the P_E+2GRU system
even managed to predict it was a VMWE of the type LVC, which in this case
is the correct category to predict.

Another interesting example is this sentence in the test corpus : "... chacun
ne rêvait que de remettre la main à la pâte avec Sylvie et Daniel." with the
VMWE remettre la main à la pâte. This VMWE as it is had never been seen
in training corpora. And yet, the system PBIO_E+2GRU manage to identify
the part of the expression remettre la main à, while de P_E+2GRU managed
to predict remettre la main with the right category ID. Meanwhile, our CRF
system did not identify anything, once again. Nonetheless, it is really interesting
to observe what RNN systems manages to predict. In the training test, we could
find the ID VMWEs prendre en main and mettre (la) dernière main. We can
suppose the RNN systems generalise enough from these examples to predict
part of the NPS VMWE remettre la main à la pâte.

CRF vs RNN We previously saw that the CRF often has difficulties in pre-
dicting NPS VMWEs. We will now focus on some hard cases that were present
in training corpus, but are hard to identify.

Once again, let us focus on the following example : in the sentence "Une
réflexion commune est menée avec les enseignants ...", we have the the VMWE
mener réflexion. In the training corpus, we only see this VMWE in the sentence
: "Nous n’avons mené aucune réflexion sur le sujet". In this case, the CRF was
not able to identify the VMWE, probably because it does not appear in the same
way (there is an inversion in the order of the expression due to passive voice)
as in the training corpus. The system P_E+2GRU also had some difficulties
identifying it. Sometimes, it found only the verb (mener), sometimes absolutely
nothing, and sometimes it found the entire expression, and its category (LVC).
Nonetheless, the PBIO_E+2GRU did not have any problem to predict this
VMWE each time.

On the other hand, in the sentence "... elle descendait seule faire ses courses
en centre ville, et prenait alors plaisir à faire un brin de causette avec ses copines
...", we have 3 VMWEs : faire courses, prendre plaisir and faire causette. The
first two were in the training set, but not the last one. All our systems managed
to predict prendre plaisir, none predicted correctly faire causette, and only the
CRF correctly identified faire courses. The P_E+2GRU predicted only the
verb faire (with the correct LVC category), and the PBIO_E+2GRU system
identified the whole faire ses courses, wrongly including an extra word ses. In
short, we observe that sometimes, the CRF system outperformed the RNN,
because the latter sometimes generalised too much.

5 Conclusions and Future Work
We presented a recurrent neural network, with some derivatives, able to identify
MWEs. We evaluated these systems on different corpora in different languages,
with different types of MWEs (VMWEs, non-contiguous MWEs, etc) and also
different representations of the tags. We compared our systems to those from
the PARSEME shared task and to a CRF we previously developed for the same
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task. We concluded that our best systems did well in this tasks compared to all
other best systems.

Even if we are pretty satisfied with our results, we still have many improve-
ments we would like to test. First, we would like to make a parameter optimi-
sation, since we did not had enough time to explore the whole hyper-parameter
space, specially trying to reduce overfitting.

As we previously said, we are not fully satisfied with the BIO representation
for the tags, and we would like to spend some time on the parseme-tags system
to improve it, or to think about a completely different system, such as prediction
the POS tags and MWEs simultaneously.

Then, we think it could be interesting to try to shed some light on the
importance of the tags containing MWE information. An option in Keras allows
us to give a weight matrix for each tag in the training, in this way explaining
to the system that this information is more important. At a moment we tried
to do this, but we empirically tested different weights, and one would have had
to be more systematic in these choices.

Furthermore, we are currently working on a thesis project where the goals
would be to develop deeply multilingual models for analysis tasks in natural lan-
guage processing, even when we do not have training corpora (zero-shot learning,
see (Johnson et al., 2016)) and to find a representation that is independent from
the language for the lexical units (words and MWEs) to use in these models.
One of the tasks in which we intend to evaluate such model is MWE identifica-
tion. Therefore, we could train a multilingual MWE identification system able
to exploit the similarities between languages in order to obtain better results.
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A Appendix: detailed results

System Average per-MWE results Average per-token results
Precision Recall F-measure Precision Recall F-mesure

PBIO_B 22.92 40.20 28.85 37.09 58.98 45.17
PBIO_E 57.83 41.99 48.61 78.35 50.09 61.05

PBIO_E+diffParam 55.68 42.12 47.71 77.50 50.79 61.04
PBIO_E+2GRU 65.38 46.73 54.43 76.91 52.52 62.33
PBIO_E+3GRU 64.86 44.19 52.26 76.36 50.94 60.68
PBIO_E+WF 56.65 42.64 48.58 77.05 51.02 61.29

PBIO_E+LSTM 53.33 39.44 45.30 75.65 48.52 59.03
P_B 34.66 22.16 26.84 67.65 34.64 44.83
P_E 48.82 36.03 41.34 75.88 48.96 59.29

P_E+2GRU 55.56 43.18 48.46 73.49 52.85 61.43
P_E+diffParam 45.50 34.94 39.42 74.90 48.79 58.88

FTB_B 45.38 51.64 47.84 65.53 61.88 62.31
FTB_E 59.16 67.79 63.09 78.26 76.91 77.44

FTB_E+2GRU 70.57 72.56 71.34 79.17 78.28 78.44
FTB_E+diffParam 61.28 69.82 65.20 80.20 78.32 79.14

Dim_B 26.09 2.58 22.82 47.06 33.75 38.88
Dim_E 32.82 27.03 29.30 54.45 40.83 29.30

Dim_E+2GRU 38.69 28.69 32.50 56.78 38.94 45.44
Dim_E+20epochs 29.93 26.37 28.02 50.57 39.92 44.57

PT_B 44.39 38.99 41.36 64.45 48.77 55.27
PT_E 58.32 51.59 54.68 74.91 58.50 65.59

PT_E+2GRU 63.78 56.52 59.71 73.07 61.24 66.39
RO_B 73.43 74.11 73.65 81.36 77.55 79.28

RO_2GRU 74.61 74.53 74.39 79.88 77.11 78.27

Table 1: Results on all configuration
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System SD per-MWE results SD per-token results
Precision Recall F-measure Precision Recall F-mesure

PBIO_B 4.96 2.59 4.61 5.31 3.05 3.72
PBIO_E 2.30 2.24 1.77 1.86 2.37 1.37

PBIO_E+diffParam 4.16 4.12 2.47 4.66 4.77 2.43
PBIO_E+2GRU 3.27 2.87 2.39 3.38 2.59 1.78
PBIO_E+3GRU 8.45 2.35 3.97 6.98 4.11 1.90
PBIO_E+WF 2.63 2.12 1.36 2.93 2.39 0.98

PBIO_E+LSTM 2.79 3.02 2.74 2.19 2.71 1.71
P_B 9.90 7.36 8.29 6.06 8.68 9.28
P_E 3.93 3.94 2.87 3.26 4.57 2.87

P_E+2GRU 3.81 2.87 2.11 3.82 3.27 1.87
P_E+diffParam 4.95 2.44 2.86 5.16 3.20 1.89

P_B 9.90 7.36 8.29 6.06 8.68 9.28
P_E 3.93 3.94 2.87 3.26 4.57 2.87

P_E+2GRU 3.81 2.87 2.11 3.82 3.27 1.87
P_E+diffParam 4.95 2.44 2.86 5.16 3.20 1.89

Dim_B 3.00 2.36 1.50 4.54 4.13 1.45
Dim_E 4.75 2.92 2.15 7.46 5.63 1.87

Dim_E+2GRU 4.53 4.00 2.11 6.74 5.91 3.02
Dim_E+20epochs 1.29 1.01 0.85 1.45 1.65 0.82

PT_B 12.30 10.65 11.07 3.24 6.77 4.87
PT_E 1.97 2.82 1.53 3.02 2.80 1.07

PT_E+2GRU 4.11 3.68 1.60 4.21 4.20 1.58
RO_B 3.92 3.30 2.10 3.29 3.81 1.54

RO_2GRU 3.28 5.11 2.59 3.59 5.12 2.41

Table 2: Standard deviation on all configuration
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