Recherche Zen Session 3 : Experiments

Carlos Ramisch and Manon Scholivet Partly based on the course by Adeline Paiement 18 octobre 2023

Research question \rightarrow Experiment

Data annotation

Data quality metrics (agreement)

Data science experiments

Evaluation metrics

• A research question and its sub-questions

 \rightarrow Precise, concise, feasible, interesting

- Hypotheses related to each sub-question
- They are anchored in the litterature and justified

- A research question and its sub-questions
 - \rightarrow Precise, concise, feasible, interesting
- Hypotheses related to each sub-question
- They are anchored in the litterature and justified

Experiment goals

- 1. To build further evidence that will eventually lead to accepting or rejecting the hypothesis
- 2. Lead to new interesting research questions

 \rightarrow Prioritise hypotheses according to impact and constraints

 \rightarrow Prioritise hypotheses according to impact and constraints

2. Identify the needs of the experiment

 $\rightarrow\,$ Data, datasets, evaluation metrics

 \rightarrow Prioritise hypotheses according to impact and constraints

2. Identify the needs of the experiment

 $\rightarrow\,$ Data, datasets, evaluation metrics

3. Instantiate under-specified aspects of the question/hypotheses

 \rightarrow The devil is in the details

 \rightarrow Prioritise hypotheses according to impact and constraints

2. Identify the needs of the experiment

ightarrow Data, datasets, evaluation metrics

3. Instantiate under-specified aspects of the question/hypotheses

 \rightarrow The devil is in the details

4. If the result is X, I will be able to conclude Y

 \rightarrow Reformulate hypotheses in terms of experiment outcomes

Hypothesis

It is possible to learn a model for language L (with no annotations available) from a set of languages L' (with available annotations)

Hypothesis

It is possible to learn a model for language L (with no annotations available) from a set of languages L' (with available annotations)

- A model for which task? Question answering? Parsing?
 → A supervised or unsupervised model?
- What exact set of languages?
- What configurations will be tested?
 - ightarrow L' contains 1 language, 5 languages...
 - \rightarrow *L* is similar to a language in *L'* or not?
- How to assess if a model is "good"? Which evaluation metrics?

- Experiments in computer science
- Experiments using data
- \implies Experiments in data science

- Experiments in computer science
- Experiments using data
- \implies Experiments in data science

Data science

Is data science a science?

- Experiments in computer science
- Experiments using data
- \implies Experiments in data science

Data science

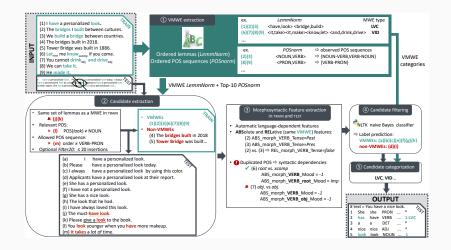
Is data science a science?

Disclaimer : This is not a machine learning course

Experimental protocol

- Step-by-step description of the experiment
- "Algorithm" of the experiment
 - \rightarrow Writing the recipe before start cooking

How formal is your protocol?


- Depends on the discipline
- A good protocol description can speed up paper writing
- In any case, to be defined before launching experiments

Source: https://aclanthology.org/J19-1001/

Diagrams to describe the protocol : example 2

Source: https://aclanthology.org/W18-4932/

Making choices

- Beware of the combinatorial explosion
 - \rightarrow # datasets \times # configs \times # models \times # metrics
 - \rightarrow Grid search = experiments run forever
- Choices must be justified
 - \rightarrow An arbitrary justification is better than none
 - \rightarrow E.g. the parameter was chosen after trial and error

• Favour more promising aspects

 \rightarrow E.g. Metrics are more or less equivalent \implies choose one

Datasets are heterogeneous \implies test all of them

 \rightarrow Small pilot experiments \implies trends \implies choices

Research question \rightarrow Experiment

Data annotation

Data quality metrics (agreement)

Data science experiments

Evaluation metrics

Where does data come from?

- Supervised methods require :
 - Input x + associated gold prediction y

• gold = reference = label = ground truth

Where does data come from?

• Machine learning / NLP courses :

digits = load_digits()
print(digits.target[:20]) # magic !

- Real life :
 - Here's some data (x), apply some learning on it !
 - \rightarrow How to obtain gold/reference labels y to learn/evaluate models?

Data annotation recipe

- 1. Select or collect material to annotate
 - licence, biases, representativity, diversity
- 2. Write annotation guidelines
 - domain expertise, pilot annotation
- 3. Develop or adapt an annotation platform
 - adaptable, easy to use
- 4. Train annotators
 - hard cases, speed, biases
- 5. Evaluate quality
 - inter-rater agreement
- 6. Combine annotations
 - adjudication, averaging
- 7. Export and release
 - stable website, format, documentation, articles

- Similarity with target application data
- Trade-off between realistic vs. artificial
 - \rightarrow E.g. newspaper vs. tweets
 - \rightarrow Climate crisis means quarter of European ski resorts face scarce

snow

ightarrow sooo sick of the snow ughh

• Raw data is noisy \implies harder to annotate/exploit

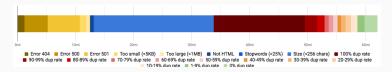
 \rightarrow E.g. dialects, typos, code switching, slang

Example : Text crawling / scraping

- Obtain data (HTML) from the web
 - ightarrow Off-the-shelf tools, e.g. BootCat
 - \rightarrow Pre-downloaded web dumps : CommonCrawl, Wikimedia
 - \rightarrow In-house scripts : parallelisation, <code>robots.txt</code>, priority queue, loops

Source: https://www.scaler.com/topics/data-science/web-scraping/

Example : Text crawling / scraping


- Pre-processing and cleaning
 - 1. Language identification https://pypi.org/project/langid/
 - 2. Deduplication https://corpus.tools/wiki/Onion
 - 3. Text extraction and boilerplate removal

https://www.crummy.com/software/BeautifulSoup/

https://pypi.org/project/jusText/

- 4. Content filtering : length, stopword ratio, dictionary
- Sentence/word segmentation https://spacy.io/

https://www.nltk.org/

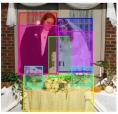
Source: https://aclanthology.org/L18-1686/

Clever ways to select data

- Open Subtitles : text + translation
 - provided for free by series/movie fans
- Amazon products : text + polarity (positive/negative)
 - Reviews associated with 5-star rating
- Flickr30k : image + description
 - Captions provided by users on Flickr

Example 1 : OpenSubtitles

Example 2 : Flickr30k (and extensions)


A man with plerced ears is wearing glasses and an orange hat. A man with glasses is wearing a beer can crotched hat. A man with gauges and glasses is wearing a Blitz hat. A man in an orange hat starring at something. A man wears an orange hat and glasses.

During a gay pride parade in an Asian city, some people hold up rainbow flags to show their support.

A group of youths march down a street waving flags showing a color spectrum.


Oriental people with rainbow flags walking down a city street. A group of people walk down a street waving rainbow flags. People are outside waving flags

- A couple in their wedding attire stand behind a table with a wedding cake and flowers.
- A bride and groom are standing in front of their wedding cake at their reception.
- A bride and groom smile as they view their wedding cake at a reception.
- A couple stands behind their wedding cake.
- Man and woman cutting wedding cake.

Source: https://bryanplummer.com/Flickr30kEntities/

Example 3 : Captcha

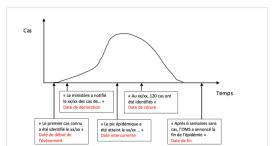
captcha...

The second one is free annotation !

- A document describing the task in much detail
 - \rightarrow Precise definitions of terms
 - \rightarrow Homogeneous/standard notation
 - ightarrow Describe what may seem obvious
- Describe corner cases
 - ightarrow Borderline or difficult phenomena

Annotation guidelines example : epidemiology events

Identify epidemiology events in news


ightarrow date, place, pathology agent, events per document

2.2.2. Élément «Date»

Plusieurs types de dates peuvent être retenues :

- date de déclaration de l'événement (exemple : "le gouvernement malien a notifié le 13 mai 2020");
- date de début de l'événement (exemple : "depuis le début de l'épidémie, le 12 octobre, 123 cas...);
- date de fin de l'événement (exemple : "après 6 semaines sans cas, l'OMS a déclaré le 19 mai 2020 la fin de l'épidémie...");
- date de césure des données décrivant l'événement (exemple : "Au 14 septembre 2020, 287 cas de dengue ont été diagnostiqués... ");
- date intercurrente (exemple : "le pic épidémique semble avoir été atteint autour du 15 septembre...").

Exemples de dates à l'occasion d'une épidémie :

Annotation guidelines example : multiword expressions

Underline words belonging to multiword expressions

ightarrow span, linguistic criteria, priorities, cross-lingual consistency

4 Apply test S.1 - [1HEAD: Unique verb as functional syntactic head of the whole?] **4** NO \Rightarrow Apply the VID-specific tests \Rightarrow VID tests positive? ↓ YES ⇒ Annotate as a VMWE of category VID It is not a VMWE. exit 4 YES ⇒ Apply test S.2 - [1DEP: Verb v has exactly one lexicalized dependent d?] 4 NO ⇒ Apply the VID-specific tests ⇒ VID tests positive? ↓ YES ⇒ Annotate as a VMWE of category VID 4 NO ⇒ It is not a VMWE, exit 4 YES ⇒ Apply test S.3 - [LEX-SUBJ: Lexicalized subject?] **4** YES \Rightarrow Apply the VID-specific tests \Rightarrow VID tests positive? 4 YES ⇒ Annotate as a VMWE of category VID It is not a VMWE, exit **4** NO \Rightarrow Apply test S.4 - [CATEG: What is the morphosyntactic category of d?] 4 Reflexive clitic ⇒ Apply IRV-specific tests ⇒ IRV tests positive? ↓ YES ⇒ Annotate as a VMWE of category IRV It is not a VMWE, exit **4** Particle \Rightarrow Apply VPC-specific tests \Rightarrow VPC tests positive? ↓ YES ⇒ Annotate as a VMWE of category VPC.full or VPC.semi It is not a VMWE, exit

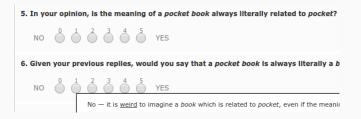
Annotation guidelines example : compositionality

• Given a word combination

 \rightarrow $\textit{ivory tower} \rightarrow$ privileged situation

• Proportion of whole's meaning predictable from components?

 \rightarrow Comp(*ivory_tower*, *ivory*, *tower*) = 10%


Annotation guidelines example : compositionality

• Given a word combination

 \rightarrow ivory tower \rightarrow privileged situation

- Proportion of whole's meaning predictable from components?
 → Comp(*ivory tower, ivory, tower*) = 10%
- Scale from 0 (totally idiomatic) to 5 (totally compositional)

 \rightarrow Head (*book*), modifier (*pocket*), compound (*pocket book*)

How to write (good) guidelines?

- Always keep in mind : who are the annotators?
- Pilot annotation phases

 \rightarrow Versioning and changelogs

• As objective as possible

ightarrow Yes/no tests, decision trees, flowcharts

• Cover as many borderline cases as possible

 \rightarrow Arbitrary but consistent decision, discard if needed

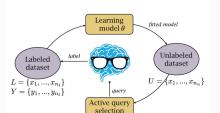
• Add many examples !

 \rightarrow Explain how to annotate them step by step

Annotation interface example : DIY

- Generic tools : Excel spreadseets, text files, etc.
- Web forms from scratch : Google forms, PHP, etc.
- Web dev frameworks : Dash, Streamlit, etc.

MWE	sentence-with-mweoccur	annotation	comment
abrir vantagem	Após a primeira parcial ficar empatada em 7 a 7, o Brasil [abriu] uma [vantagem] decisiva com quatro	NOT TO ANNOTATE	NOT TO ANN
abster se	Em outro caso , a Quarta Turma manteve decisão que condenou franqueados de a Rede Wizard a [se		NOT TO ANN
acabar se	Isso vale dizer que tendo somente um jogador de razoável condição técnica em o meio , [se] este for r	5. WRONG-LEXEMES	
acabar se	Não importa se você namora há anos , meses ou [se] [acabou] de conhecer o cara .	5. WRONG-LEXEMES	
acabar se	Eles são trabalhadores que lidam com o público e [acabam] [se] tornando confidentes .	6. COINCIDENTAL	
acabar se	Em o Brasil, a iguaria foi trazida por os portugueses e [acabou] [se] popularizando durante a fase Colo	6. COINCIDENTAL	
acabar se	Mas o tempo que ele precisará dedicar a sua academia [acabou] [se] tornando um empecilho .	6. COINCIDENTAL	
acabar se	A lugoslávia [acabou] [se] desintegrando .	6. COINCIDENTAL	
acabar se	Tem gente que a o menor tropeço , desata um rosário de queixas , colocando a culpa em os outros e [6. COINCIDENTAL	
acabar se	O príncipe - herdeiro [acabou] casando - [se] com a princesa Margarida de Saboia , sua prima em prin	6. COINCIDENTAL	
acabar se	Vem de lá , em o balanço de o mar / Sob a divina proteção de lemanjá , odoyá ! / Conduzindo minha e	NOT TO ANNOTATE	NOT TO ANN
acabar se	[Acabou] - [se] a Olimpíada , mas a vibração continua fora de os campos e de as raias olímpicas .	NOT TO ANNOTATE	NOT TO ANN
acabar se	A tropa está doente e [se] [acabando] . "	NOT TO ANNOTATE	NOT TO ANN
acertar a mão	Um subtenente reformado de a Aeronáutica resistiu a a prisão , [acertou] um tiro em [a] [mão] de um a	6. COINCIDENTAL	Or maybe "na
acertar a mão	Celso Roth [acertou] [a] [mão] e o Grêmio faz campanha .	NOT TO ANNOTATE	NOT TO ANN


Annotation interface example : FLAT

Alternatives : Inception, webAnno, brat, FLAT, Arborator, ...

Automatic pre-annotation

- Pre-annotation
 - 1. Annotate a small dataset and train predictive model
 - 2. Predict on the remaining unlabelled data
 - 3. Correct the predictions
- Active learning
 - 1. Annotate a given instance
 - 2. Append to training data and train predictive model
 - 3. Next instance to annotate chosen automatically
 - Maximise diversity of phenomena
 - Maximise the utility for the model

- Compensate for subjectivity = average over many annotators
 - Amazon Mechanical Turk, Crowdflower, ...
- Make the task simpler accessible for non experts
 - Remuneration per HIT Human Intelligence Task
- Data quality
 - Qualification pre-task, spammer filtering
- Ethical aspects : unfair remuneration, hard work

Gamification

- Games with a purpose
 - Fun, visually attractive, competition
 - Background : free annotation
- Examples
 - Jeux de mots https://www.jeuxdemots.org/
 - ZombiLingo http://gwap.grew.fr/

Research question \rightarrow Experiment

Data annotation

Data quality metrics (agreement)

Data science experiments

Evaluation metrics

Double annotation protocol

- Two (expert/trained) annotators :
 - same training, same annotation guidelines
 - annotate the same data
 - no communication while annotating
- Results should be (almost) identical
 - Inter-annotator agreement
 - Adjudication
- High agreement : guide OK, training OK, data quality OK
- Low agreement : restart until high agreement is reached
- \bullet "Low" and "High" \rightarrow Numerical agreement score

Items, categories and coders :

- Set of *items* : $\{i | i \in I\}$
- Set of categories : $\{k | k \in K\}$
- Set of *coders* (annotators) : $\{c | c \in C\}$

- Simple case : two raters c_1 and c_2
- Observed agreement : proportion of identically annotated items

$$A_O = \frac{1}{|I|} \sum_{k \in \mathcal{K}} \delta(n_{1k}, n_{2k})$$

• n_{ik} = number of coders who assigned item *i* to category *k*

Observed agreement : example

Item	Annot1	Annot2
1	Green	Blue
2	Blue	Blue
3	Blue	Green
4	Green	Green
5	Blue	Blue
6	Blue	Blue

. . .

. . .

Contingency table

	Green	Blue	Total
Green	41	3	44
Blue	9	47	56
Total	50	50	100

$$A_O = \frac{1}{|I|} \sum_{k \in \mathcal{K}} \delta(n_{1k}, n_{2k})$$

Observed agreement : example

Item	Annot1	Annot2
1	Green	Blue
2	Blue	Blue
3	Blue	Green
4	Green	Green
5	Blue	Blue
6	Blue	Blue

. . .

Contingency table

	Green	Blue	Total
Green	41	3	44
Blue	9	47	56
Total	50	50	100

$$A_O = \frac{1}{|I|} \sum_{k \in K} \delta(n_{1k}, n_{2k})$$

$$=rac{41+47}{100}=0.88$$

Adapted from Ron Artstein's slides :

http://ron.artstein.org/publications/2012-artstein-agreement-slides.pdf

Task : diagnose whether patients are ill					
	Healthy		Total		
Healthy	990	5	995		
111	5	0	5		
Total	995	5	1000		

$$A_O = \frac{990}{1000} = 0.99$$

- Most patients are not ill
 - No agreement in ill" category
- High expected agreement A_E
 - How to estimate A_E ?

Cohen's kappa inter-annotator agreement

• Proportion of agreement above chance

$$\kappa = \frac{A_O - A_E}{1 - A_E}$$

• Assume each annotator has their distribution (Cohen's κ)

$$A_E = \frac{1}{|I|^2} \sum_{k \in K} n_{c_1 k} n_{c_2 k}$$

- |I| annotated items in total,
- K possible values per item,
- n_{c_jk} items annotated as k by rater c_j

Adapted from Ron Artstein's slides :

http://ron.artstein.org/publications/2012-artstein-agreement-slides.pdf

Exercise : calculate kappa

	Healthy		Total
Healthy	990	5	995
111	5	0	5
Total	995	5	1000

- |I| = 1000 annotated items in total,
- n_{c_ik} items annotated as k by rater c_j

$$A_O = \frac{990}{1000} = 0.99 \qquad \kappa = \frac{A_O - A_E}{1 - A_E} \qquad A_E = \frac{1}{|I|^2} \sum_{k \in K} n_{c_1 k} n_{c_2 k}$$

1. Calculate the kappa chance-corrected IAA score

Exercise : calculate kappa

	Healthy		Total
Healthy	990	5	995
111	5	0	5
Total	995	5	1000

- |I| = 1000 annotated items in total,
- n_{c_ik} items annotated as k by rater c_j

$$A_O = \frac{990}{1000} = 0.99 \qquad \kappa = \frac{A_O - A_E}{1 - A_E} \qquad A_E = \frac{1}{|I|^2} \sum_{k \in K} n_{c_1 k} n_{c_2 k}$$

1. Calculate the kappa chance-corrected IAA score

$$A_E = \frac{995^2 + 5^2}{1000^2} = 0.995^2 + 0.005^2 = 0.99005 \quad A_O = 0.99 \quad \kappa = -0.005$$

40/70

- More than 2 raters
 - Consider pairs of agreeing annotators
 - ightarrow Fleiss' kappa
 - ightarrow Alpha coefficient (take into acccount distance between categories)
- Sporadic annotations
 - F-score between raters

Source: Further reading - https://aclanthology.org/J08-4004/

Adjudication

- Carried out by another expert (not an annotator)
- Dedicated interface
- Documented conflict resolution strategies

PROBLEM: Single annotator DECIDE		
A2: EP-4.1-LEX Les mesures nécessaires	A2 is correct	pour faire face à cette éventualité.
PROBLEM: Conflicting labels DECIDE	Remove annotation	
A1: VID Les mesures nécessaires doiver A2: EP-4.4-ZERO Les mesures nécessaires	Custom annotation Mark as special case	aire face à cette éventualité. e pour faire face à cette éventualité.
Sentence #58		

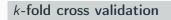

• Creation of final (adjudicated) dataset

Data cleaning

- Some annotations are outliers
- Cleaning must occur before experiments

Z-score filtering

Remove annotations that are more than \boldsymbol{z} standard deviations away from the mean


Source: Further reading : https://aclanthology.org/W16-1804/

- Evaluation must be carried out on held out data
 - ightarrow Test dataset
- Development must be carried out on held out data
 - \rightarrow Development or validation dataset
 - \rightarrow Attention : it is extremely easy to accidentally tune on test data
- Parameters must be learned from data
 - \rightarrow Training dataset

Fixed split

- Randomly pick 10% for test, 10% for dev, 80% for train
- Comparable across experiments, papers

Data splitting iii

• Expensive : requires training k models instead of 1

Biased split

- Fixed split, but not random
- The test set has controlled characteristics
 - \rightarrow E.g. test instances are unseen in training data

Discussion

• We need to talk about standard splits

ightarrow https://aclanthology.org/P19-1267/

• We need to talk about random splits

 \rightarrow https://aclanthology.org/2021.eacl-main.156/

• . . .

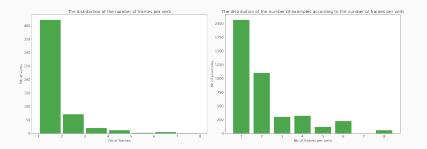
• Open your files!

 \rightarrow Otherwise someone may troll you :

https://medium.com/@yoav.goldberg/

an-adversarial-review-of-adversarial-generation-of-natural-language-409ac

• Don't try to get blood from a turnip


ightarrow Maybe your prediction task is unrealistic

 \rightarrow Maybe you need external resources

 $\rightarrow \dots$

Data analysis

- Distribution of classes, input characteristics
- Useful tool : histogram (e.g. matplotlib.pyplot.hist)
 → Use bins to discretise real-valued attributes

Source: Author : Anna Mosolova

• Use benchmarks to compare your method with others

 $\rightarrow\,$ Questions about the quality of standard datasets

• Shared tasks :

ightarrow Help make progress, but

 \rightarrow Encourage using low-quality data for years and years for the sake of comparability

Annotation beyond dataset creation

- Annotating = understanding your problem
 - ightarrow Hard for humans? \implies maybe hard for models
 - ightarrow Low agreement \implies maybe ill-defined problem
 - \rightarrow Annotation guidelines \implies inspiration for features

Research question \rightarrow Experiment

Data annotation

Data quality metrics (agreement)

Data science experiments

Evaluation metrics

- Supervised, unsupervised, semi-supervised
- Generalisation and amount of supervision

 \rightarrow Zero-shot, one-shot, few-shot

- Model's (hyper-)parameters
 - \rightarrow E.g. Neural network architecture, dimensions, \ldots
 - ightarrow E.g. Clustering linking criterion, threshold

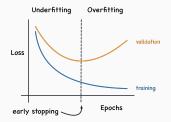
Baseline and topline i

- A model is never good or bad per se
- Situate the model performance wrt. a simpler model

 \rightarrow Baseline – simple model for the task

- Examples of baseline
 - \rightarrow Random prediction
 - ightarrow Majoritary class
 - ightarrow A good model 5 years ago
 - \rightarrow An interpretable model (rules, thresholds)
 - \rightarrow State-of-the-art model published last month

Baseline and topline ii


• Situate the model performance wrt. a better model

 \rightarrow Topline – upper bound for the performance

- Examples of topline
 - \rightarrow State-of-the-art model published last month
 - \rightarrow Large model released by big tech company
 - \rightarrow Human annotator performance/agreement
 - ightarrow Same experiment in unrealistic (easy) condition

Overfitting

- The model "overfits" if it memorises the training set
- Tools to prevent overfitting
 - Rule of thumb of pre-neural models :
 - ightarrow Less features than data items
 - Learning curves on dev set
 - Early stopping based in dev set performance

Hyperparameter search

- Some important hyperparameters
 - learning rate
 - epochs/early stopping patience
 - batch size
 - dropout ratios
- Tuning strategies
 - Grid search
 - Bayesian search
 - Random search
 - ...
- Unavoidable but usually not very interesting

- model capacity (hidden layer dimensions)
- number of stacked layers, attention heads
- embedding size

Model instability

- Same hyperparameters, different random seeds
 - weight initialisaiton in fine-tuning layers
 - order of inputs/batches
- Substantially different results
 - Some data orders/initializations consistently better than others
 - Early stoppin is effective
- Report averages, error bars, confidence intervals
 - Re-run training several times with different orders/random initialisation seeds
 - Explicitly set random.seed (for each lib), record and publish values

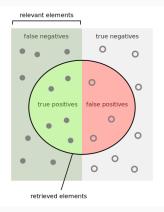
Source: Further reading : https://arxiv.org/abs/2002.06305

- Experiments management
- Reproducibility vs. replicability

Research question \rightarrow Experiment

Data annotation

Data quality metrics (agreement)


Data science experiments

Evaluation metrics

- Ideally : measure a hidden variable or phenomenon
- In practice : measure what we can observe $\hfill \rightarrow$ Formulation is simple enough to be interpretable
- Metrics are partial views of the results

Classification framework

- *tp* : True Positives
 - \rightarrow Correctly predict as positive
- tn : True Negatives
 - \rightarrow Correctly predict as negative
- fp : False Positives
 - \rightarrow Predict positive, should be negative
- fn : False Negatives
 - \rightarrow Predict negative, should be positive

Source: Image : Wikipedia

Accuracy

Accuracy =
$$\frac{tp+tn}{tp+tn+fp+fn}$$

- Percentage of well classified items
- Incomplete description of the method's performance

[Image : Devin Soni, towardsdatascience.com]

Precision, recall, F-score

- Calculated per predicted category
- Precision/recall : Complementary measures, report both !
 - Precision

ightarrow tp/(tp + fp)

• Recall = Sensitivity

$$ightarrow$$
 tp/(tp + fn)

• Specificity :

ightarrow tn/(tn + fp)

• F-score : Harmonic mean of precision and recall

 $F = 2. \frac{\text{precision.recall}}{\text{precision} + \text{recall}}$

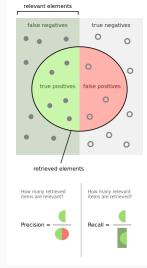


Image from Wikipedia

Accuracy and class imbalance

- Example : hate speech detection in tweets
 - Only a small percentage $({\sim}1\%)$ are hateful
 - Let's annotate everything as not hateful
 - My model has an accuracy of 99% ! So powerful !

F-score or F-measure

• F-score (or F-measure) : harmonic mean of precision and recall

 $F = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$

• F-score can be weighted to favour precision or recall $\rightarrow \beta = 0.5$: More weight on precision, less weight on recall $\rightarrow \beta = 1$: Balance the weight on precision and recall $\rightarrow \beta = 2$: Less weight on precision, more weight on recall

$$extsf{F}_eta = (1+eta^2) imes rac{ extsf{precision} imes extsf{recall}}{eta^2 extsf{precision} + extsf{recall}}$$

• Does it make sense to average F-scores?

 \rightarrow Macro- or micro-average?

- ROC curve / Area under the curve
 - \rightarrow Real prediction, threshold
- (Mean) average precision
 - \rightarrow Real prediction, binary gold classes
- Structured prediction
 - \rightarrow Compare trees, graphs
- . . .

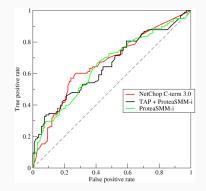
"When a measure becomes a target, it ceases to be a good measure"

- Cobra effect
- Reinforcement learning policies
- Grade-oriented education system
- Risk : optimise evaluation metric at any expense
 - \rightarrow Overfitting, low generalisation
 - \rightarrow Forgetting the research question
 - ightarrow Frustration with unrealistic goals
 - $\rightarrow \dots$

Source: Thanks to François Hamonic for this slide.

- Cours d'Adeline Paiement
- Wikipedia
- Google images

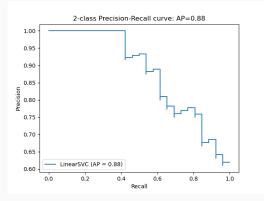
Backup slides


Consistency checks

- Vertical data visualisation
 - Aggregate similar units (e.g. by lemma, POS n-gram, etc)
- Adjudicator of expert annotator corrects mistakes

	a contra las leyes de obediencia debida ; contra los genocidas y abrimos un cam	
VID En el transcurso del de el viaje cambiarán la forma de Isaac, le dará contra las hordas de criaturas, descu	Annotate as VID (idiom) Annotate as LVC.full (light-verb)	s tesoros que le le permitirán luchar i supervivencia. Como el descenso del de s, le abren el camino más altos. Co
Sin embargo, la aparición recie el desempleo y el aumento de la con para una nueva etapa con una polític	Annotate as LVC.cause (light-verb) Annotate as IRV (reflexive) Annotate as VPC.full (verb-particle)	
abrir plazo VID (1)	Annotate as VPC.semi (verb-particle) Annotate as MVC (multi-verb)	
abrir él pasar <mark>VID (1)</mark>	Annotate as IAV (adpositional) Custom annotation	

ROC curve


ROC curves (*Receiver Operating Characteristic*) are very useful to chose a threshold.

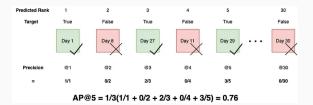
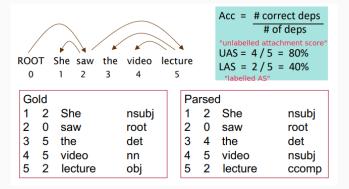

The AUC (*Area Under ROC*) is often used to estimate the model skill.

Image from Wikipedia

Another way to do this is to use the Precision and the Recall instead of using the True positive and the False positive rates.



- Model predicts a numerical score
- Gold class is binary or discrete
- Evaluate without setting a fixed threshold

- How to compare structured objects?
 - $\rightarrow {\rm Sub-sequences}$
 - $\rightarrow {\rm Clusters}$
 - \rightarrow Syntax trees
 - ightarrow Graphs

Structured prediction example : LAS/UAS

Source: https://x-wei.github.io/xcs224n-lecture5.html