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Expectation. . .

dataset metric1 metric2 metric3 1

SOTA system DS1 82.3 75.9 48.0
Our system DS1 95.3 89.8 65.4

SOTA system DS2 67.7 65.2 56.8
Our system DS2 80.3 91.1 69.8

SOTA system DS3 77.6 74.1 92.8
Our system DS3 84.9 78.3 98.1

=⇒ Our system is better than state of the art !

1. Higher is better
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Our system DS1 95.3 89.8 65.4

SOTA system DS2 67.7 65.2 56.8
Our system DS2 80.3 91.1 69.8

SOTA system DS3 77.6 74.1 92.8
Our system DS3 84.9 78.3 98.1

=⇒ Our system is better than state of the art !

1. Higher is better
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. . . Vs. reality !

dataset metric1 metric2 metric3
SOTA system DS1 82.3 75.9 48.0
Our system DS1 80.7 76.2 50.4

SOTA system DS2 67.7 65.2 56.8
Our system DS2 67.9 nan 49.6

SOTA system DS3 77.6 74.1 92.8
Our system DS3 79.0 74.1 93.4

=⇒ Wake up and smell the coffee
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dataset metric1 metric2 metric3
SOTA system DS1 82.3 75.9 48.0
Our system DS1 80.7 76.2 50.4

SOTA system DS2 67.7 65.2 56.8
Our system DS2 67.9 nan 49.6

SOTA system DS3 77.6 74.1 92.8
Our system DS3 79.0 74.1 93.4

=⇒ Wake up and smell the coffee
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Results analysis

• Identify overall trends

• Identify potential sources of problems (or bugs)

• Ensure conclusions are valid, claims are (statistically) sound
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Experimental results

• Diversity of experiments =⇒ diversity of results
→ Task at hand

→ Datasets

→ Evaluation metrics

→ . . .

• This course : no silver bullet, rather a toolbox
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Statistics

• A mathematical framework to analyse data
• Foundations : probability theory
• Statistical inference =⇒ data science, machine learning

→ Also : finances, health, biology, physics, social sciences, . . .

• Identify trends, check hypotheses, measure correlations, . . .
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The problem with statistics

Finding good learning materials in statistics is hard

Too applied :
Too theoretical :
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What usually happens

• A given statistical tool is used without (full) understanding

• Statistical tools applied because supervisor/reviewer asked

• Give up trying to understand, just use it as a blackbox
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Truth be told : everyone hates statistics

Probability and statistics :
Difficult math, boring and totally useless, everyone hates it !
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Truth be told : everyone hates statistics

Probability and statistics :
Difficult math, totally useless and so boring, everyone hates it !

• Difficult : mostly sums and products of fractions

• Boring : that’s subjective, but yes, it may be boring

• Useless : definitely not ! The basis of empirical science
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Truth be told : everyone hates statistics

Probability and statistics :
Difficult math, totally useless and so boring, everyone hates it !

• Yes, we may hate it, but we also need it !
→ Knowing what we’re doing can make us feel more at ease

→ It is worth the effort of overcoming initial resistance
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Truth be told : everyone hates statistics

Probability and statistics :
A framework to model and reason in the presence of uncertainty
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Truth be told : everyone hates statistics

Probability and statistics :
A framework to model and reason in the presence of uncertainty

We’ll cover only what we absolutely need, promise.
Ready ? Let’s go !
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Wooclap

Wooclap time !
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First things first

What is the difference between probability and statistics ?

Probability

• Mostly theoretical
→ Formal demonstrations

• Notions we’ll need :
→ Random variable

→ Probability distribution

→ Normal distribution

Statistics

• Manipulates data
→ Approximate probabilities

• Notions we’ll need :
→ Sampling, mean, variance

→ Covariance, correlation

→ Hypotheses testing
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Random variable

• A random variable is a variable with no specific value
→ It takes some value within a (known) set of possible values

→ We are not interested in its actual value

Examples :

• A human’s age takes values form 0 to 130 years

• The sea water temperature ranges from 0°C to 100°C

• A person’s handedness can be righ-handed, left-handed, both
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Random variable

Are the following (interesting) random variables ?

• 1. The number of tentacles of an octopus ?

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 1. The number of tentacles of an octopus ?
→ No, always the same value

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 2. An adult human’s height in centimeters ?

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 2. An adult human’s height in centimeters ?
→ Yes, e.g. values from 50cm to 300cm

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 3. The distance between the Earth and the Moon ?

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 3. The distance between the Earth and the Moon ?
→ Yes, it actually varies from 363K to 406K km

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 4. A person’s vote in the last presidential elections ?

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 4. A person’s vote in the last presidential elections ?
→ Yes, the values are the candidates/parties running

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 5. A person’s opinion about how cute an octopus is ?

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?

• 5. A person’s opinion about how cute an octopus is ?
→ No, ill-defined, no closed set of possible values

→ Actually, everyone finds them cute ! ;-)

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Random variable

Are the following (interesting) random variables ?
• 1. The number of tentacles of an octopus ? No

• 2. An adult human’s height in centimeters ? Yes

• 3. The distance between the Earth and the Moon ? Yes

• 4. A person’s vote in the last presidential elections ? Yes

• 5. A person’s opinion about how cute an octopus is ? No

In short

• A variable is not random if its value is fixed / constant

• Random variables can have non-numerical values

• We need to be able to describe its set of possible values
→ The set may be infinite (e.g. real numbers)
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Why do we need random variables ?

• Use their characteristics to understand the data

• Model features and evaluation metrics as random variables

• Basic block in probability and statistics
→ People have been studying them for a while

→ Statistical tools associated to them can be useful
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Probability distributions

• Random variables are not interesting per se

• They come with probability distributions

Probability distribution
Given a random variable X :

• Each of its possible values xi → number p(xi ) between 0 and 1
→ This number is called the probability of xi

→ p(xi ) indicates how likely that value is

• The sum of p(xi ) for all xi values must be equal to 1

• The set of all p(xi ) values form X ’s probability distribution
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Expressing probabilities

P{X = a} = p(a) = 0.8
• X : The random variable that we’re interested in

• a : The particular value of that random variable

• 0.8 : The probability that variable X takes value a

• Note : we shorten P{X = a} as p(a) if there is no ambiguity

• Note : the probability value 0.8 is often written 80%
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Simple probability distributions

• X1 : color of a 5-coloured spinner wheel

red green yellow blue orange
spinner color

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y 20% 20% 20% 20% 20%

P{X1 = red} = p(green) = . . . = p(orange) =
1
5
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Simple probability distributions

• X2 : number of "face" when throwing a fair coin 10 times

0 1 2 3 4 5 6 7 8 9 10
number of 6

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

0.1%1.0%
4.4%

11.7%

20.5%
24.6%

20.5%

11.7%

4.4%
1.0%0.1%

p(1) = p(10) =
1
2

1
× 1

2

9
= 0.001
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Simple probability distributions

• X3 : waiting time for a bus passing every 15min

0 5 10 15
waiting time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

P{0 ≤ X3 < 5} =
5 − 0
15

= 0.33
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Simple probability distributions

• X4 : sea water temperature in July in Marseille

12.5 15.0 17.5 20.0 22.5
water temperature

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y

P{X4 < 17.6} = 0.5
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Wooclap

Wooclap time !

19/136

19



Probability distribution or not ?

Which of the following are proper probability distributions ? Why ?

a) xi p(xi )

1 0.4
2 -0.2
3 0.8

b) xi p(xi )

0.4 0.4
0.35 0.35
0.25 0.25

c) xi p(xi )

-1 0.4
-2 0.2
-3 0.8

d) xi p(xi )

-1 0.4
0 0.2
1 0.2
2 0.1
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Probability distribution or not ?

Which of the following are proper probability distributions ? Why ?

a) xi p(xi )

1 0.4
2 -0.2
3 0.8

No, p(2) < 0

b) xi p(xi )

0.4 0.4
0.35 0.35
0.25 0.25

Yes, sum=1

c) xi p(xi )

-1 0.4
-2 0.2
-3 0.8

No, sum > 1

d) xi p(xi )

-1 0.4
0 0.2
1 0.2
2 0.1

No, sum < 1
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From probabilities to statistics

• Probability distributions are theoretical abstractions
→ We often learn probabilities with toy examples

→ In practice, X ’s "real" distribution is not accessible

• A sample is often used to estimate the probabilities
→ Most of the time, probabilities are approximated

→ Proportion in sample (%) → estimated probability

count(a)
n

≈ P{X = a}
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Random samples

• Randomly select a finite set of data points to study
→ A set of sentences to translate

→ A set of GPS positions to track

→ A set of people to perform a task

→ . . .

Source: https://www.thoughtco.com/purposive-sampling-3026727
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Sampling : example

Daily temperature of a captor in a power plant
→ Sample size : 365 days

→ [10.1, 14.0, 8.9, 6.7, 9.4, 10.3, ... 12.5, 15.3, 13.3]

10 20 30 40
temperature (°C)

0.00

0.02

0.04

0.06
es

t. 
pr

ob
ab

ilit
y

Estimated probability distribution = normalized histogram
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Sampling : example

Jupyter notebook 1 & 2

1. Open the dataset using pandas.read_csv()
2. Explore the different columns and their values
3. Make a histogram of the compositionality column

→ This is an estimate of its distribution !

Compositionality dataset

• Is a dry run literally a run which is dry ?
→ not at all ←0 - 1 - 2 - 3 - 4 - 5 → absolutely yes

• Compositionality score : average rating of 10-15 annotators

• Sample : 180 compounds in French

Source: https://aclanthology.org/J19-1001/
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Why do we need samples ?

• A representative sample can inform us about the whole
→ Full data not available, but sample findings can be generalised

→ Infer properties of the (unknown) distribution

→ Draw conclusions in the presence of uncertainty

Source: https://towardsdatascience.com/

understanding-random-variables-and-probability-distributions-1ed1daf2e66
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Descriptive statistics

• We can characterise our sample
→ Central tendency : mean

→ Dispersion : variance
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Mean / average

• A single value at the center of the sample
→ Summarise the whole data in a single number

• The arithmetic mean of a set of i.i.d. values x1 . . . xn :

x =
x1 + x2 + . . .+ xn

n
=

1
n

n∑
i=1

xi

Source: StatQuest : https://www.youtube.com/watch?v=SzZ6GpcfoQY
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Wooclap

Wooclap time !
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Mean / average quiz

• Is the mean a probability (value between 0 and 1) ?

→ No, it depends on the values (arbitrary range)

• Is the value of the mean contained in the sample ?
→ No, it can be a new value, not contained in the sample

• Is the value of the mean always positive ?
→ No, e.g. if the variable only takes negative values
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• Is the mean a probability (value between 0 and 1) ?
→ No, it depends on the values (arbitrary range)

• Is the value of the mean contained in the sample ?
→ No, it can be a new value, not contained in the sample
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The larger the better

• The expected value of a (discrete) random variable :

E [X ] = p(x1)x1 + p(x2)x2 + . . .+ p(xn)xn

• Sample mean x → normalised sum of n i.i.d. random variables

x =
x1 + x2 + . . .+ xn

n

• The law of large numbers states that x → E [X ] for large n

→ The (sample) mean x is an estimator of the expected value E [X ]

The larger the sample, the better x approximates “true” mean E [X ]
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The larger the better

• The expected value of a (discrete) random variable :

E [X ] = p(x1)x1 + p(x2)x2 + . . .+ p(xn)xn

• Sample mean x → normalised sum of n i.i.d. random variables

x =
x1 + x2 + . . .+ xn

n

• The law of large numbers states that x → E [X ] for large n

→ The (sample) mean x is an estimator of the expected value E [X ]

The larger the sample, the better x approximates “true” mean E [X ]
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Data dispersion

• Mean does not take into account data dispersion

S1 = [0] =⇒ S1 = 0
S2 = [−4, −4, 4, 4] =⇒ S2 = 0
S3 = [−6, −2, 1, 7] =⇒ S3 = 0
S4 = [−1500, 1500] =⇒ S4 = 0

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/
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Getting to the variance

Idea 1 : average the difference between each value and the mean

n∑
i=1

xi − x

n

• Calculate this amount for the sample [-4, -4, 4, 4]
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Getting to the variance

Idea 1 : average the difference between each value and the mean

n∑
i=1

xi − x

n

• Calculate this amount for the sample [-4, -4, 4, 4]

(−4 − 0) + (−4 − 0) + (4 − 0) + (4 − 0)
4

= 0 /
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Getting to the variance

Idea 2 : average the absolute value of the xi − x difference

n∑
i=1

|xi − x |
n

• Calculate this amount for the sample [-4, -4, 4, 4]

32/136

32



Getting to the variance

Idea 2 : average the absolute value of the xi − x difference

n∑
i=1

|xi − x |
n

• Calculate this amount for the sample [-4, -4, 4, 4]

| − 4 − 0|+ | − 4 − 0|+ |4 − 0|+ |4 − 0|
4

= 4 ,
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Getting to the variance

Idea 2 : average the absolute value of the xi − x difference

n∑
i=1

|xi − x |
n

• Calculate this amount for the sample [-6, -2, 1, 7]
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Getting to the variance

Idea 2 : average the absolute value of the xi − x difference

n∑
i=1

|xi − x |
n

• Calculate this amount for the sample [-6, -2, 1, 7]

| − 6 − 0|+ | − 2 − 0|+ |1 − 0|+ |7 − 0|
4

= 4 /

Moreover, absolute value is not differentiable at 0

This is inconvenient : https://www.youtube.com/watch?v=sHRBg6BhKjI
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Getting to the variance

Idea 3 : average the squared differences xi − x

n∑
i=1

(xi − x)2

n

• Calculate this amount for the sample [-4, -4, 4, 4]
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Getting to the variance

Idea 3 : average the squared differences xi − x

n∑
i=1

(xi − x)2

n

• Calculate this amount for the sample [-4, -4, 4, 4]

(−4 − 0)2 + (−4 − 0)2 + (4 − 0)2 + (4 − 0)2

4
= 64 ,
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Getting to the variance

Idea 3 : average the squared differences xi − x

n∑
i=1

(xi − x)2

n

• Calculate this amount for the sample [-6, -2, 1, 7]
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Getting to the variance

Idea 3 : average the squared differences xi − x

n∑
i=1

(xi − x)2

n

• Calculate this amount for the sample [-6, -2, 1, 7]

(−6 − 0)2 + (−2 − 0)2 + (1 − 0)2 + (7 − 0)2

4
= 90 ,

Source: Example adapted from

https://www.mathsisfun.com/data/standard-deviation.html
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Variance

• Variance characterises the dispersion/spread of a distribution
→ Intuition : average distance from the mean

→ (xi − x) can be positive or negative =⇒ square it !

Var(X ) =
n∑

i=1

(xi − x)2

n

→ Variance is always positive, differently from mean
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Standard deviation

• Variance averages squared differences
→ Its absolute value is hard to interpret

→ Bring back to original value range → squared root

• The squared root of variance is called standard deviation

σ =
√
Var(X )

https://datatab.net/tutorial/dispersion-parameter
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Estimated standard deviation

• Population standard deviation :

σX =

√√√√ n∑
i=1

(xi − x)2

n

• Sample standard deviation, unbiased estimator :

sX =

√√√√ n∑
i=1

(xi − x)2

n − 1

• Why ? https://www.youtube.com/watch?v=sHRBg6BhKjI

In practice, we only need sX → Ensure your stats library does this !
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Calculating mean and standard deviation

Jupyter notebook 3

1. Open dataset containing 180 compositionality scores

2. Use Pandas’ comp.describe() to obtain a summary

3. Is the obtained standard deviation σX or sX ?
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One distribution to rule them all

The distribution

P{a < X < b} =

∫ b

a

1√
2πσ2

exp
x−µ
σ

• Well known distribution for continuous random variables
• Probability density function is a symmetric bell-shaped curve
• Characterised by mean µ and standard deviation σ

→ Bell centered around µ, narrower or wider according to σ

→ 99% of probability between µ− 3σ and µ+ 3σ
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One distribution to rule them all

The distribution

((((((((((((((((((

P{a < X < b} =

∫ b

a

1√
2πσ2

exp
x−µ
σ

Who cares !

• Well known distribution for continuous random variables
• Probability density function is a symmetric bell-shaped curve
• Characterised by mean µ and standard deviation σ

→ Bell centered around µ, narrower or wider according to σ

→ 99% of probability between µ− 3σ and µ+ 3σ
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One distribution to rule them all

The distribution

• Well known distribution for continuous random variables
• Probability density function is a symmetric bell-shaped curve
• Characterised by mean µ and standard deviation σ

→ Bell centered around µ, narrower or wider according to σ

→ 99% of probability between µ− 3σ and µ+ 3σ
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Normal distribution : example
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Wooclap

Wooclap time !
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Who’s that normal ?

1. What are the µ and σ parameters for the following curve ?

53 38 23 8 7 22 37
0.000

0.005

0.010

0.015

0.020

0.025

pr
ob

ab
ilit

y

2. Which curve corresponds to µ = 10 and σ = 20 ?
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Who’s that normal ?

1. What are the µ and σ parameters for the following curve ?

53 38 23 8 7 22 37
0.000

0.005

0.010

0.015
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Who’s that normal ?

1. What are the µ and σ parameters for the following curve ?

2. Which curve corresponds to µ = 10 and σ = 20 ?
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Who’s that normal ?
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curve b) – notice different heights
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Standardization

• Calculate probability → integration (<o> aaaaah !)
→ Normal is impossible to integrate analytically

• In practice :
→ Standardize z = x−µ

σ
, then lookup table of Φ(a)
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Wooclap

Wooclap time !
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The most famous probability distribution

Why is the normal distribution so important ?

• Turns out most measurements are normally distributed

• Used in many statistical tools, e.g. hypothesis testing

• Plays a central role in describing estimated means
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It’s normal to be average

• Normalised sum of i.i.d. variables is normally distributed
→ Even if the variables are not normally distributed !

• The mean x of a sample is normally distributed
→ Comes in handy to analyse averaged values

• This is known as the central limit theorem
→ Connects statistics and probability
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Central limit theorem : example

Jupyter notebook 4 & 5

1. Build n random samples of size 30 from compositionality data

2. Calculate mean of each random sample, save values

3. Estimate sample mean’s distribution with histogram
→ What happens when n increases ?
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In short

• Random variables and probability distributions
→ Theoretical model for features and metrics

→ In practice, estimated using sampling

• Mean and standard deviation characterise the data
→ Ensure your stats library divides by n − 1

• Normal distribution : bell shaped around the mean
→ Useful to characterise values that are means

Now we’re ready for the next steps !
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Plan

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion
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Two random variables

• For the moment we looked at random variables one by one

• It may be interesting to look at two random variables X and Y

→ They may influence each other

→ They may be both influenced by similar factors

• How does X and Y vary together ?
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Two variables : scatter plot

• Variable X on x-axis, variable Y on y -axis

• plt.scatter(x,y)

• The two variables are paired or aligned
→ The sample consists of pairs of values

→ Each value of X has a corresponding value of Y

→ Both variables are numeric

49/136

49



Scatter plot example 1

A person’s age (X ) vs. height (Y )
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Scatter plot example 2

A person’s age (X ) vs. number of sleeping hours (Y )
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Scatter plot example 3

A person’s age (X ) vs. number of socks used per year (Y )

0 2 4 6 8 10 12 14 16 18 20
Age (years)

355

360

365

370

Nb
. o

f s
oc

ks
 / 

ye
ar

52/136

52



Scatter plot example 3
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Example : compositionality and number of occurrences

Jupyter notebook 6 & 7

• Hypothesis : frequent compounds are less compositional
• What is the relation between compositionality and frequency ?

0 1 2 3 4 5
compositionality score

K
20K
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80K

100K

co
rp

us
 fr

eq
.

• Is there really something to see or are we over-interpreting ?
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Quantifying relations

• It would be nice to be able to quantify the relation !

We will obtain such metric in two steps :

1. Covariance
→ Not so easy to interpret

→ Computational step towards calculating correlation

2. Correlation
→ Much easier to interpret
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Quantifying relations
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We will obtain such metric in two steps :

1. Covariance
→ Not so easy to interpret

→ Computational step towards calculating correlation

2. Correlation
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Covariance : far from the mean

• Relation between each value xi and the mean x
• Relation between each value yi and the mean y

→ Does xi > x imply yi > y ?

→ Does xi < x imply yi < y ?

Source: https://www.youtube.com/watch?v=qtaqvPAeEJY
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Covariance : vary together

• Relation between each value xi and the mean x
→ xi > x =⇒ (xi − x) positive

→ xi < x =⇒ (xi − x) negative

• Relation between each value yi and the mean y
→ yi > y =⇒ (yi − y) positive

→ yi < y =⇒ (yi − y) negative

Source: https://www.youtube.com/watch?v=qtaqvPAeEJY
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Covariance : vary together

(xi − x)× (yi − y)

• Both (xi − x) and (yi − y) are positive
→ Product (xi − x)× (yi − y) is positive

• Both (xi − x) and (yi − y) are negative
→ Product (xi − x)× (yi − y) is positive

• (xi − x) is positive and (yi − y) is negative
→ Product (xi − x)× (yi − y) is negative

• (xi − x) is negative and (yi − y) is positive
→ Product (xi − x)× (yi − y) is negative
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Covariance : the formula

1. First calculate means x and y
2. Then calculate the covariance as :

Cov(X ,Y ) =
n∑

i=1

(xi − x)(yi − y)
n − 1

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Wooclap

Wooclap time !
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Exercise : guess the covariance

1. A person’s age (X ) vs. height (Y )
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Exercise : guess the covariance

A person’s age (X ) vs. number of sleeping hours (Y )

0 2 4 6 8 10 12 14 16 18 20
Age (years)

7.5

10.0

12.5

15.0

Sl
ee

pi
ng

 ti
m

e 
(h

ou
rs

)

60/136

60



Exercise : guess the covariance

A person’s age (X ) vs. number of sleeping hours (Y )

0 2 4 6 8 10 12 14 16 18 20
Age (years)

7.5

10.0

12.5

15.0

Sl
ee

pi
ng

 ti
m

e 
(h

ou
rs

)

Cov(X ,Y ) = −9.0
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Exercise : guess the covariance

A person’s age (X ) vs. number of socks used per year (Y )
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Exercise : guess the covariance

A person’s age (X ) vs. number of socks used per year (Y )
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Cov(X ,Y ) = 0.77

60/136

60



Covariance is sensitive to unit

• What if X and Y have very different ranges ?
→ For instance, X in cm, Y in km

• Covariance is unbounded - ranges from −∞ to +∞
→ Indicates whether a linear relation exists, but not its strength
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Covariance : it’s a sign !

• Covariance is positive
→ Increasing X tends to make Y increase too

• Covariance is negative
→ Increasing X tends to make Y decrease

• Covariance is zero
→ Increasing X has no impact on Y

→ Increasing Y has no impact on X
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What if. . .

• What if we could normalise covariance ?

• Can we get a measure that is bounded ?
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Correlation coefficient (r)

• Covariance can be normalised using X and Y ’s variances

rX ,Y =
Cov(X ,Y )√

Var(X )Var(Y ))
=

Cov(X ,Y )

sX sY

• Dividing by standard deviation puts both on same scale

• Also called Pearson or linear correlation
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Correlation interpretation

• Ranges from −1 to +1
→ r ≈ +1 : strong positive association

→ r ≈ −1 : strong negative association

→ r ≈ 0 : weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation and spread

• Correlation tells how close or far from linear regression line
→ Knowing x allows predicting y (and vice-versa)

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation is unit-less

• Covariance is unbounded, depends on variable ranges

• Correlation allows comparing metrics with different ranges
→ Example : max vs. min. temperature in Celsius or Farehnheit

→ In both cases, correlation is the same : r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation is symmetric

• Correlation is symmetric
→ Example : max vs. min. temperature or vice-versa

→ In both cases, correlation is the same : r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

68/136

68

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf


Wooclap

Wooclap time !
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Exercise : guess the correlation

1. A person’s age (X ) vs. height (Y )
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r(X ,Y ) = 0.85
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Exercise : guess the correlation

A person’s age (X ) vs. number of sleeping hours (Y )
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Exercise : guess the correlation

A person’s age (X ) vs. number of socks used per year (Y )
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Exercise : guess the correlation

A person’s age (X ) vs. number of socks used per year (Y )
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r(X ,Y ) = 0.04
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Why dividing by standard deviations ?

rX ,Y =
Cov(X ,Y )

sX sY
=

1
n − 1

∑n
i=1(xi − x)(yi − y)

sX sY

=
1

n − 1

n∑
i=1

(
xi − x

sX

)(
yi − y

sY

)
• Similar to standardisation in normal distribution

→ Discounting the mean centers around zero

→ Dividing by standard deviation homogenizes width

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation shows linear association

• Correlation does not model non-linear association

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf
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Correlation of compositionality

Jupyter notebook 8

• Hypothesis : compositionality and frequency are correlated
→ Frequency is better represented in logarithmic scale

• Does correlation change if frequency is in linear or log scale ?
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Spearman’s rank correlation

• The actual compared X and Y values may be irrelevant
→ Does X rank items more or less in the same order as Y ?

• Spearman’s ρ : linear (Pearson) correlation between ranks
→ Models monotonic relation

Example :
x = [2,3,4,14,15]
y = [1,5,10,11,16]
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Spearman correlation

• Obtain ranks rXi for X in ascending order

• Obtain ranks rYi for Y in ascending order

• Obtain difference between ranks di = rXi − rYi

• Calculate Spearman’s rank correlation :

ρX ,Y = 1 −
6
∑

d2
i

n(n2 − 1)

• Alternatively, Pearson correlation between rXi and rYi
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Spearman correlation : example

Source: https://en.wikipedia.org/wiki/Spearman_correlation
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Pereson vs. Spearman of compositionality

Jupyter notebook 9 & 10

• Compare Pearson and Spearman correlation
→ Compositionality vs. frequency

→ Compositionality vs. log-frequency

• Compare manual implementation and scipy
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Confounders

• Suppose X independent and Y dependent variables

• A confounder can influence both X and Y

• Correlation is not causation

Source: https://xkcd.com/552/
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Spurious correlations

• Correlations can be found between unrelated variables

• Procrastinate : https://www.tylervigen.com/spurious-correlations

→ What possible confounders could explain these correlations ?

79/136

79

https://www.tylervigen.com/spurious-correlations


Simpson’s paradox

https://www.arte.tv/fr/videos/107398-002-A/
voyages-au-pays-des-maths/
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Year 3000...

The Earth is finally a safe and pleasant
place for humans again.

However, 1000 years of global warming
released a dangerous bacteria from the
permafrost.

The bacteria starts to infect human
hosts, causing a mysterious disease.

Centuries in insipid watery ice made the
bacteria obsessive about...
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...vanilla ice-cream ! ♡
The illness is called

• Compulsive

• Obsessive

• Vanilla

• Ice-cream

• Disease
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CHAOS ! !

The bacteria spreads rapidly, and infected humans start eating tons
of vanilla ice-cream.

Milk prices rise to the stratosphere, ice-cream makers strike,
diabetes and obesity break records...

Governments impose ice-cream lockdowns, interplanetary travel is
forbidden, panic everywhere !
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After months of an unprecedented crisis...

A lab finally announces a vaccine
at phase 3 !

In phase 3, a vaccine is evaluated
using an experiment called rando-
mized control trial
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Randomized control trial

Group A
Vaccine

Group B
Placebo

Average nb. ice-creams/day (ICD) :

• Group A : ICDA = 1.47

• Group B : ICDB = 1.56

Conclusion :

The vaccine works.
What a relief for humanity !
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But. . . maybe humans forgot all about statistics ?

• Is the observed difference large enough ?
• ICDA = 1.47 ice/creams per day
• ICDB = 1.56 ice/creams per day

δ = ICDB − ICDA = 0.09

• Maybe the sample is too small or biased
→ Affects our conclusion that vaccine (A) better than placebo (B) ?

Given the samples, the metrics, and the experiment’s conditions :
Probability of making a false claim assuming A ̸= B in general ?

→ p-value !

87/136

87



But. . . maybe humans forgot all about statistics ?

• Is the observed difference large enough ?
• ICDA = 1.47 ice/creams per day
• ICDB = 1.56 ice/creams per day

δ = ICDB − ICDA = 0.09

• Maybe the sample is too small or biased
→ Affects our conclusion that vaccine (A) better than placebo (B) ?

Given the samples, the metrics, and the experiment’s conditions :
Probability of making a false claim assuming A ̸= B in general ?

→ p-value !

87/136

87



System comparison

• Incremental research
• State of the art or Baseline system B (placebo)
• My own Awesome proposal system A (vaccin)

• How can I check whether A is better than B ?

• What’s the probability of drawing a wrong conclusion ?
→ Ideally, very low, close to zero

• Methodological framework
→ Take inspiration from health, biology, social siences
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Comparison framework : example

• Our Baseline system classifies images
→ Two categories : octopus or not octopus

• Sometimes it makes mistakes
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Comparison framework : example

• We developed an Awesome new system !
→ E.g. the new system was trained on more data

• It seems that it makes less mistakes =⇒

=⇒
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Test set

• Is A really better than B ?
→ Testing on a couple examples is not enough !

• Use a test set containing (x,y) pairs
→ x - sea animal images
→ y - gold/reference octopus / other labels

• The test set was not used to build the system
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Test set : example

Images x selected to be in the held-out test set

x→

y→

Reference/gold labels y considered true (e.g. annotated by humans)
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System predictions

Both systems generate predictions ŷ for test set instances x

x →

ŷB(x) →

ŷA(x) →
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Evaluation metrics

Compare predictions ŷB and ŷA to reference y

y →

ŷB(x) →

M(B , x , y) = 3
5 = 0.6
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Evaluation metrics

Compare predictions ŷB and ŷA to reference y

y →

ŷA(x) →

M(A, x , y) = 4
5 = 0.8

93/136

93



Wooclap

Wooclap time !
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System score comparison

• The accuracies of both systems are :

M(B , x , y) = 3
5 = 0.6

M(A, x , y) = 4
5 = 0.8

• It seems like A is better than B

• The difference (delta) is positive

δA−B(x , y) = M(B, x , y)−M(A, x , y) = 0.8 − 0.6 = 0.2
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System comparison : example

We obtained a much larger test set x’,y’

We compare A and B again and obtain :

δA−B(x
′, y ′) = M(B, x ′, y ′)−M(A, x ′, y ′)

= 0.7612 − 0.7586

= 0.0026

• Can we still affirm that A is better than B ?
• If we add or remove a couple of images, could the result flip ?
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Interpretting delta

δA−B(x , y) = M(A, x , y)−M(B , x , y)

• Delta allows us to translate the comparison into maths
→ A better than B → δA−B(x , y) > 0

→ A equivalent to B → δA−B(x , y) = 0

→ A worse 2 than B → δA−B(x , y) < 0

• In some disciplines, δA−B(x , y) is called effect

2. Yes, the old Baseline may beat the new Awesome system !
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In short : maximise the effect !

1. We develop a system A supposed to be better than B

2. To verify this, we apply both systems to the same test set :
→ Get output of system A on the test set (x , y)

→ Get output of system B on the test set (x , y)

3. Calculate the evaluation metric M(·) for both outputs

δA−B(x , y) = M(A, x , y)−M(B, x , y)

4. Large positive δA−B(x , y) =⇒
5. In practice, δA−B(x , y) is often small
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Test sets as random samples

• Could the observed δA−B(x , y) > 0 be due to chance ?
→ (x , y) is a sample of joint random variables (X ,Y )

→ What effect/difference would be observed for sample (x ′, y ′) ?

• What is the probability that A is actually no better than B

→ If we ever had access to the "real" distribution of (X ,Y ) ?
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Effects as random variables

• We obtain a single δA−B(x , y) value

• This value depends on the test set (x , y), which is a sample

• We can see δA−B(x , y) as a sampled value of a random
variable

δA−B(X ,Y ) ;
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P-value

• P-value : probability of obtaining at least δA−B(x , y)

• When in reality, A is no better than B

• In short : p-value = probability that your conclusion is wrong !
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Wooclap

Wooclap time !
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P-value : example

We have one value obtained on the large dataset (x ′, y ′)

δA−B(x
′, y ′) = 0.0026

If we had all possible images of sea creatures X and their classes
→ Imagine we have access to the real distribution δA−B(X ,Y )

• Probability of obtaining 0.0026 difference (or more)

• If A is actually no better than B
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Hypothesis testing

• H0 : δA−B(X ,Y ) ≤ 0 =⇒ if true, then A not better than B

• H1 : δA−B(X ,Y ) > 0

• Goal : reject H0

→ Conclusion : significant difference between the systems
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Hypothesis testing and p-value

Remember

• H0 : δA−B(X ,Y ) ≤ 0

• H1 : δA−B(X ,Y ) > 0

• P-value : probability of observing δA−B(x , y while H0 true
→ Intuituion : if H0 was true, large δA−B(x , y) are unlikely

• In mathematical notation :

p-value = P{δA−B(X ,Y ) ≥ δA−B(x , y) | H0}
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Hypothesis testing : example

p-value = P{δA−B(X ,Y ) ≥ 0.0026 | δA−B(X ,Y ) ≤ 0}

Estimate p-value, if small enough =⇒ A better than B
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Type I errors

• Type I error : false positive
→ Rejecting H0 when it is actually true

Conclusion of the test :

is better than

Reality : But it isn’t better !
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Type II errors

• Type II error : false negative
→ Not rejecting H0 when it is actually false

Conclusion of the test :

is not better than

Reality : But it is better !
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Goal

• Probability of type-I error is upper bounded by α

→ α is called the significance level or threshold

• Probability of type-II error is as low as possible
→ Test power : ability to avoid type-II errors
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Statistically significant result

p-value < α =⇒ statistically significant !

• p-value : probability of extreme outcome

• α : significance threshold
→ Usual "magic" value : α = 0.05

The word significant should not be used to anything else
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How can we estimate p-values ?

• P-value depends on δA−B(X ,Y ) probability distribution

• Which in turn depends on M(A, x , y) and M(B, x , y)

→ Remember : M(·) is our evaluation metric

• M(·)’s distribution determines that of δ (if we’re lucky)

=⇒ Study the probability distribution of M(·) !
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Wooclap

Wooclap time !
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Accuracy is an average

y →

ŷB →
1 1 0 1 0

ŷA →
1 1 1 0 1

AccB = 1+1+0+1+0
5 = 3

5 AccA = 1+1+1+0+1
5 = 4

5

Accuracy is an average

→ Normally distributed !
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The t-test for paired samples

• T-test : hypothesis testing for normally distributed variables

• Based on Student’s t distribution
→ Looks like normal distribution for large samples

t-stat =
M(A, x , y)−M(B, x , y)

SE/
√
m

• m : size of the paired sample (x , y)

• SE : standard deviation of the difference ŷA − ŷB

• P-value : check Student’s t table, m − 1 degrees of freedom
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Precision is not an average

• Recall ( tp
tp+fn ) can be seen as an average like accuracy

→ tp + fn does not depend on the system

• Precision ( tp
tp+fp ) cannot be seen as an average

→ tp + fp depends on the system

→ System class distribution is unpredictable

• =⇒ F-score cannot be assumed to be normally distributed

115/136

115



Non parametric tests

• Problem of t-test : assumes M(A, x , y) ∼ normally distributed

• Other metrics :
• Recall R = tp

tp+fn , tp + fn constant
→ t-test OK ✓

• Precision P = tp
tp+fp depends on tp + fp, unknown distribution

→ t-test not OK ✗

• F-score 2PR/(P + R) depends on P, unknown distribution
→ t-test not OK ✗
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Parametric vs. non parametric

Many authors use the terms parametric vs. non parametric tests

• What does it mean ?

• Most of the time, by "parametric" we mean
"the random variable normally distributed"

117/136

117



Non parametric tests

• Alternative : non parametric tests
1. No sampling

• Fast
• Conservative, will not state A better than B for small δ (not

powerful)
• E.g. sign test, McNemar’s test, Wilcoxon

2. With sampling
• Slow
• Powerful, low type-II error probability
• E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/
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Bootstrap

Idea : estimate M distribution by random re-sampling in x , y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html
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Bootstrap

Acc(A,Sample 1) = 2
2

Acc(B,Sample 1) = 1
2

Acc(A,Sample 2) = 1
2

Acc(B,Sample 2) = 1
2

Acc(A,Sample n) = 2
2

Acc(B,Sample n) = 2
2
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Bootstrap for significance

1 deltaobs = M(A,x,y) - M(B,x,y) # delta on test set
2 R = 10000 # 10k random samples
3 for i = 1 .. R :
4 xs , ys = sample(x,y,m) # with repetition
5 deltasample = M(A,xs,ys) - M(B,xs,ys)
6 if deltasample > 2 * deltaobs :
7 r = r + 1
8 pvalue = r/R
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Why comparing with 2 × deltaobs ?

StatQuest with Josh Starmer

https://www.youtube.com/watch?v=N4ZQQqyIf6k
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Which test to apply ?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/
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Evaluation metric M distribution vs. test

• Parametric test (M(A, x , y) from known distribution)
• Paired Student’s t-test

• Non-parametric tests (M(A, x , y) from unknown distribution)
• No sampling (less powerful)

• Sign test
• McNemar’s test
• Wilcoxon signed rank test

• Sampling (computationally expensive)
• Permutation (randomized approximation) test
• Bootstrap test
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Multiple comparisons

• Multiple comparisons : probability of false claims increases

• Bonferroni’s correction
• Divide significance level α by the number of tests N

• Replicability analysis (Dror et al. 2020)

P-hacking
A significant p-value can always be obtained
→ As long as the sample is large enough

→ https://www.youtube.com/watch?v=HDCOUXE3HMM
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P-hacking

A significant p-value can always be obtained
→ As long as the sample is large enough

→ https://www.youtube.com/watch?v=HDCOUXE3HMM

Source: https://xkcd.com/1478/
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Unpaired samples

• We only covered significance for paired samples
→ Two systems A and B, same dataset items (x,y)

→ Other tests for unpaired samples

Source: https://doi.org/10.1017/S1351324922000535, thanks to Elie Antoine127/136
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Community’s practice

NLP conferences (ACL) and journals (TACL)

Source: Dror et al. 2018
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Statistics libraries

• Visual : Excel, Libreoffice, . . .

• Python : matplotlib, numpy, scipy, sklearn, . . .

• R : multiple libraries including linear models

• Proprietary : Matlab, SPSS, . . .
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Error analysis

• Characterise the errors in our system’s output

• Scripts to print characteristics of errors
→ Frequency, length, resolution, predicted/gold class, . . .

→ Example : compounds predicted in wrongest positions

• Manual error annotation : taxonomies, guidelines
→ Gain insight on most promising improvements
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Interpretability analysis

Try to understand why systems generate a prediction

• Feature-based methods (SHAP, LIME)
→ Which parts of the inputs influence prediction ?

• Visualisation
→ Attention salience, 2-D projection (UMAP, t-SNE, topology)

• Adversarial examples, perturbations
→ Difficult minimal pairs

Source: https://homes.cs.washington.edu/~marcotcr/blog/lime/
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Leaderboards

• Remember Goodhart’s law (metric ̸= objective)

• Beating state of the art is good

• Learning something interesting about the problem is better

• From time to time : remember the research question
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Negative results

• Well designed hypotheses → interesting “negative” results

• Experiments require persistence and somea faith

• Source of frustration : publish or perish
→ Is it a problem with my results or with the system ?

• Negative results are publishable if sound experimental design
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Confirmation bias

• Tendency to favour interpretations that confirm initial beliefs
• May lead to cognitive dissonance, well studied in psychology
• Tip : try to demonstrate the opposite of the initial hypothesis

→ If you fail for long enough, maybe the initial hypothesis is true

Source: https://moveyourcompanyforward.com/2020/11/03/

four-ways-to-overcome-confirmation-bias/
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Sources

• Cours d’Adeline Paiement

• Statistical Significance Testing for NLP (Dror et al. 2020)

• https://bodo-winter.net/tutorials.html (thanks
Leonardo Pinto Arata)

• Wikipedia

• Google images

• StatQuest Youtube :
https://www.youtube.com/@statquest
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Random variables : formal definition i

• Experiment : flip 3 different coins, note head (H) or tail (T)

• The sample space S contains all possible experiment outcomes
→ The subsets of S are called events Ei

• The random variable X denots the number of heads (H)
• A variable whose exact value is unknown or irrelevant
• We know (or estimate) its probability distribution P{X = xi}

Ei {HHH} {THH,HTH,HHT} {TTH,THT ,HTT} {TTT}
P(Ei ) 1/8 1/8 + 1/8 + 1/8 1/8 + 1/8 + 1/8 1/8
X 0 1 2 3

P{X = xi} 1/8 3/8 3/8 1/8
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Random variables : formal definition ii

Formalisation
A random variable is a function X : S → R such that :

1. Discrete random variable :
→ Its set of possible values X (S) = {xi , i ∈ N∗} is countable

→ For all xi ∈ X (S) : {X = xi} ⇔ {ei ∈ S |X (ei ) = xi} ∈ F

→ F is the set of all possible events (subsets) of S

→ p(xi ) = P{X = xi} is the probability mass function of X

2. Continuous random variable :
→ ∀ value x ∈ (−∞,+∞), ∀ interval B ∈ R

→ A non-negative function P{X ∈ B} =
∫
B
f (x) dx exists

→ f (x) is the probability density function of X
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Types of probability distributions

• Discrete random variables
→ Bar graphic, finite set of values

→ Probability at exact value P{X = a}
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• Continuous random variables
→ Line graphic, uncountable set of values (real numbers)

→ Probability of interval P{a < X < b}
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Random sample or i.i.d. variables ?

• Sampled items can be seen as n random variables X1 . . .Xn

→ For instance, tossing a coin n times

• We assume that all variables have the same distribution

• We assume that all items are independent 3

• This is often stated as independent and identically distributed
→ The acronym i.i.d. is usually employed in probability

Random sample = set of n values of i.i.d. variables X1 . . .Xn

3. Formally : ∀Xi ̸= Xj ,∀a, b ∈ Xi (S) P{Xi = a|Xj = b} = P{Xi = a}
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Correlation significance

• A simple transformation of r can be proved following a
Student T distribution

• One can know quite straightforward if a correlation is
significantly different from 0

• Most libraries provide this p-value by default

• More details : Dror et al. Significativity tests for NLP - M&C
book
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Kendall-tau correlation

• Rank correlation, distinguishes local/distant mismatches
→ Ranking an item 5 instead of 3 is not too bad

→ Ranking an item 58 instead of 3 is really bad

• Consider all possible pairs (xi , xj) and (yi , yj) with i < j

→ If xi < xj and yi < yj =⇒ concordant

→ If xi > xj and yi > yj =⇒ concordant

→ Else, discordant pairs

τ =
#(concordant pairs)−#(discordant pairs)

#(total pairs)

= 1 − 2 ×#(discordant pairs)(n
2

)
Example : https://www.statisticshowto.com/kendalls-tau/
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Advanced data analysis

• Correlation works well for 2 numerical variables

• What if the variables are categorical ?

• What if we have more than 2 variables ?

Further statistical tools

• Information theory

• ANOVA

• Linear models

• Mixed models

• . . .
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Information theory

• Entropy : alternative view of variability/skewness
→ H = −

∑
p(xi ) log p(xi ) → amount of uncertainty

→ H = max for uniform distribution (unpredictable)

→ H = 0 for highly skewed distribution (predictable)

• Other useful notions :
→ Cross entropy

→ Mutual information

→ Kullbak-Leibler divergence (asymmetric)

→ Jensen–Shannon divergence (symmetric)
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Models for categorical variables

• ANOVA : Generalise t-test for more than 2 means
• Linear model : predict a linear regression slope

→ Is the slope significantly different from zero ?

→ Notation : pitch ≈ sex +ε

• Mixed model : more sophisticated for multiple factors

Source: https ://bodo-winter.net/tutorials.html

146/136

146


	Introduction
	Statistics in a nutshell
	Correlation
	Significance
	Discussion

