Recherche Zen

Séance 4 : Analyses

Carlos Ramisch and Manon Scholivet
Partly based on the course by Adeline Paiement
November 8, 2023

Plan

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

Expectation...

	dataset	metric1	metric2	metric3 1
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	95.3	89.8	65.4
SOTA system	DS2	67.7	65.2	56.8
Our system	DS2	80.3	91.1	69.8
SOTA system	DS3	77.6	74.1	92.8
Our system	DS3	84.9	$\mathbf{7 8 . 3}$	98.1

1. Higher is better

Expectation...

	dataset	metric1	metric2	metric3 1
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	95.3	89.8	65.4
SOTA system	DS2	67.7	65.2	56.8
Our system	DS2	80.3	91.1	69.8
SOTA system	DS3	77.6	74.1	92.8
Our system	DS3	84.9	$\mathbf{7 8 . 3}$	98.1

\Longrightarrow Our system is better than state of the art!

1. Higher is better

... Vs. reality!

	dataset	metric1	metric2	metric3
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	80.7	$\mathbf{7 6 . 2}$	50.4
SOTA system	DS2	67.7	65.2	56.8
Our system	DS2	67.9	nan	49.6
SOTA system	DS3	77.6	$\mathbf{7 4 . 1}$	92.8
Our system	DS3	$\mathbf{7 9 . 0}$	$\mathbf{7 4 . 1}$	93.4

... Vs. reality!

	dataset	metric1	metric2	metric3
SOTA system	DS1	$\mathbf{8 2 . 3}$	75.9	48.0
Our system	DS1	80.7	$\mathbf{7 6 . 2}$	50.4
SOTA system	DS2	67.7	$\mathbf{6 5 . 2}$	56.8
Our system	DS2	67.9	nan	49.6
SOTA system	DS3	77.6	$\mathbf{7 4 . 1}$	92.8
Our system	DS3	$\mathbf{7 9 . 0}$	$\mathbf{7 4 . 1}$	$\mathbf{9 3 . 4}$

\Longrightarrow Wake up and smell the coffee

Results analysis

- Identify overall trends
- Identify potential sources of problems (or bugs)
- Ensure conclusions are valid, claims are (statistically) sound

Experimental results

- Diversity of experiments \Longrightarrow diversity of results
\rightarrow Task at hand
\rightarrow Datasets
\rightarrow Evaluation metrics
\rightarrow...
- This course : no silver bullet, rather a toolbox

Plan

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

Statistics

- A mathematical framework to analyse data
- Foundations : probability theory
- Statistical inference \Longrightarrow data science, machine learning
\rightarrow Also : finances, health, biology, physics, social sciences, ...
- Identify trends, check hypotheses, measure correlations, ...

The problem with statistics

Finding good learning materials in statistics is hard
Too theoretical :

Too applied :

Avec les Nuls, tout devient facile !
Formules et fonctions pour Excel 2019 les nuls

Weak Law of Large Numbers
The weak law of large numbers (cf. the strong law of large numbers) is a result in probability theory also known as Bernoulli's theorem. Let X_{1}, \ldots, X_{n} be a sequence of independent and identically distributed random variables, each having a mean $\left\langle X_{i}\right\rangle=\mu$ and standard deviati σ. Define a new variable

$$
X=\frac{X_{1}+\ldots+X_{n}}{n}
$$

Then, as $n \rightarrow \infty$, the sample mean $\langle x\rangle$ equals the population mean μ of each variable

$$
\begin{aligned}
& \langle X\rangle=\left\{\frac{X_{1}+\ldots+X_{n}}{n}\right\rangle \\
& =\frac{1}{n}\left(\left\langle X_{1}\right\rangle+\ldots+\left(X_{n}\right)\right) \\
& =\frac{n \mu}{n} \\
& =\mu . \\
& \begin{aligned}
\operatorname{var}(X) & =\operatorname{var}\left(\frac{X_{1}+\ldots+X_{n}}{n}\right) \\
& =\operatorname{var}\left(\frac{X_{1}}{n}\right)+\ldots+\operatorname{var}\left(\frac{X_{n}}{n}\right) \\
& =\frac{\sigma^{2}}{n^{2}}+\ldots+\frac{\sigma^{2}}{n^{2}} \\
& =\frac{\sigma^{2}}{n} .
\end{aligned}
\end{aligned}
$$

In addition,

Therefore, by the Chebyshev inequality, for all $\epsilon>0$,

$$
P(|X-\mu| \geq \epsilon) \leq \frac{\operatorname{var}(X)}{\epsilon^{2}}=\frac{\sigma^{2}}{n \epsilon^{2}} .
$$

What usually happens

- A given statistical tool is used without (full) understanding
- Statistical tools applied because supervisor/reviewer asked
- Give up trying to understand, just use it as a blackbox

Truth be told : everyone hates statistics

Probability and statistics :
Difficult math, boring and totally useless, everyone hates it!

Truth be told : everyone hates statistics

Probability and statistics :
Biffieult math, totally useless and so-boring, everyone hates it!

- Difficult : mostly sums and products of fractions
- Boring : that's subjective, but yes, it may be boring
- Useless : definitely not! The basis of empirical science

Truth be told : everyone hates statistics

Probability and statistics:
Difficult math, totally useless and so boring, everyone hates it !

- Yes, we may hate it, but we also need it !
\rightarrow Knowing what we're doing can make us feel more at ease
\rightarrow It is worth the effort of overcoming initial resistance

Truth be told : everyone hates statistics

Probability and statistics :
A framework to model and reason in the presence of uncertainty

Truth be told : everyone hates statistics

Probability and statistics:
A framework to model and reason in the presence of uncertainty

We'll cover only what we absolutely need, promise.
Ready ? Let's go !

Wooclap

Wooclap time!

First things first

What is the difference between probability and statistics?

First things first

What is the difference between probability and statistics?

Probability

- Mostly theoretical
\rightarrow Formal demonstrations

Statistics

- Manipulates data
\rightarrow Approximate probabilities

First things first

What is the difference between probability and statistics?

Probability

- Mostly theoretical
\rightarrow Formal demonstrations
- Notions we'll need :
\rightarrow Random variable
\rightarrow Probability distribution
\rightarrow Normal distribution

Statistics

- Manipulates data
\rightarrow Approximate probabilities
- Notions we'll need :
\rightarrow Sampling, mean, variance
\rightarrow Covariance, correlation
\rightarrow Hypotheses testing

Random variable

- A random variable is a variable with no specific value \rightarrow It takes some value within a (known) set of possible values \rightarrow We are not interested in its actual value

Examples:

- A human's age takes values form 0 to 130 years
- The sea water temperature ranges from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
- A person's handedness can be righ-handed, left-handed, both

Random variable

Are the following (interesting) random variables?

- 1. The number of tentacles of an octopus?

Random variable

Are the following (interesting) random variables?

- 1. The number of tentacles of an octopus?
\rightarrow No, always the same value

Random variable

Are the following (interesting) random variables?

- 2. An adult human's height in centimeters?

Random variable

Are the following (interesting) random variables?

- 2. An adult human's height in centimeters?
\rightarrow Yes, e.g. values from 50 cm to 300 cm

Random variable

Are the following (interesting) random variables?

- 3. The distance between the Earth and the Moon?

Random variable

Are the following (interesting) random variables ?

- 3. The distance between the Earth and the Moon?
\rightarrow Yes, it actually varies from 363 K to 406 K km

Random variable

Are the following (interesting) random variables?

- 4. A person's vote in the last presidential elections?

Random variable

Are the following (interesting) random variables?

- 4. A person's vote in the last presidential elections?
\rightarrow Yes, the values are the candidates/parties running

Random variable

Are the following (interesting) random variables?

- 5. A person's opinion about how cute an octopus is?

Random variable

Are the following (interesting) random variables?

- 5. A person's opinion about how cute an octopus is?
\rightarrow No, ill-defined, no closed set of possible values
\rightarrow Actually, everyone finds them cute! ;-)

Random variable

Are the following (interesting) random variables?

- 1. The number of tentacles of an octopus? No
- 2. An adult human's height in centimeters? Yes
- 3. The distance between the Earth and the Moon? Yes
- 4. A person's vote in the last presidential elections? Yes
- 5. A person's opinion about how cute an octopus is? No

In short

- A variable is not random if its value is fixed / constant
- Random variables can have non-numerical values
- We need to be able to describe its set of possible values
\rightarrow The set may be infinite (e.g. real numbers)

Why do we need random variables?

- Use their characteristics to understand the data
- Model features and evaluation metrics as random variables
- Basic block in probability and statistics
\rightarrow People have been studying them for a while
\rightarrow Statistical tools associated to them can be useful

Probability distributions

- Random variables are not interesting per se
- They come with probability distributions

Probability distribution

Given a random variable X :

- Each of its possible values $x_{i} \rightarrow$ number $p\left(x_{i}\right)$ between 0 and 1
\rightarrow This number is called the probability of x_{i}
$\rightarrow p\left(x_{i}\right)$ indicates how likely that value is
- The sum of $p\left(x_{i}\right)$ for all x_{i} values must be equal to 1
- The set of all $p\left(x_{i}\right)$ values form X 's probability distribution

Expressing probabilities

$$
P\{X=a\}=p(a)=0.8
$$

- X : The random variable that we're interested in
- a : The particular value of that random variable
- 0.8 : The probability that variable X takes value a

Expressing probabilities

$$
P\{X=a\}=p(a)=0.8
$$

- X : The random variable that we're interested in
- a : The particular value of that random variable
- 0.8 : The probability that variable X takes value a
- Note : we shorten $P\{X=a\}$ as $p(a)$ if there is no ambiguity
- Note : the probability value 0.8 is often written 80%

Simple probability distributions

- X_{1} : color of a 5-coloured spinner wheel

$$
P\left\{X_{1}=\text { red }\right\}=p(\text { green })=\ldots=p(\text { orange })=\frac{1}{5}
$$

Simple probability distributions

- X_{2} : number of "face" when throwing a fair coin 10 times

$$
p(1)=p(10)=\frac{1}{2}^{1} \times \frac{1}{2}^{9}=0.001
$$

Simple probability distributions

- X_{3} : waiting time for a bus passing every 15 min

$$
P\left\{0 \leq X_{3}<5\right\}=\frac{5-0}{15}=0.33
$$

Simple probability distributions

- X_{4} : sea water temperature in July in Marseille

$$
P\left\{X_{4}<17.6\right\}=0.5
$$

Wooclap

Wooclap time!

Probability distribution or not?

Which of the following are proper probability distributions? Why?

a) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| 1 | 0.4 |
| 2 | -0.2 |
| 3 | 0.8 |

c) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| -1 | 0.4 |
| -2 | 0.2 |
| -3 | 0.8 |

b) | x_{i} | $p\left(x_{i}\right)$ |
| :---: | ---: |
| 0.4 | 0.4 |
| 0.35 | 0.35 |
| 0.25 | 0.25 |

d) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| -1 | 0.4 |
| 0 | 0.2 |
| 1 | 0.2 |
| 2 | 0.1 |

Probability distribution or not?

Which of the following are proper probability distributions? Why?

a) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| 1 | 0.4 |
| 2 | -0.2 |
| 3 | 0.8 |

b)

x_{i}	$p\left(x_{i}\right)$
0.4	0.4
0.35	0.35
0.25	0.25

Yes, sum=1

c) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| -1 | 0.4 |
| -2 | 0.2 |
| -3 | 0.8 |

No, sum >1

d) | x_{i} | $p\left(x_{i}\right)$ |
| ---: | ---: |
| -1 | 0.4 |
| 0 | 0.2 |
| 1 | 0.2 |
| 2 | 0.1 |

From probabilities to statistics

- Probability distributions are theoretical abstractions
\rightarrow We often learn probabilities with toy examples
\rightarrow In practice, X 's "real" distribution is not accessible
- A sample is often used to estimate the probabilities
\rightarrow Most of the time, probabilities are approximated
\rightarrow Proportion in sample (\%) \rightarrow estimated probability

n

Random samples

- Randomly select a finite set of data points to study
\rightarrow A set of sentences to translate
\rightarrow A set of GPS positions to track
\rightarrow A set of people to perform a task
$\rightarrow \ldots$

Source: https://www.thoughtco.com/purposive-sampling-3026727

Sampling : example

Daily temperature of a captor in a power plant
\rightarrow Sample size : 365 days
$\rightarrow[10.1,14.0,8.9,6.7,9.4,10.3, \ldots 12.5,15.3,13.3]$

Estimated probability distribution $=$ normalized histogram

Sampling : example

Jupyter notebook 1 \& 2

1. Open the dataset using pandas.read_csv()
2. Explore the different columns and their values
3. Make a histogram of the compositionality column
\rightarrow This is an estimate of its distribution!

Compositionality dataset

- Is a dry run literally a run which is dry?

$$
\rightarrow \text { not at all } \leftarrow 0-1-2-3-4-5 \rightarrow \text { absolutely yes }
$$

- Compositionality score : average rating of 10-15 annotators
- Sample : 180 compounds in French

Why do we need samples?

- A representative sample can inform us about the whole
\rightarrow Full data not available, but sample findings can be generalised
\rightarrow Infer properties of the (unknown) distribution
\rightarrow Draw conclusions in the presence of uncertainty

Source: https://towardsdatascience.com/
understanding-random-variables-and-probability-distributions-1ed1daf2e66

Descriptive statistics

- We can characterise our sample
\rightarrow Central tendency : mean
\rightarrow Dispersion : variance

Mean / average

- A single value at the center of the sample
\rightarrow Summarise the whole data in a single number
- The arithmetic mean of a set of i.i.d. values $x_{1} \ldots x_{n}$:

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Source: StatQuest: https://www.youtube.com/watch?v=SzZ6GpcfoQY

Wooclap

Wooclap time!

Mean / average quiz

- Is the mean a probability (value between 0 and 1)?

Mean / average quiz

- Is the mean a probability (value between 0 and 1)?
\rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample?

Mean / average quiz

- Is the mean a probability (value between 0 and 1)?
\rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample?
\rightarrow No, it can be a new value, not contained in the sample
- Is the value of the mean always positive?

Mean / average quiz

- Is the mean a probability (value between 0 and 1)?
\rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample?
\rightarrow No, it can be a new value, not contained in the sample
- Is the value of the mean always positive?
\rightarrow No, e.g. if the variable only takes negative values

The larger the better

- The expected value of a (discrete) random variable :

$$
E[X]=p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}+\ldots+p\left(x_{n}\right) x_{n}
$$

- Sample mean $\bar{x} \rightarrow$ normalised sum of n i.i.d. random variables

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

- The law of large numbers states that $\bar{x} \rightarrow E[X]$ for large n
\rightarrow The (sample) mean \bar{x} is an estimator of the expected value $E[X]$

The larger the better

- The expected value of a (discrete) random variable :

$$
E[X]=p\left(x_{1}\right) x_{1}+p\left(x_{2}\right) x_{2}+\ldots+p\left(x_{n}\right) x_{n}
$$

- Sample mean $\bar{x} \rightarrow$ normalised sum of n i.i.d. random variables

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots+x_{n}}{n}
$$

- The law of large numbers states that $\bar{x} \rightarrow E[X]$ for large n
\rightarrow The (sample) mean \bar{x} is an estimator of the expected value $E[X]$

The larger the sample, the better \bar{x} approximates "true" mean $E[X]$

Data dispersion

- Mean does not take into account data dispersion

$$
\begin{aligned}
& S_{1}=[0] \Longrightarrow \overline{S_{1}}=0 \\
& S_{2}=[-4,-4,4,4] \Longrightarrow \overline{S_{2}}=0 \\
& S_{3}=[-6,-2,1,7] \Longrightarrow \overline{S_{3}}=0 \\
& S_{4}=[-1500,1500] \Longrightarrow \overline{S_{4}}=0
\end{aligned}
$$

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/

Getting to the variance

Idea 1 : average the difference between each value and the mean

$$
\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{n}
$$

- Calculate this amount for the sample [-4, -4, 4, 4]

Getting to the variance

Idea 1 : average the difference between each value and the mean

$$
\sum_{i=1}^{n} \frac{x_{i}-\bar{x}}{n}
$$

- Calculate this amount for the sample $[-4,-4,4,4]$

$$
\frac{(-4-0)+(-4-0)+(4-0)+(4-0)}{4}=0
$$

Getting to the variance

Idea 2 : average the absolute value of the $x_{i}-\bar{x}$ difference

$$
\sum_{i=1}^{n} \frac{\left|x_{i}-\bar{x}\right|}{n}
$$

- Calculate this amount for the sample $[-4,-4,4,4]$

Getting to the variance

Idea 2 : average the absolute value of the $x_{i}-\bar{x}$ difference

$$
\sum_{i=1}^{n} \frac{\left|x_{i}-\bar{x}\right|}{n}
$$

- Calculate this amount for the sample $[-4,-4,4,4]$

$$
\frac{|-4-0|+|-4-0|+|4-0|+|4-0|}{4}=4
$$

Getting to the variance

Idea 2 : average the absolute value of the $x_{i}-\bar{x}$ difference

$$
\sum_{i=1}^{n} \frac{\left|x_{i}-\bar{x}\right|}{n}
$$

- Calculate this amount for the sample $[-6,-2,1,7]$

Getting to the variance

Idea 2 : average the absolute value of the $x_{i}-\bar{x}$ difference

$$
\sum_{i=1}^{n} \frac{\left|x_{i}-\bar{x}\right|}{n}
$$

- Calculate this amount for the sample $[-6,-2,1,7]$

$$
\begin{equation*}
\frac{|-6-0|+|-2-0|+|1-0|+|7-0|}{4}=4 \tag{2}
\end{equation*}
$$

Moreover, absolute value is not differentiable at 0
This is inconvenient: https://www.youtube.com/watch?v=sHRBg6BhKjI

Getting to the variance

Idea 3 : average the squared differences $x_{i}-\bar{x}$

$$
\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Calculate this amount for the sample $[-4,-4,4,4]$

Getting to the variance

Idea 3 : average the squared differences $x_{i}-\bar{x}$

$$
\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Calculate this amount for the sample $[-4,-4,4,4]$

$$
\begin{equation*}
\frac{(-4-0)^{2}+(-4-0)^{2}+(4-0)^{2}+(4-0)^{2}}{4}=64 \tag{e}
\end{equation*}
$$

Getting to the variance

Idea 3 : average the squared differences $x_{i}-\bar{x}$

$$
\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Calculate this amount for the sample $[-6,-2,1,7]$

Getting to the variance

Idea 3 : average the squared differences $x_{i}-\bar{x}$

$$
\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

- Calculate this amount for the sample $[-6,-2,1,7]$

$$
\frac{(-6-0)^{2}+(-2-0)^{2}+(1-0)^{2}+(7-0)^{2}}{4}=90
$$

Source: Example adapted from
https://www.mathsisfun.com/data/standard-deviation.html

Variance

- Variance characterises the dispersion/spread of a distribution
\rightarrow Intuition: average distance from the mean
$\rightarrow\left(x_{i}-\bar{x}\right)$ can be positive or negative \Longrightarrow square it !

$$
\operatorname{Var}(X)=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}
$$

\rightarrow Variance is always positive, differently from mean

Standard deviation

- Variance averages squared differences
\rightarrow Its absolute value is hard to interpret
\rightarrow Bring back to original value range \rightarrow squared root
- The squared root of variance is called standard deviation

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

https://datatab.net/tutorial/dispersion-parameter

Estimated standard deviation

- Population standard deviation :

$$
\sigma_{X}=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

- Sample standard deviation, unbiased estimator :

$$
s_{X}=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

- Why? https://www. youtube.com/watch?v=sHRBg6BhKjI

Estimated standard deviation

- Population standard deviation:

$$
\sigma_{X}=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n}}
$$

- Sample standard deviation, unbiased estimator :

$$
s_{X}=\sqrt{\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)^{2}}{n-1}}
$$

- Why? https://www. youtube.com/watch?v=sHRBg6BhKjI

In practice, we only need $s_{X} \rightarrow$ Ensure your stats library does this!

Calculating mean and standard deviation

Jupyter notebook 3

1. Open dataset containing 180 compositionality scores
2. Use Pandas' comp.describe() to obtain a summary
3. Is the obtained standard deviation σ_{X} or s_{X} ?

One distribution to rule them all

The
Normal distribution

$$
P\{a<X<b\}=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{\frac{x-\mu}{\sigma}}
$$

One distribution to rule them all

The Normal distribution

$$
\begin{aligned}
& P\{a<X<b\}=\int_{a}^{b} \frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp ^{\frac{x-\mu}{\sigma}} \\
& \text { Who cares! }
\end{aligned}
$$

One distribution to rule them all

The Normal distribution

- Well known distribution for continuous random variables
- Probability density function is a symmetric bell-shaped curve
- Characterised by mean μ and standard deviation σ
\rightarrow Bell centered around μ, narrower or wider according to σ
$\rightarrow 99 \%$ of probability between $\mu-3 \sigma$ and $\mu+3 \sigma$

Normal distribution : example

Wooclap

Wooclap time!

Who's that normal?

1. What are the μ and σ parameters for the following curve?

Who's that normal?

1. What are the μ and σ parameters for the following curve?

Who's that normal ?

1. What are the μ and σ parameters for the following curve?
2. Which curve corresponds to $\mu=10$ and $\sigma=20$?
a)

c)

d)

40/136

Who's that normal ?

1. What are the μ and σ parameters for the following curve?
2. Which curve corresponds to $\mu=10$ and $\sigma=20$?

curve b) - notice different heights

Standardization

- Calculate probability \rightarrow integration (<0> aaaaah!)
\rightarrow Normal is impossible to integrate analytically
- In practice :
\rightarrow Standardize $z=\frac{x-\mu}{\sigma}$, then lookup table of $\Phi(a)$

Wooclap

Wooclap time!

The most famous probability distribution

Why is the normal distribution so important?

The most famous probability distribution

Why is the normal distribution so important?

- Turns out most measurements are normally distributed
- Used in many statistical tools, e.g. hypothesis testing
- Plays a central role in describing estimated means

It's normal to be average

- Normalised sum of i.i.d. variables is normally distributed
\rightarrow Even if the variables are not normally distributed!
- The mean \bar{x} of a sample is normally distributed
\rightarrow Comes in handy to analyse averaged values
- This is known as the central limit theorem
\rightarrow Connects statistics and probability

Central limit theorem : example

Jupyter notebook 4 \& 5

1. Build n random samples of size 30 from compositionality data
2. Calculate mean of each random sample, save values
3. Estimate sample mean's distribution with histogram
\rightarrow What happens when n increases?

Central limit theorem : example

Jupyter notebook 4 \& 5

1. Build n random samples of size 30 from compositionality data
2. Calculate mean of each random sample, save values
3. Estimate sample mean's distribution with histogram
\rightarrow What happens when n increases?

Central limit theorem : example

Jupyter notebook 4 \& 5

1. Build n random samples of size 30 from compositionality data
2. Calculate mean of each random sample, save values
3. Estimate sample mean's distribution with histogram
\rightarrow What happens when n increases?

Central limit theorem : example

Jupyter notebook 4 \& 5

1. Build n random samples of size 30 from compositionality data
2. Calculate mean of each random sample, save values
3. Estimate sample mean's distribution with histogram
\rightarrow What happens when n increases?

Central limit theorem : example

Jupyter notebook 4 \& 5

1. Build n random samples of size 30 from compositionality data
2. Calculate mean of each random sample, save values
3. Estimate sample mean's distribution with histogram
\rightarrow What happens when n increases?

In short

- Random variables and probability distributions
\rightarrow Theoretical model for features and metrics
\rightarrow In practice, estimated using sampling
- Mean and standard deviation characterise the data
\rightarrow Ensure your stats library divides by $n-1$
- Normal distribution : bell shaped around the mean
\rightarrow Useful to characterise values that are means

In short

- Random variables and probability distributions
\rightarrow Theoretical model for features and metrics
\rightarrow In practice, estimated using sampling
- Mean and standard deviation characterise the data
\rightarrow Ensure your stats library divides by $n-1$
- Normal distribution : bell shaped around the mean
\rightarrow Useful to characterise values that are means

Now we're ready for the next steps!

Plan

Introduction
 Statistics in a nutshell

Correlation

Significance

Discussion

Two random variables

- For the moment we looked at random variables one by one
- It may be interesting to look at two random variables X and Y
\rightarrow They may influence each other
\rightarrow They may be both influenced by similar factors
- How does X and Y vary together?

Two variables : scatter plot

- Variable X on x-axis, variable Y on y-axis
- plt.scatter (x,y)
- The two variables are paired or aligned
\rightarrow The sample consists of pairs of values
\rightarrow Each value of X has a corresponding value of Y
\rightarrow Both variables are numeric

Scatter plot example 1

A person's age (X) vs. height (Y)

Scatter plot example 1

A person's age (X) vs. height (Y)

Scatter plot example 2

A person's age (X) vs. number of sleeping hours (Y)

Scatter plot example 2

A person's age (X) vs. number of sleeping hours (Y)

Scatter plot example 3

A person's age (X) vs. number of socks used per year (Y)

Scatter plot example 3

A person's age (X) vs. number of socks used per year (Y)

Example : compositionality and number of occurrences

Jupyter notebook 6 \& 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

Example : compositionality and number of occurrences

Jupyter notebook 6 \& 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

Example : compositionality and number of occurrences

Jupyter notebook 6 \& 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

- Is there really something to see or are we over-interpreting ?

Quantifying relations

- It would be nice to be able to quantify the relation !

Quantifying relations

- It would be nice to be able to quantify the relation !

We will obtain such metric in two steps :

1. Covariance
\rightarrow Not so easy to interpret
\rightarrow Computational step towards calculating correlation
2. Correlation
\rightarrow Much easier to interpret

Covariance : far from the mean

- Relation between each value x_{i} and the mean \bar{x}
- Relation between each value y_{i} and the mean \bar{y}

Covariance : far from the mean

- Relation between each value x_{i} and the mean \bar{x}
- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow \text { Does } x_{i}>\bar{x} \text { imply } y_{i}>\bar{y} ? \\
& \rightarrow \text { Does } x_{i}<\bar{x} \text { imply } y_{i}<\bar{y} ?
\end{aligned}
$$

Covariance : far from the mean

- Relation between each value x_{i} and the mean \bar{x}
- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow \text { Does } x_{i}>\bar{x} \text { imply } y_{i}>\bar{y} ? \\
& \rightarrow \text { Does } x_{i}<\bar{x} \text { imply } y_{i}<\overline{\mathrm{y}} ?
\end{aligned}
$$

Covariance : far from the mean

- Relation between each value x_{i} and the mean \bar{x}
- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow \text { Does } x_{i}>\bar{x} \text { imply } y_{i}>\bar{y} \text { ? } \\
& \rightarrow \text { Does } x_{i}<\bar{x} \text { imply } y_{i}<\bar{y} ?
\end{aligned}
$$

Source: https://www.youtube.com/watch?v=qtaqvPAeEJY

Covariance : vary together

- Relation between each value x_{i} and the mean \bar{x}

$$
\begin{aligned}
& \rightarrow x_{i}>\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { positive } \\
& \rightarrow x_{i}<\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { negative }
\end{aligned}
$$

- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow y_{i}>\overline{\mathrm{y}} \Longrightarrow\left(y_{i}-\overline{\mathrm{y}}\right) \text { positive } \\
& \rightarrow y_{i}<\overline{\mathrm{y}} \Longrightarrow\left(y_{i}-\overline{\mathrm{y}}\right) \text { negative }
\end{aligned}
$$

Covariance : vary together

- Relation between each value x_{i} and the mean \bar{x}

$$
\begin{aligned}
& \rightarrow x_{i}>\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { positive } \\
& \rightarrow x_{i}<\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { negative }
\end{aligned}
$$

- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow y_{i}>\overline{\mathrm{y}} \Longrightarrow\left(y_{i}-\overline{\mathrm{y}}\right) \text { positive } \\
& \rightarrow y_{i}<\overline{\mathrm{y}} \Longrightarrow\left(y_{i}-\overline{\mathrm{y}}\right) \text { negative }
\end{aligned}
$$

Covariance : vary together

- Relation between each value x_{i} and the mean \bar{x}

$$
\begin{aligned}
& \rightarrow x_{i}>\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { positive } \\
& \rightarrow x_{i}<\bar{x} \Longrightarrow\left(x_{i}-\bar{x}\right) \text { negative }
\end{aligned}
$$

- Relation between each value y_{i} and the mean \bar{y}

$$
\begin{aligned}
& \rightarrow y_{i}>\bar{y} \Longrightarrow\left(y_{i}-\bar{y}\right) \text { positive } \\
& \rightarrow y_{i}<\bar{y} \Longrightarrow\left(y_{i}-\bar{y}\right) \text { negative }
\end{aligned}
$$

Source: https://www.youtube.com/watch?v=qtaqvPAeEJY

Covariance : vary together

$$
\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)
$$

- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are positive
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive

Covariance : vary together

$$
\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)
$$

- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are positive
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive
- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are negative
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive

Covariance : vary together

$$
\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)
$$

- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are positive
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive
- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are negative
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive
- $\left(x_{i}-\bar{x}\right)$ is positive and $\left(y_{i}-\bar{y}\right)$ is negative
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is negative

Covariance : vary together

$$
\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)
$$

- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are positive
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive
- Both $\left(x_{i}-\bar{x}\right)$ and $\left(y_{i}-\bar{y}\right)$ are negative
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is positive
- $\left(x_{i}-\bar{x}\right)$ is positive and $\left(y_{i}-\bar{y}\right)$ is negative
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is negative
- $\left(x_{i}-\bar{x}\right)$ is negative and $\left(y_{i}-\bar{y}\right)$ is positive
\rightarrow Product $\left(x_{i}-\bar{x}\right) \times\left(y_{i}-\bar{y}\right)$ is negative

Covariance : the formula

1. First calculate means \bar{x} and \bar{y}
2. Then calculate the covariance as :

$$
\operatorname{Cov}(X, Y)=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

Covariance : the formula

1. First calculate means \bar{x} and \bar{y}
2. Then calculate the covariance as :

$$
\operatorname{Cov}(X, Y)=\sum_{i=1}^{n} \frac{\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}
$$

Wooclap

Wooclap time!

Exercise : guess the covariance

1. A person's age (X) vs. height (Y)

Exercise : guess the covariance

1. A person's age (X) vs. height (Y)

$$
\operatorname{Cov}(X, Y)=+180.9
$$

Exercise : guess the covariance

Exercise : guess the covariance

A person's age (X) vs. number of sleeping hours (Y)

$$
\operatorname{Cov}(X, Y)=-9.0
$$

Exercise : guess the covariance

A person's age (X) vs. number of socks used per year (Y)

Exercise : guess the covariance

A person's age (X) vs. number of socks used per year (Y)

$\operatorname{Cov}(X, Y)=0.77$

Covariance is sensitive to unit

- What if X and Y have very different ranges?
\rightarrow For instance, X in cm, Y in km

Covariance is sensitive to unit

- What if X and Y have very different ranges?
\rightarrow For instance, X in cm, Y in km
- Covariance is unbounded - ranges from $-\infty$ to $+\infty$
\rightarrow Indicates whether a linear relation exists, but not its strength

Positive Covariance

Negative Covariance

Covariance : it's a sign !

- Covariance is positive
\rightarrow Increasing X tends to make Y increase too
- Covariance is negative
\rightarrow Increasing X tends to make Y decrease
- Covariance is zero
\rightarrow Increasing X has no impact on Y
\rightarrow Increasing Y has no impact on X

What if. . .

- What if we could normalise covariance?
- Can we get a measure that is bounded?

Correlation coefficient (r)

- Covariance can be normalised using X and Y 's variances

$$
r_{X, Y}=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y))}}=\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}}
$$

- Dividing by standard deviation puts both on same scale
- Also called Pearson or linear correlation

Correlation interpretation

- Ranges from -1 to +1
$\rightarrow r \approx+1:$ strong positive association
$\rightarrow r \approx-1:$ strong negative association
$\rightarrow r \approx 0:$ weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation and spread

- Correlation tells how close or far from linear regression line \rightarrow Knowing \times allows predicting y (and vice-versa)

Large spread of Y when X is known

Strong Association

Small spread of Y when X is known

Correlation is unit-less

- Covariance is unbounded, depends on variable ranges
- Correlation allows comparing metrics with different ranges
\rightarrow Example: max vs. min. temperature in Celsius or Farehnheit
\rightarrow In both cases, correlation is the same : $r=0.74$

Correlation is symmetric

- Correlation is symmetric
\rightarrow Example: max vs. min. temperature or vice-versa
\rightarrow In both cases, correlation is the same : $r=0.74$

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Wooclap

Wooclap time!

Exercise : guess the correlation

1. A person's age (X) vs. height (Y)

Exercise : guess the correlation

1. A person's age (X) vs. height (Y)

$$
r(X, Y)=0.85
$$

Exercise : guess the correlation

Exercise : guess the correlation

A person's age (X) vs. number of sleeping hours (Y)

$$
r(X, Y)=-0.89
$$

Exercise : guess the correlation

A person's age (X) vs. number of socks used per year (Y)

Exercise : guess the correlation

A person's age (X) vs. number of socks used per year (Y)

$r(X, Y)=0.04$

Why dividing by standard deviations?

$$
\begin{aligned}
r_{X, Y} & =\frac{\operatorname{Cov}(X, Y)}{s_{X} s_{Y}}=\frac{1}{n-1} \frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{s_{X} s_{Y}} \\
& =\frac{1}{n-1} \sum_{i=1}^{n}\left(\frac{x_{i}-\bar{x}}{s_{X}}\right)\left(\frac{y_{i}-\bar{y}}{s_{Y}}\right)
\end{aligned}
$$

- Similar to standardisation in normal distribution
\rightarrow Discounting the mean centers around zero
\rightarrow Dividing by standard deviation homogenizes width

Correlation shows linear association

- Correlation does not model non-linear association

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation of compositionality

Jupyter notebook 8

- Hypothesis: compositionality and frequency are correlated
\rightarrow Frequency is better represented in logarithmic scale
- Does correlation change if frequency is in linear or log scale?

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant \rightarrow Does X rank items more or less in the same order as Y ?
- Spearman's ρ : linear (Pearson) correlation between ranks
\rightarrow Models monotonic relation

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant \rightarrow Does X rank items more or less in the same order as Y ?
- Spearman's ρ : linear (Pearson) correlation between ranks \rightarrow Models monotonic relation

Example :

$$
\begin{aligned}
& \mathrm{x}=[2,3,4,14,15] \\
& \mathrm{y}=[1,5,10,11,16]
\end{aligned}
$$

\qquad

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant \rightarrow Does X rank items more or less in the same order as Y ?
- Spearman's ρ : linear (Pearson) correlation between ranks \rightarrow Models monotonic relation

Example :

```
\(\mathrm{x}=[2,3,4,14,15]\)
\(\mathrm{y}=[1,5,10,11,16]\)
```


Spearman correlation

- Obtain ranks $r X_{i}$ for X in ascending order
- Obtain ranks $r Y_{i}$ for Y in ascending order
- Obtain difference between ranks $d_{i}=r X_{i}-r Y_{i}$
- Calculate Spearman's rank correlation :

$$
\rho_{X, Y}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

Spearman correlation

- Obtain ranks $r X_{i}$ for X in ascending order
- Obtain ranks $r Y_{i}$ for Y in ascending order
- Obtain difference between ranks $d_{i}=r X_{i}-r Y_{i}$
- Calculate Spearman's rank correlation :

$$
\rho_{X, Y}=1-\frac{6 \sum d_{i}^{2}}{n\left(n^{2}-1\right)}
$$

- Alternatively, Pearson correlation between $r X_{i}$ and $r Y_{i}$

Spearman correlation : example

IQ, $X_{i} \uparrow$	Hours of TV per week, $Y_{i} \uparrow$	rank $x_{i} \uparrow$	rank $y_{i} \uparrow$	$d_{i} \uparrow$	$d_{i}^{2} \uparrow$
86	2	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Source: https://en.wikipedia.org/wiki/Spearman_correlation

Pereson vs. Spearman of compositionality

Jupyter notebook 9 \& 10

- Compare Pearson and Spearman correlation
\rightarrow Compositionality vs. frequency
\rightarrow Compositionality vs. log-frequency
- Compare manual implementation and scipy

Confounders

- Suppose X independent and Y dependent variables
- A confounder can influence both X and Y
- Correlation is not causation

Source: https://xkcd.com/552/

Spurious correlations

- Correlations can be found between unrelated variables
- Procrastinate : https://www.tylervigen.com/spurious-correlations \rightarrow What possible confounders could explain these correlations?

Divorce rate in Maine \equiv
correlates with
Per capita consumption of margarine

Simpson's paradox

https://www.arte.tv/fr/videos/107398-002-A/ voyages-au-pays-des-maths/

Plan

Introduction
Statistics in a nutshell
Correlation

Significance

Discussion

Year 3000...

The Earth is finally a safe and pleasant place for humans again.

However, 1000 years of global warming released a dangerous bacteria from the permafrost.

The bacteria starts to infect human hosts, causing a mysterious disease.

Centuries in insipid watery ice made the bacteria obsessive about...

...vanilla ice-cream! \varnothing

The illness is called

- Compulsive
- Obsessive
- Vanilla
- Ice-cream
- Disease

CHAOS!!

The bacteria spreads rapidly, and infected humans start eating tons of vanilla ice-cream.

Milk prices rise to the stratosphere, ice-cream makers strike, diabetes and obesity break records...

Governments impose ice-cream lockdowns, interplanetary travel is forbidden, panic everywhere!

After months of an unprecedented crisis...

A lab finally announces a vaccine at phase 3!

In phase 3, a vaccine is evaluated using an experiment called randomized control trial

Randomized control trial

Conclusion :

Group A
Vaccine

Group B Placebo

The vaccine works.
What a relief for humanity !

But. . . maybe humans forgot all about statistics?

- Is the observed difference large enough ?
- $I C D_{A}=1.47$ ice/creams per day
- $I C D_{B}=1.56$ ice/creams per day

$$
\delta=I C D_{B}-I C D_{A}=0.09
$$

- Maybe the sample is too small or biased
\rightarrow Affects our conclusion that vaccine (A) better than placebo (B) ?

But. . . maybe humans forgot all about statistics?

- Is the observed difference large enough ?
- $I C D_{A}=1.47$ ice/creams per day
- $I C D_{B}=1.56$ ice/creams per day

$$
\delta=I C D_{B}-I C D_{A}=0.09
$$

- Maybe the sample is too small or biased
\rightarrow Affects our conclusion that vaccine (A) better than placebo (B) ?

Given the samples, the metrics, and the experiment's conditions : Probability of making a false claim assuming $A \neq B$ in general ?

$$
\rightarrow \text { p-value! }
$$

System comparison

- Incremental research
- State of the art or Baseline system B (placebo)
- My own Awesome proposal system A (vaccin)
- How can I check whether A is better than B ?
- What's the probability of drawing a wrong conclusion?
\rightarrow Ideally, very low, close to zero
- Methodological framework
\rightarrow Take inspiration from health, biology, social siences

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus

Comparison framework : example

- Our Baseline system classifies images
\rightarrow Two categories: octopus or not octopus
- Sometimes it makes mistakes

Comparison framework : example

- We developed an Awesome new system!
\rightarrow E.g. the new system was trained on more data

Comparison framework : example

- We developed an Awesome new system!
\rightarrow E.g. the new system was trained on more data

Comparison framework : example

- We developed an Awesome new system!
\rightarrow E.g. the new system was trained on more data
- It seems that it makes less mistakes \Longrightarrow

Test set

- Is A really better than B ?
\rightarrow Testing on a couple examples is not enough !
- Use a test set containing (x, y) pairs
$\rightarrow x$ - sea animal images
$\rightarrow y$ - gold/reference octopus / other labels
- The test set was not used to build the system

Test set : example

Images x selected to be in the held-out test set

$x \rightarrow$ NTN Fix

Reference/gold labels y considered true (e.g. annotated by humans)

System predictions

Both systems generate predictions \hat{y} for test set instances x

Evaluation metrics

Compare predictions \hat{y}_{B} and \hat{y}_{A} to reference y

$$
M(B, x, y)=\frac{3}{5}=0.6
$$

Evaluation metrics

Compare predictions \hat{y}_{B} and \hat{y}_{A} to reference y

$$
M(A, x, y)=\frac{4}{5}=0.8
$$

Wooclap

Wooclap time!

System score comparison

- The accuracies of both systems are :

$$
\begin{aligned}
& M(B, x, y)=\frac{3}{5}=0.6 \\
& M(A, x, y)=\frac{4}{5}=0.8
\end{aligned}
$$

- It seems like A is better than B
- The difference (delta) is positive

$$
\delta_{A-B}(x, y)=M(B, x, y)-M(A, x, y)=0.8-0.6=0.2
$$

System comparison : example

We obtained a much larger test set x^{\prime}, y^{\prime}

We compare A and B again and obtain :

System comparison : example

We obtained a much larger test set x^{\prime}, y^{\prime}

We compare A and B again and obtain :

$$
\begin{aligned}
\delta_{A-B}\left(x^{\prime}, y^{\prime}\right) & =M\left(B, x^{\prime}, y^{\prime}\right)-M\left(A, x^{\prime}, y^{\prime}\right) \\
& =0.7612-0.7586 \\
& =0.0026
\end{aligned}
$$

System comparison : example

We obtained a much larger test set x^{\prime}, y^{\prime}

We compare A and B again and obtain :

$$
\begin{aligned}
\delta_{A-B}\left(x^{\prime}, y^{\prime}\right) & =M\left(B, x^{\prime}, y^{\prime}\right)-M\left(A, x^{\prime}, y^{\prime}\right) \\
& =0.7612-0.7586 \\
& =0.0026
\end{aligned}
$$

- Can we still affirm that A is better than B ?
- If we add or remove a couple of images, could the result flip?

Interpretting delta

$$
\delta_{A-B}(x, y)=M(A, x, y)-M(B, x, y)
$$

- Delta allows us to translate the comparison into maths
$\rightarrow \mathrm{A}$ better than $\mathrm{B} \rightarrow \delta_{A-B}(x, y)>0$
\rightarrow A equivalent to $\mathrm{B} \rightarrow \delta_{A-B}(x, y)=0$
$\rightarrow \mathrm{A}$ worse ${ }^{2}$ than $\mathrm{B} \rightarrow \delta_{A-B}(x, y)<0$
- In some disciplines, $\delta_{A-B}(x, y)$ is called effect

2. Yes, the old Baseline may beat the new Awesome system!

In short : maximise the effect!

1. We develop a system A supposed to be better than B
2. To verify this, we apply both systems to the same test set :
\rightarrow Get output of system A on the test set (x, y)
\rightarrow Get output of system B on the test set (x, y)
3. Calculate the evaluation metric $M(\cdot)$ for both outputs

$$
\delta_{A-B}(x, y)=M(A, x, y)-M(B, x, y)
$$

4. Large positive $\delta_{A-B}(x, y) \Longrightarrow$
5. In practice, $\delta_{A-B}(x, y)$ is often small

Test sets as random samples

- Could the observed $\delta_{A-B}(x, y)>0$ be due to chance?
$\rightarrow(x, y)$ is a sample of joint random variables (X, Y)
\rightarrow What effect/difference would be observed for sample $\left(x^{\prime}, y^{\prime}\right)$?
- What is the probability that A is actually no better than B
\rightarrow If we ever had access to the "real" distribution of (X, Y) ?

Effects as random variables

- We obtain a single $\delta_{A-B}(x, y)$ value
- This value depends on the test set (x, y), which is a sample
- We can see $\delta_{A-B}(x, y)$ as a sampled value of a random variable

$$
\delta_{A-B}(X, Y) \sim
$$

- P-value : probability of obtaining at least $\delta_{A-B}(x, y)$
- When in reality, A is no better than B
- In short : p-value $=$ probability that your conclusion is wrong !

Wooclap

Wooclap time!

P-value : example

We have one value obtained on the large dataset $\left(x^{\prime}, y^{\prime}\right)$

$$
\delta_{A-B}\left(x^{\prime}, y^{\prime}\right)=0.0026
$$

P-value : example

통․ .

We have one value obtained on the large dataset $\left(x^{\prime}, y^{\prime}\right)$

$$
\delta_{A-B}\left(x^{\prime}, y^{\prime}\right)=0.0026
$$

If we had all possible images of sea creatures X and their classes
\rightarrow Imagine we have access to the real distribution $\delta_{A-B}(X, Y)$

- Probability of obtaining 0.0026 difference (or more)
- If A is actually no better than B

Hypothesis testing

- $H_{0}: \delta_{A-B}(X, Y) \leq 0 \Longrightarrow$ if true, then A not better than B
- $H_{1}: \delta_{A-B}(X, Y)>0$
- Goal : reject H_{0}
\rightarrow Conclusion: significant difference between the systems

Hypothesis testing and p-value

Remember

- $H_{0}: \delta_{A-B}(X, Y) \leq 0$
- $H_{1}: \delta_{A-B}(X, Y)>0$
- P-value : probability of observing $\delta_{A-B}\left(x, y\right.$ while H_{0} true \rightarrow Intuituion: if H_{0} was true, large $\delta_{A-B}(x, y)$ are unlikely
- In mathematical notation :

$$
\text { p-value }=P\left\{\delta_{A-B}(X, Y) \geq \delta_{A-B}(x, y) \mid H_{0}\right\}
$$

Hypothesis testing : example

Estimate p-value, if small enough $\Longrightarrow A$ better than B

Type I errors

- Type I error : false positive
\rightarrow Rejecting H_{0} when it is actually true

Conclusion of the test :

is better than

Reality : But it isn't better!

Type II errors

- Type II error : false negative
\rightarrow Not rejecting H_{0} when it is actually false

Conclusion of the test :

is not better than

Reality: But it is better!

Goal

- Probability of type-I error is upper bounded by α
$\rightarrow \alpha$ is called the significance level or threshold
- Probability of type-II error is as low as possible
\rightarrow Test power: ability to avoid type-II errors

Statistically significant result

$$
\text { p-value }<\alpha \Longrightarrow \text { statistically significant! }
$$

- p-value : probability of extreme outcome
- α : significance threshold
\rightarrow Usual "magic" value : $\alpha=0.05$

Statistically significant result

$$
\text { p-value }<\alpha \Longrightarrow \text { statistically significant! }
$$

- p-value : probability of extreme outcome
- α : significance threshold
\rightarrow Usual "magic" value : $\alpha=0.05$

The word significant should not be used to anything else

How can we estimate p-values?

- P-value depends on $\delta_{A-B}(X, Y)$ probability distribution
- Which in turn depends on $M(A, x, y)$ and $M(B, x, y)$
\rightarrow Remember: $M(\cdot)$ is our evaluation metric
- $M(\cdot)$'s distribution determines that of δ (if we're lucky)
\Longrightarrow Study the probability distribution of $M(\cdot)$!

Wooclap

Wooclap time!

Accuracy is an average

$$
\begin{aligned}
& \hat{y}_{A} \rightarrow \underbrace{\text { N }}_{1} \\
& A C C_{B}=\frac{1+1+0+1+0}{5}=\frac{3}{5} \quad \text { Acc }_{A}=\frac{1+1+1+0+1}{5}=\frac{4}{5}
\end{aligned}
$$

Accuracy is an average

Accuracy is an average

$$
\begin{aligned}
& y \rightarrow \text { जैN }^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \hat{y}_{A} \rightarrow \underbrace{\text { a }}_{1} \\
& A c c_{B}=\frac{1+1+0+1+0}{5}=\frac{3}{5} \quad \text { Acc }_{A}=\frac{1+1+1+0+1}{5}=\frac{4}{5}
\end{aligned}
$$

Accuracy is an average
\rightarrow Normally distributed!

The t-test for paired samples

- T-test : hypothesis testing for normally distributed variables
- Based on Student's t distribution
\rightarrow Looks like normal distribution for large samples

$$
\text { t-stat }=\frac{M(A, x, y)-M(B, x, y)}{S E / \sqrt{m}}
$$

- m : size of the paired sample (x, y)
- $S E$: standard deviation of the difference $\hat{y}_{A}-\hat{y}_{B}$

The t-test for paired samples

- T-test : hypothesis testing for normally distributed variables
- Based on Student's t distribution
\rightarrow Looks like normal distribution for large samples

$$
\text { t-stat }=\frac{M(A, x, y)-M(B, x, y)}{S E / \sqrt{m}}
$$

- m : size of the paired sample (x, y)
- $S E$: standard deviation of the difference $\hat{y}_{A}-\hat{y}_{B}$
- P-value : check Student's t table, $m-1$ degrees of freedom

Precision is not an average

- Recall $\left(\frac{t p}{t p+f n}\right)$ can be seen as an average like accuracy
$\rightarrow t p+f n$ does not depend on the system
- Precision $\left(\frac{t p}{t p+f p}\right)$ cannot be seen as an average
$\rightarrow t p+f p$ depends on the system
\rightarrow System class distribution is unpredictable
- \Longrightarrow F-score cannot be assumed to be normally distributed

Non parametric tests

- Problem of t-test : assumes $M(A, x, y) \sim$ normally distributed
- Other metrics :
- Recall $R=\frac{t p}{t p+f n}, t p+f n$ constant $\rightarrow t$-test OK \checkmark
- Precision $P=\frac{t p}{t p+f p}$ depends on $t p+f p$, unknown distribution $\rightarrow t$-test not OK X
- F-score $2 P R /(P+R)$ depends on P, unknown distribution
$\rightarrow t$-test not OK X

Parametric vs. non parametric

Many authors use the terms parametric vs. non parametric tests

- What does it mean ?
- Most of the time, by "parametric" we mean "the random variable normally distributed"

Non parametric tests

- Alternative : non parametric tests

1. No sampling

- Fast
- Conservative, will not state A better than B for small δ (not powerful)
- E.g. sign test, McNemar's test, Wilcoxon

2. With sampling

- Slow
- Powerful, low type-II error probability
- E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/

Bootstrap

Idea : estimate M distribution by random re-sampling in x, y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html

Bootstrap

$\operatorname{Acc}(A$, Sample n$)=\frac{2}{2}$
sample $\operatorname{Acc}(B, S a m p l e n)=\frac{2}{2}$

Bootstrap for significance

```
deltaobs = M(A,x,y) - M(B,x,y) # delta on test set
R = 10000 # 10k random samples
for i = 1 .. R :
    xs, ys = sample(x,y,m) # with repetition
    deltasample = M(A,xs,ys) - M(B,xs,ys)
    if deltasample > 2 * deltaobs :
    r = r + 1
pvalue = r/R
```


Why comparing with $2 \times$ deltaobs?

Using Bootstrapping...

https://www.youtube.com/watch?v=N4ZQQqyIf6k

Which test to apply?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/

Evaluation metric M distribution vs. test

- Parametric test ($M(A, x, y)$ from known distribution)
- Paired Student's t-test
- Non-parametric tests ($M(A, x, y)$ from unknown distribution)
- No sampling (less powerful)
- Sign test
- McNemar's test
- Wilcoxon signed rank test
- Sampling (computationally expensive)
- Permutation (randomized approximation) test
- Bootstrap test

Multiple comparisons

- Multiple comparisons : probability of false claims increases
- Bonferroni's correction
- Divide significance level α by the number of tests N
- Replicability analysis (Dror et al. 2020)

P-hacking

A significant p-value can always be obtained
\rightarrow As long as the sample is large enough
\rightarrow https://www. youtube.com/watch?v=HDCOUXE3HMM

P-hacking

A significant p-value can always be obtained
\rightarrow As long as the sample is large enough
\rightarrow https://www. youtube.com/watch?v=HDCOUXE3HMM

Source: https://xkcd.com/1478/

Unpaired samples

- We only covered significance for paired samples
\rightarrow Two systems A and B, same dataset items (x, y)
\rightarrow Other tests for unpaired samples

Plan

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

Community's practice

NLP conferences (ACL) and journals (TACL)

General Statistics	ACL ' $\mathbf{1 7}$	TACL '17
Total number of pa- pers	196	37
\# papers that do not report significance	117	15
\# papers that report significance	63	18
\# papers that report significance but use the wrong statistical test	6	0
\# papers that report significance but do not mention the test name	21	3

Source: Dror et al. 2018

Statistics libraries

- Visual : Excel, Libreoffice, ...
- Python: matplotlib, numpy, scipy, sklearn,...
- R : multiple libraries including linear models
- Proprietary : Matlab, SPSS, ...

Error analysis

- Characterise the errors in our system's output
- Scripts to print characteristics of errors
\rightarrow Frequency, length, resolution, predicted/gold class, ...
\rightarrow Example : compounds predicted in wrongest positions
- Manual error annotation : taxonomies, guidelines
\rightarrow Gain insight on most promising improvements

Interpretability analysis

Try to understand why systems generate a prediction

- Feature-based methods (SHAP, LIME)
\rightarrow Which parts of the inputs influence prediction?
- Visualisation
\rightarrow Attention salience, 2-D projection (UMAP, t-SNE, topology)
- Adversarial examples, perturbations
\rightarrow Difficult minimal pairs

(a) Original Image

(b) Explaining Electric guitar

(c) Explaining Acoustic guitar

(d) Explaining Labrador

Source: https://homes.cs.washington.edu/~marcotcr/blog/lime/

Leaderboards

- Remember Goodhart's law (metric \neq objective)
- Beating state of the art is good
- Learning something interesting about the problem is better
- From time to time : remember the research question

Negative results

- Well designed hypotheses \rightarrow interesting "negative" results
- Experiments require persistence and somea faith
- Source of frustration : publish or perish
\rightarrow Is it a problem with my results or with the system?
- Negative results are publishable if sound experimental design

Confirmation bias

- Tendency to favour interpretations that confirm initial beliefs
- May lead to cognitive dissonance, well studied in psychology
- Tip : try to demonstrate the opposite of the initial hypothesis
\rightarrow If you fail for long enough, maybe the initial hypothesis is true

KIMBERLYFAITH.COM

Source: https://moveyourcompanyforward.com/2020/11/03/

Sources

- Cours d'Adeline Paiement
- Statistical Significance Testing for NLP (Dror et al. 2020)
- https://bodo-winter.net/tutorials.html (thanks Leonardo Pinto Arata)
- Wikipedia
- Google images
- StatQuest Youtube :
https://www.youtube.com/@statquest

Backup slides

Random variables : formal definition \mathbf{i}

- Experiment : flip 3 different coins, note head (H) or tail (T)
- The sample space S contains all possible experiment outcomes
\rightarrow The subsets of S are called events E_{i}
- The random variable X denots the number of heads (H)
- A variable whose exact value is unknown or irrelevant
- We know (or estimate) its probability distribution $P\left\{X=x_{i}\right\}$

E_{i}	$\{H H H\}$	$\{$ THH, HTH, HHT $\}$	$\{$ TTH, THT, HTT $\}$	$\{T T T\}$
$P\left(E_{i}\right)$	$1 / 8$	$1 / 8+1 / 8+1 / 8$	$1 / 8+1 / 8+1 / 8$	$1 / 8$
X	0	1	2	3
$P\left\{X=x_{i}\right\}$	$1 / 8$	$3 / 8$	$3 / 8$	$1 / 8$

Random variables : formal definition if

Formalisation

A random variable is a function $X: S \rightarrow \mathbb{R}$ such that :

1. Discrete random variable :
\rightarrow Its set of possible values $X(S)=\left\{x_{i}, i \in \mathbb{N}^{*}\right\}$ is countable
\rightarrow For all $x_{i} \in X(S):\left\{X=x_{i}\right\} \Leftrightarrow\left\{e_{i} \in S \mid X\left(e_{i}\right)=x_{i}\right\} \in \mathcal{F}$
$\rightarrow \mathcal{F}$ is the set of all possible events (subsets) of S
$\rightarrow p\left(x_{i}\right)=P\left\{X=x_{i}\right\}$ is the probability mass function of X
2. Continuous random variable :
$\rightarrow \forall$ value $x \in(-\infty,+\infty), \forall$ interval $B \in \mathbb{R}$
\rightarrow A non-negative function $P\{X \in B\}=\int_{B} f(x) d x$ exists
$\rightarrow f(x)$ is the probability density function of X

Types of probability distributions

- Discrete random variables
\rightarrow Bar graphic, finite set of values
\rightarrow Probability at exact value $P\{X=a\}$

- Continuous random variables
\rightarrow Line graphic, uncountable set of values (real numbers)
\rightarrow Probability of interval $P\{a<X<b\}$

Random sample or i.i.d. variables?

- Sampled items can be seen as n random variables $X_{1} \ldots X_{n}$
\rightarrow For instance, tossing a coin n times
- We assume that all variables have the same distribution
- We assume that all items are independent ${ }^{3}$
- This is often stated as independent and identically distributed
\rightarrow The acronym i.i.d. is usually employed in probability

3. Formally : $\forall X_{i} \neq X_{j}, \forall a, b \in X_{i}(S) \quad P\left\{X_{i}=a \mid X_{j}=b\right\}=P\left\{X_{i}=a\right\}$

Random sample or i.i.d. variables?

- Sampled items can be seen as n random variables $X_{1} \ldots X_{n}$
\rightarrow For instance, tossing a coin n times
- We assume that all variables have the same distribution
- We assume that all items are independent ${ }^{3}$
- This is often stated as independent and identically distributed
\rightarrow The acronym i.i.d. is usually employed in probability

Random sample $=$ set of n values of i.i.d. variables $X_{1} \ldots X_{n}$
3. Formally : $\forall X_{i} \neq X_{j}, \forall a, b \in X_{i}(S) \quad P\left\{X_{i}=a \mid X_{j}=b\right\}=P\left\{X_{i}=a\right\}$

Correlation significance

- A simple transformation of r can be proved following a Student T distribution
- One can know quite straightforward if a correlation is significantly different from 0
- Most libraries provide this p-value by default
- More details : Dror et al. Significativity tests for NLP - M\&C book

Kendall-tau correlation

- Rank correlation, distinguishes local/distant mismatches
\rightarrow Ranking an item 5 instead of 3 is not too bad
\rightarrow Ranking an item 58 instead of 3 is really bad
- Consider all possible pairs $\left(x_{i}, x_{j}\right)$ and $\left(y_{i}, y_{j}\right)$ with $i<j$
\rightarrow If $x_{i}<x_{j}$ and $y_{i}<y_{j} \Longrightarrow$ concordant
\rightarrow If $x_{i}>x_{j}$ and $y_{i}>y_{j} \Longrightarrow$ concordant
\rightarrow Else, discordant pairs

$$
\begin{aligned}
\tau & =\frac{\#(\text { concordant pairs })-\#(\text { discordant pairs })}{\#(\text { total pairs })} \\
& =1-\frac{2 \times \#(\text { discordant pairs })}{\binom{n}{2}}
\end{aligned}
$$

Example: https://www.statisticshowto.com/kendalls-tau/

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical ?
- What if we have more than 2 variables?

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical ?
- What if we have more than 2 variables?

Further statistical tools

- Information theory
- ANOVA
- Linear models
- Mixed models

Information theory

- Entropy : alternative view of variability/skewness
$\rightarrow H=-\sum p\left(x_{i}\right) \log p\left(x_{i}\right) \quad \rightarrow$ amount of uncertainty
$\rightarrow H=\max$ for uniform distribution (unpredictable)
$\rightarrow H=0$ for highly skewed distribution (predictable)
- Other useful notions :
\rightarrow Cross entropy
\rightarrow Mutual information
\rightarrow Kullbak-Leibler divergence (asymmetric)
\rightarrow Jensen-Shannon divergence (symmetric)

Models for categorical variables

- ANOVA : Generalise t-test for more than 2 means
- Linear model : predict a linear regression slope
\rightarrow Is the slope significantly different from zero?
\rightarrow Notation : pitch $\approx \operatorname{sex}+\varepsilon$
- Mixed model : more sophisticated for multiple factors

