Recherche Zen Séance 4 : Analyses

Carlos Ramisch and Manon Scholivet Partly based on the course by Adeline Paiement

November 8, 2023

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

	dataset	metric1	metric2	metric3 ¹
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	95.3	89.8	65.4
SOTA system Our system	DS2 DS2	67.7 80.3	65.2 91.1	56.8 69.8
SOTA system Our system	DS3 DS3	77.6 84.9	74.1 78.3	92.8 98.1

1. Higher is better

	dataset	metric1	metric2	metric3 ¹
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	95.3	89.8	65.4
SOTA system Our system	DS2 DS2	67.7 80.3	65.2 91.1	56.8 69.8
SOTA system Our system	DS3 DS3	77.6 84.9	74.1 78.3	92.8 98.1

 \implies Our system is better than state of the art ! 🎉

1. Higher is better

	dataset	metric1	metric2	metric3
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	80.7	76.2	50.4
SOTA system	DS2	67.7	65.2	56.8
Our system	DS2	67.9	nan	49.6
SOTA system	DS3	77.6	74.1	92.8
Our system	DS3	79.0	74.1	93.4

	dataset	metric1	metric2	metric3
SOTA system	DS1	82.3	75.9	48.0
Our system	DS1	80.7	76.2	50.4
SOTA system	DS2	67.7	65.2	56.8
Our system	DS2	67.9	nan	49.6
SOTA system	DS3	77.6	74.1	92.8
Our system	DS3	79.0	74.1	93.4

 \Rightarrow Wake up and smell the coffee $\stackrel{ullet}{=}$

- Identify overall trends
- Identify potential sources of problems (or bugs)
- Ensure conclusions are valid, claims are (statistically) sound

Experimental results

- \bullet Diversity of experiments \implies diversity of results
 - ightarrow Task at hand
 - ightarrow Datasets
 - \rightarrow Evaluation metrics
 - $\rightarrow \dots$
- This course : no silver bullet, rather a toolbox

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

Statistics

- A mathematical framework to analyse data
- Foundations : probability theory
- Statistical inference \implies data science, machine learning

ightarrow Also : finances, health, biology, physics, social sciences, \ldots

• Identify trends, check hypotheses, measure correlations,

Finding good learning materials in statistics is hard

Too applied :

Too theoretical :

Weak Law of Large Numbers

The weak law of large numbers (cf. the strong law of large numbers) is a result in probability theory also known as Bernoulli's theorem. Let $X_1, ..., X_k$ be a sequence of independent and identically distributed random variables, each having a mean $(X_i) = \mu$ and standard deviatis σ . Define a new variable

$$X \equiv \frac{X_1 + \ldots + X_n}{n}.$$

Then, as $n \rightarrow \infty$, the sample mean (x) equals the population mean μ of each variable.

$$\langle X \rangle = \left(\frac{X_1 + \dots + X_n}{n} \right)$$

 $= \frac{1}{n} \left(\langle X_1 \rangle + \dots + \langle X_n \rangle \right)$
 $= \frac{n \mu}{n}$
 $= \mu_i$

In addition,

$$\begin{aligned} \operatorname{var}\left(X\right) &= \operatorname{var}\left(\frac{X_1 + \ldots + X_n}{n}\right) \\ &= \operatorname{var}\left(\frac{X_1}{n}\right) + \ldots + \operatorname{var}\left(\frac{X_n}{n}\right) \\ &= \frac{\sigma^2}{n^2} + \ldots + \frac{\sigma^2}{n^2} \\ &= \frac{\sigma^2}{n}. \end{aligned}$$

Therefore, by the Chebyshev inequality, for all $\epsilon > 0$,

$$P(|X - \mu| \ge \epsilon) \le \frac{\operatorname{var}(X)}{\epsilon^2} = \frac{\sigma^2}{n \epsilon^2}.$$

- A given statistical tool is used without (full) understanding
- Statistical tools applied because supervisor/reviewer asked
- Give up trying to understand, just use it as a blackbox

Difficult math, boring and totally useless, everyone hates it !

Difficult math, totally useless and so boring, everyone hates it !

- Difficult : mostly sums and products of fractions
- Boring : that's subjective, but yes, it may be boring
- Useless : definitely not ! The basis of empirical science

Difficult math, totally useless and so boring, everyone hates it !

• Yes, we may hate it, but we also need it !

 \rightarrow Knowing what we're doing can make us feel more at ease

 \rightarrow It is worth the effort of overcoming initial resistance

A framework to model and reason in the presence of uncertainty

A framework to model and reason in the presence of uncertainty

We'll cover only what we absolutely need, promise. Ready? Let's go!

Wooclap time!

What is the difference between probability and statistics?

 What is the difference between probability and statistics?

 Probability
 Statistics

- Mostly theoretical
 - \rightarrow Formal demonstrations

• Manipulates data

 \rightarrow Approximate probabilities

 What is the difference between probability and statistics?

 Probability
 Statistics

- Mostly theoretical
 - ightarrow Formal demonstrations
- Notions we'll need :
 - ightarrow Random variable
 - ightarrow Probability distribution
 - ightarrow Normal distribution

- Manipulates data
 - \rightarrow Approximate probabilities
- Notions we'll need :
 - ightarrow Sampling, mean, variance
 - ightarrow Covariance, correlation
 - \rightarrow Hypotheses testing

- A random variable is a variable with no specific value
 - \rightarrow It takes some value within a (known) set of possible values
 - \rightarrow We are not interested in its actual value

Examples :

- A human's age takes values form 0 to 130 years
- $\bullet\,$ The sea water temperature ranges from 0°C to 100°C
- A person's handedness can be righ-handed, left-handed, both

• 1. The number of tentacles of an octopus?

• 1. The number of tentacles of an octopus?

 \rightarrow No, always the same value

• 2. An adult human's height in centimeters?

• 2. An adult human's height in centimeters?

 \rightarrow Yes, e.g. values from 50cm to 300cm

• 3. The distance between the Earth and the Moon?

• 3. The distance between the Earth and the Moon?

 \rightarrow Yes, it actually varies from 363K to 406K km

• 4. A person's vote in the last presidential elections?

• 4. A person's vote in the last presidential elections?

 \rightarrow Yes, the values are the candidates/parties running

• 5. A person's opinion about how cute an octopus is?

- 5. A person's opinion about how cute an octopus is?
 - \rightarrow No, ill-defined, no closed set of possible values
 - \rightarrow Actually, everyone finds them cute ! ;-)

Random variable

Are the following (interesting) random variables?

- 1. The number of tentacles of an octopus? No
- 2. An adult human's height in centimeters? Yes
- 3. The distance between the Earth and the Moon? Yes
- 4. A person's vote in the last presidential elections? Yes
- 5. A person's opinion about how cute an octopus is? No

In short

- A variable is not random if its value is fixed / constant
- Random variables can have non-numerical values
- We need to be able to describe its set of possible values

 \rightarrow The set may be infinite (e.g. real numbers)

- Use their characteristics to understand the data
- Model features and evaluation metrics as random variables
- Basic block in probability and statistics
 - $\rightarrow\,$ People have been studying them for a while
 - \rightarrow Statistical tools associated to them can be useful

Probability distributions

- Random variables are not interesting per se
- They come with probability distributions

Probability distribution

Given a random variable X :

• Each of its possible values $x_i \rightarrow$ number $p(x_i)$ between 0 and 1

 \rightarrow This number is called the probability of x_i

 $\rightarrow p(x_i)$ indicates how likely that value is

- The sum of $p(x_i)$ for all x_i values must be equal to 1
- The set of all $p(x_i)$ values form X's probability distribution

$P\{X = a\} = p(a) = 0.8$

- X : The random variable that we're interested in
- a : The particular value of that random variable
- 0.8 : The probability that variable X takes value a

$P\{X = a\} = p(a) = 0.8$

- X : The random variable that we're interested in
- a : The particular value of that random variable
- 0.8 : The probability that variable X takes value a
- <u>Note</u> : we shorten $P{X = a}$ as p(a) if there is no ambiguity
- Note : the probability value 0.8 is often written 80%

• X_1 : color of a 5-coloured spinner wheel

$$P\{X_1 = red\} = p(green) = \ldots = p(orange) = \frac{1}{5}$$

• X_2 : number of "face" when throwing a fair coin 10 times

Simple probability distributions

 $P\{X_4 < 17.6\} = 0.5$

Wooclap time!

Which of the following are proper probability distributions? Why?

a)
$$\begin{array}{c|c} x_i & p(x_i) \\ \hline 1 & 0.4 \\ 2 & -0.2 \\ 3 & 0.8 \end{array}$$

c)
$$\begin{array}{c|c} x_i & p(x_i) \\ \hline -1 & 0.4 \\ -2 & 0.2 \\ -3 & 0.8 \end{array}$$

b)
$$\begin{array}{c|c} x_i & p(x_i) \\ \hline 0.4 & 0.4 \\ 0.35 & 0.35 \\ 0.25 & 0.25 \end{array}$$

d)
$$\begin{array}{c|c} x_i & p(x_i) \\ \hline -1 & 0.4 \\ 0 & 0.2 \\ 1 & 0.2 \\ 2 & 0.1 \end{array}$$

Which of the following are proper probability distributions? Why?

20/136

From probabilities to statistics

- Probability distributions are theoretical abstractions
 - \rightarrow We often learn probabilities with toy examples
 - \rightarrow In practice, X's "real" distribution is not accessible
- A sample is often used to estimate the probabilities
 - \rightarrow Most of the time, probabilities are approximated
 - \rightarrow Proportion in sample (%) \rightarrow estimated probability

$$\frac{\operatorname{count}(a)}{n} \approx P\{X = a\}$$

Random samples

- Randomly select a finite set of data points to study
 - \rightarrow A set of sentences to translate
 - \rightarrow A set of GPS positions to track
 - \rightarrow A set of people to perform a task
 - $\rightarrow \dots$

Source: https://www.thoughtco.com/purposive-sampling-3026727

Sampling : example

Daily temperature of a captor in a power plant

ightarrow Sample size : 365 days

 \rightarrow [10.1, 14.0, 8.9, 6.7, 9.4, 10.3, ... 12.5, 15.3, 13.3]

Estimated probability distribution = normalized histogram

23/136

Sampling : example

Jupyter notebook 1 & 2

- 1. Open the dataset using pandas.read_csv()
- 2. Explore the different columns and their values
- 3. Make a histogram of the compositionality column

 \rightarrow This is an estimate of its distribution !

Compositionality dataset

• Is a dry run literally a <u>run</u> which is dry?

 \rightarrow not at all $\leftarrow 0$ - 1 - 2 - 3 - 4 - 5 \rightarrow absolutely yes

- Compositionality score : average rating of 10-15 annotators
- Sample : 180 compounds in French

Source: https://aclanthology.org/J19-1001/

Why do we need samples?

- A representative sample can inform us about the whole
 - ightarrow Full data not available, but sample findings can be generalised
 - \rightarrow Infer properties of the (unknown) distribution
 - ightarrow Draw conclusions in the presence of uncertainty

<u>Source</u>: https://towardsdatascience.com/

understanding-random-variables-and-probability-distributions-1ed1daf2e66

- We can characterise our sample
 - \rightarrow Central tendency : mean
 - \rightarrow Dispersion : variance

Mean / average

- A single value at the center of the sample \rightarrow Summarise the whole data in a single number
- The arithmetic mean of a set of i.i.d. values $x_1 \dots x_n$:

Source: StatQuest : https://www.youtube.com/watch?v=SzZ6GpcfoQY

Wooclap time!

• Is the mean a probability (value between 0 and 1)?

- Is the mean a probability (value between 0 and 1)? \rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample?

- Is the mean a probability (value between 0 and 1)? \rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample ? \rightarrow No, it can be a new value, not contained in the sample
- Is the value of the mean always positive?

- Is the mean a probability (value between 0 and 1)? \rightarrow No, it depends on the values (arbitrary range)
- Is the value of the mean contained in the sample ? \rightarrow No, it can be a new value, not contained in the sample
- Is the value of the mean always positive?

 \rightarrow No, e.g. if the variable only takes negative values

• The expected value of a (discrete) random variable :

$$E[X] = p(x_1)x_1 + p(x_2)x_2 + \ldots + p(x_n)x_n$$

• Sample mean $\overline{x} \rightarrow$ normalised sum of *n* i.i.d. random variables

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

The law of large numbers states that x̄ → E[X] for large n
 → The (sample) mean x̄ is an estimator of the expected value E[X]

• The expected value of a (discrete) random variable :

$$E[X] = p(x_1)x_1 + p(x_2)x_2 + \ldots + p(x_n)x_n$$

• Sample mean $\overline{x} \rightarrow$ normalised sum of *n* i.i.d. random variables

$$\overline{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

The law of large numbers states that x̄ → E[X] for large n
 → The (sample) mean x̄ is an estimator of the expected value E[X]

The larger the sample, the better \overline{x} approximates "true" mean E[X]

Data dispersion

• Mean does not take into account data dispersion

$$S_1 = [0] \implies \overline{S_1} = 0$$

$$S_2 = [-4, -4, 4, 4] \implies \overline{S_2} = 0$$

$$S_3 = [-6, -2, 1, 7] \implies \overline{S_3} = 0$$

$$S_4 = [-1500, 1500] \implies \overline{S_4} = 0$$

https://www.spss-tutorials.com/descriptive-statistics-one-metric-variable/

Idea 1 : average the difference between each value and the mean

$$\sum_{i=1}^{n} \frac{x_i - \overline{x}}{n}$$

Idea 1 : average the difference between each value and the mean

$$\sum_{i=1}^n \frac{x_i - \overline{x}}{n}$$

$$\frac{(-4-0)+(-4-0)+(4-0)+(4-0)}{4} = 0 \quad \textcircled{0}$$

$$\sum_{i=1}^{n} \frac{|x_i - \overline{x}|}{n}$$

$$\sum_{i=1}^{n} \frac{|x_i - \overline{x}|}{n}$$

$$\frac{|-4-0|+|-4-0|+|4-0|+|4-0|}{4} = 4 \quad \textcircled{0}$$

$$\sum_{i=1}^{n} \frac{|x_i - \overline{x}|}{n}$$

$$\sum_{i=1}^{n} \frac{|x_i - \overline{x}|}{n}$$

• Calculate this amount for the sample [-6, -2, 1, 7]

$$\frac{|-6-0|+|-2-0|+|1-0|+|7-0|}{4} = 4 \quad \textcircled{0}$$

Moreover, absolute value is not differentiable at 0 This is inconvenient : https://www.youtube.com/watch?v=sHRBg6BhKjI

Idea 3 : average the squared differences $x_i - \overline{x}$

$$\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}$$

Idea 3 : average the squared differences $x_i - \overline{x}$

$$\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}$$

• Calculate this amount for the sample [-4, -4, 4, 4]

$$\frac{(-4-0)^2 + (-4-0)^2 + (4-0)^2 + (4-0)^2}{4} = 64 \quad \odot$$

32/136

Idea 3 : average the squared differences $x_i - \overline{x}$

$$\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}$$

Getting to the variance

Idea 3 : average the squared differences $x_i - \overline{x}$

$$\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}$$

• Calculate this amount for the sample [-6, -2, 1, 7]

$$\frac{(-6-0)^2 + (-2-0)^2 + (1-0)^2 + (7-0)^2}{4} = 90 \quad \odot$$

Source: Example adapted from

https://www.mathsisfun.com/data/standard-deviation.html

Variance

- Variance characterises the dispersion/spread of a distribution
 - \rightarrow Intuition : average distance from the mean
 - $\rightarrow (x_i \overline{x})$ can be positive or negative \implies square it !

$$Var(X) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}$$

 \rightarrow Variance is always positive, differently from mean

Standard deviation

• Variance averages squared differences

 \rightarrow Its absolute value is hard to interpret

- \rightarrow Bring back to original value range \rightarrow squared root
- The squared root of variance is called standard deviation

$$\sigma = \sqrt{Var(X)}$$

https://datatab.net/tutorial/dispersion-parameter

Estimated standard deviation

• Population standard deviation :

$$\sigma_{\boldsymbol{X}} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}}$$

• Sample standard deviation, unbiased estimator :

$$s_{\boldsymbol{X}} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n-1}}$$

• Why? https://www.youtube.com/watch?v=sHRBg6BhKjI

Estimated standard deviation

• Population standard deviation :

$$\sigma_{\boldsymbol{X}} = \sqrt{\sum_{i=1}^{n} \frac{(x_i - \overline{x})^2}{n}}$$

• Sample standard deviation, unbiased estimator :

$$s_X = \sqrt{\sum_{i=1}^n \frac{(x_i - \overline{x})^2}{n-1}}$$

• Why? https://www.youtube.com/watch?v=sHRBg6BhKjI

In practice, we only need $s_X \rightarrow$ Ensure your stats library does this!

Jupyter notebook 3

- 1. Open dataset containing 180 compositionality scores
- 2. Use Pandas' comp.describe() to obtain a summary
- 3. Is the obtained standard deviation σ_X or s_X ?

One distribution to rule them all

$$P\{a < X < b\} = \int_{a}^{b} \frac{1}{\sqrt{2\pi\sigma^2}} exp^{\frac{x-\mu}{\sigma}}$$

One distribution to rule them all

The Normal distribution

- Well known distribution for continuous random variables
- Probability density function is a symmetric bell-shaped curve
- Characterised by mean μ and standard deviation σ
 - \rightarrow Bell centered around $\mu\textsc{,}$ narrower or wider according to σ
 - ightarrow 99% of probability between $\mu-3\sigma$ and $\mu+3\sigma$

Normal distribution : example

38/136

Wooclap time!

1. What are the μ and σ parameters for the following curve?

1. What are the μ and σ parameters for the following curve ?

Who's that normal?

- 1. What are the μ and σ parameters for the following curve?
- 2. Which curve corresponds to $\mu = 10$ and $\sigma = 20$?

Who's that normal?

- 1. What are the μ and σ parameters for the following curve?
- 2. Which curve corresponds to $\mu = 10$ and $\sigma = 20$?

Standardization

• Calculate probability \rightarrow integration (<o> aaaaah !)

 \rightarrow Normal is impossible to integrate analytically

• In practice :

 \rightarrow Standardize $z = \frac{x-\mu}{\sigma}$, then lookup table of $\Phi(a)$

Wooclap time!

Why is the normal distribution so important?

Why is the normal distribution so important?

- Turns out most measurements are normally distributed
- Used in many statistical tools, e.g. hypothesis testing
- Plays a central role in describing estimated means

- Normalised sum of i.i.d. variables is normally distributed
 → Even if the variables are not normally distributed !
- The mean x̄ of a sample is normally distributed
 → Comes in handy to analyse averaged values
- This is known as the central limit theorem
 - \rightarrow Connects statistics and probability

- 1. Build n random samples of size 30 from compositionality data
- 2. Calculate mean of each random sample, save values
- 3. Estimate sample mean's distribution with histogram

- 1. Build n random samples of size 30 from compositionality data
- 2. Calculate mean of each random sample, save values
- 3. Estimate sample mean's distribution with histogram

- 1. Build n random samples of size 30 from compositionality data
- 2. Calculate mean of each random sample, save values
- 3. Estimate sample mean's distribution with histogram

- 1. Build n random samples of size 30 from compositionality data
- 2. Calculate mean of each random sample, save values
- 3. Estimate sample mean's distribution with histogram

- 1. Build n random samples of size 30 from compositionality data
- 2. Calculate mean of each random sample, save values
- 3. Estimate sample mean's distribution with histogram

In short

- Random variables and probability distributions
 - \rightarrow Theoretical model for features and metrics
 - \rightarrow In practice, estimated using sampling
- Mean and standard deviation characterise the data
 - ightarrow Ensure your stats library divides by n-1
- Normal distribution : bell shaped around the mean

 \rightarrow Useful to characterise values that are means

In short

- Random variables and probability distributions
 - \rightarrow Theoretical model for features and metrics
 - \rightarrow In practice, estimated using sampling
- Mean and standard deviation characterise the data
 - ightarrow Ensure your stats library divides by n-1
- Normal distribution : bell shaped around the mean
 - \rightarrow Useful to characterise values that are means

Now we're ready for the next steps !

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

Two random variables

- For the moment we looked at random variables one by one
- It may be interesting to look at two random variables X and Y

 \rightarrow They may influence each other

- \rightarrow They may be both influenced by similar factors
- How does X and Y vary together?

- Variable X on x-axis, variable Y on y-axis
- plt.scatter(x,y)
- The two variables are paired or aligned
 - \rightarrow The sample consists of pairs of values
 - ightarrow Each value of X has a corresponding value of Y
 - ightarrow Both variables are numeric

A person's age (X) vs. height (Y)

A person's age (X) vs. height (Y)

A person's age (X) vs. number of sleeping hours (Y)

A person's age (X) vs. number of socks used per year (Y)

A person's age (X) vs. number of socks used per year (Y)

Example : compositionality and number of occurrences

Jupyter notebook 6 & 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

Example : compositionality and number of occurrences

Jupyter notebook 6 & 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

Example : compositionality and number of occurrences

Jupyter notebook 6 & 7

- Hypothesis : frequent compounds are less compositional
- What is the relation between compositionality and frequency?

• Is there really something to see or are we over-interpreting ?

• It would be nice to be able to quantify the relation !

• It would be nice to be able to quantify the relation !

We will obtain such metric in two steps :

1. Covariance

- \rightarrow Not so easy to interpret
- \rightarrow Computational step towards calculating correlation

2. Correlation

 \rightarrow Much easier to interpret

- Relation between each value x_i and the mean \overline{x}
- Relation between each value y_i and the mean \overline{y}

- Relation between each value x_i and the mean \overline{x}
- Relation between each value y_i and the mean \overline{y}

 \rightarrow Does $x_i > \overline{x}$ imply $y_i > \overline{y}$?

 \rightarrow Does $x_i < \overline{x}$ imply $y_i < \overline{y}$?

- Relation between each value x_i and the mean \overline{x}
- Relation between each value y_i and the mean \overline{y}

 \rightarrow Does $x_i > \overline{x}$ imply $y_i > \overline{y}$?

 \rightarrow Does $x_i < \overline{x}$ imply $y_i < \overline{y}$?

- Relation between each value x_i and the mean \overline{x}
- Relation between each value y_i and the mean \overline{y}

 \rightarrow Does $x_i > \overline{x}$ imply $y_i > \overline{y}$?

 \rightarrow Does $x_i < \overline{x}$ imply $y_i < \overline{y}$?

<u>Source</u>: https://www.youtube.com/watch?v=qtaqvPAeEJY

• Relation between each value x_i and the mean \overline{x}

 $\rightarrow x_i > \overline{x} \implies (x_i - \overline{x})$ positive

 $\rightarrow x_i < \overline{x} \implies (x_i - \overline{x})$ negative

• Relation between each value y_i and the mean \overline{y}

 $\rightarrow y_i > \overline{y} \implies (y_i - \overline{y}) \text{ positive} \\ \rightarrow y_i < \overline{y} \implies (y_i - \overline{y}) \text{ negative}$

• Relation between each value x_i and the mean \overline{x}

 $\rightarrow x_i > \overline{x} \implies (x_i - \overline{x})$ positive

 $\rightarrow x_i < \overline{x} \implies (x_i - \overline{x})$ negative

• Relation between each value y_i and the mean \overline{y}

 $\rightarrow y_i > \overline{y} \implies (y_i - \overline{y}) \text{ positive} \\ \rightarrow y_i < \overline{y} \implies (y_i - \overline{y}) \text{ negative}$

• Relation between each value x_i and the mean \overline{x}

 $\rightarrow x_i > \overline{x} \implies (x_i - \overline{x})$ positive

 $\rightarrow x_i < \overline{x} \implies (x_i - \overline{x})$ negative

• Relation between each value y_i and the mean \overline{y}

 $\rightarrow y_i > \overline{y} \implies (y_i - \overline{y}) \text{ positive} \\ \rightarrow y_i < \overline{y} \implies (y_i - \overline{y}) \text{ negative}$

<u>Source</u>: https://www.youtube.com/watch?v=qtaqvPAeEJY

$$(x_i - \overline{x}) \times (y_i - \overline{y})$$

- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are positive
 - \rightarrow Product $(x_i \overline{x}) \times (y_i \overline{y})$ is **positive**

$$(x_i - \overline{x}) \times (y_i - \overline{y})$$

- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are positive \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is positive
- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are negative

 \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is **positive**

$$(x_i - \overline{x}) \times (y_i - \overline{y})$$

- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are positive \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is positive
- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are negative

 \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is **positive**

• $(x_i - \overline{x})$ is positive and $(y_i - \overline{y})$ is negative \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is negative

$$(x_i - \overline{x}) \times (y_i - \overline{y})$$

- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are positive \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is positive
- Both $(x_i \overline{x})$ and $(y_i \overline{y})$ are negative \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is positive
- $(x_i \overline{x})$ is positive and $(y_i \overline{y})$ is negative \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is negative
- $(x_i \overline{x})$ is negative and $(y_i \overline{y})$ is positive \rightarrow Product $(x_i - \overline{x}) \times (y_i - \overline{y})$ is negative

Covariance : the formula

1. First calculate means \overline{x} and \overline{y}

2. Then calculate the covariance as :

$$Cov(X, \mathbf{Y}) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

Covariance : the formula

1. First calculate means \overline{x} and \overline{y}

2. Then calculate the covariance as :

$$Cov(X, \mathbf{Y}) = \sum_{i=1}^{n} \frac{(x_i - \overline{x})(y_i - \overline{y})}{n-1}$$

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Wooclap time!

1. A person's age (X) vs. height (Y)

1. A person's age (X) vs. height (Y)

Cov(X, Y) = +180.9

A person's age (X) vs. number of sleeping hours (Y)

 $Cov(X, \mathbf{Y}) = -9.0$

A person's age (X) vs. number of socks used per year (Y)

A person's age (X) vs. number of socks used per year (Y)

Cov(X, Y) = 0.77

Covariance is sensitive to unit

• What if X and Y have very different ranges?

 \rightarrow For instance, X in cm, Y in km

Covariance is sensitive to unit

- What if X and Y have very different ranges?
 → For instance, X in cm, Y in km
- Covariance is unbounded ranges from $-\infty$ to $+\infty$
 - \rightarrow Indicates whether a linear relation exists, but not its strength

Covariance : it's a sign !

• Covariance is **positive**

 \rightarrow Increasing X tends to make Y increase too

• Covariance is negative

 \rightarrow Increasing X tends to make Y decrease

• Covariance is zero

 \rightarrow Increasing X has no impact on Y

 \rightarrow Increasing Y has no impact on X

- What if we could normalise covariance?
- Can we get a measure that is bounded?

• Covariance can be normalised using X and Y's variances

$$r_{X,Y} = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y))}} = \frac{Cov(X,Y)}{s_X s_Y}$$

- Dividing by standard deviation puts both on same scale
- Also called Pearson or linear correlation

Correlation interpretation

- Ranges from -1 to +1
 - \rightarrow $r\approx+1$: strong positive association
 - ightarrow r pprox -1 : strong negative association
 - $\rightarrow r \approx 0$: weak/no linear relationship

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation and spread

• Correlation tells how close or far from linear regression line

 \rightarrow Knowing \times allows predicting y (and vice-versa)

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation is unit-less

- Covariance is unbounded, depends on variable ranges
- Correlation allows comparing metrics with different ranges
 - \rightarrow Example : max vs. min. temperature in Celsius or Farehnheit

 \rightarrow In both cases, correlation is the same : r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Correlation is symmetric

- Correlation is symmetric
 - \rightarrow Example : max vs. min. temperature or vice-versa
 - \rightarrow In both cases, correlation is the same : r = 0.74

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Wooclap time!

Exercise : guess the correlation

1. A person's age (X) vs. height (Y)

Exercise : guess the correlation

1. A person's age (X) vs. height (Y)

r(X, Y) = 0.85

Exercise : guess the correlation

A person's age (X) vs. number of sleeping hours (Y)

r(X, Y) = -0.89

A person's age (X) vs. number of socks used per year (Y)

Exercise : guess the correlation

A person's age (X) vs. number of socks used per year (Y)

r(X, Y) = 0.04

Why dividing by standard deviations?

$$r_{X,Y} = \frac{Cov(X,Y)}{s_X s_Y} = \frac{1}{n-1} \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{s_X s_Y}$$
$$= \frac{1}{n-1} \sum_{i=1}^n \left(\frac{x_i - \overline{x}}{s_X}\right) \left(\frac{y_i - \overline{y}}{s_Y}\right)$$

- Similar to standardisation in normal distribution
 - \rightarrow Discounting the mean centers around zero
 - \rightarrow Dividing by standard deviation homogenizes width

71/136

Correlation shows linear association

• Correlation does not model non-linear association

https://www.stat.uchicago.edu/~yibi/teaching/stat220/17aut/Lectures/L22.pdf

Jupyter notebook 8

• Hypothesis : compositionality and frequency are correlated

 \rightarrow Frequency is better represented in logarithmic scale

• Does correlation change if frequency is in linear or log scale?

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant
 → Does X rank items more or less in the same order as Y?
- Spearman's ρ : linear (Pearson) correlation between ranks

 \rightarrow Models monotonic relation

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant
 → Does X rank items more or less in the same order as Y?
- Spearman's ρ : linear (Pearson) correlation between ranks

 \rightarrow Models monotonic relation

Example :

- x = [2,3,4,14,15]
- y = [1,5,10,11,16]

Spearman's rank correlation

- The actual compared X and Y values may be irrelevant
 → Does X rank items more or less in the same order as Y?
- Spearman's ρ : linear (Pearson) correlation between ranks

 \rightarrow Models monotonic relation

Example :

- x = [2,3,4,14,15]
- y = [1,5,10,11,16]

- Obtain ranks rX_i for X in ascending order
- Obtain ranks rY_i for Y in ascending order
- Obtain difference between ranks $d_i = rX_i rY_i$
- Calculate Spearman's rank correlation :

$$\rho_{X,Y} = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

- Obtain ranks rX_i for X in ascending order
- Obtain ranks rY_i for Y in ascending order
- Obtain difference between ranks $d_i = rX_i rY_i$
- Calculate Spearman's rank correlation :

$$\rho_{X,Y} = 1 - \frac{6\sum d_i^2}{n(n^2 - 1)}$$

• Alternatively, Pearson correlation between rX_i and rY_i

Spearman correlation : example

IQ, $X_i \blacklozenge$	Hours of TV per week, $Y_i \ \clubsuit$	$\mathbf{rank}\; x_i \; \mathbf{ \bullet } \;$	$\mathbf{rank}\;y_i\;\mathbf{\textbf{+}}$	$d_i ~ \blacklozenge$	$d_i^2 ~ \blacklozenge$
86	2	1	1	0	0
97	20	2	6	-4	16
99	28	3	8	-5	25
100	27	4	7	-3	9
101	50	5	10	-5	25
103	29	6	9	-3	9
106	7	7	3	4	16
110	17	8	5	3	9
112	6	9	2	7	49
113	12	10	4	6	36

Source: https://en.wikipedia.org/wiki/Spearman_correlation

Jupyter notebook 9 & 10

- Compare Pearson and Spearman correlation
 - \rightarrow Compositionality vs. frequency
 - \rightarrow Compositionality vs. log-frequency
- Compare manual implementation and scipy

Confounders

- Suppose X independent and Y dependent variables
- A confounder can influence both X and Y
- Correlation is not causation

Source: https://xkcd.com/552/

Spurious correlations

- Correlations can be found between unrelated variables
- Procrastinate : https://www.tylervigen.com/spurious-correlations
 - \rightarrow What possible confounders could explain these correlations ?

Simpson's paradox

https://www.arte.tv/fr/videos/107398-002-A/ voyages-au-pays-des-maths/ Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

81/136

The Earth is finally a safe and pleasant place for humans again.

However, 1000 years of global warming released a dangerous bacteria from the permafrost.

The bacteria starts to infect human hosts, causing a mysterious disease.

Centuries in insipid watery ice made the bacteria obsessive about...

...vanilla ice-cream ! 🗘

The illness is called

- Compulsive
- Obsessive
- Vanilla
- Ice-cream
- Disease

CHAOS !!

The bacteria spreads rapidly, and infected humans start eating tons of vanilla ice-cream.

Milk prices rise to the stratosphere, ice-cream makers strike, diabetes and obesity break records...

Governments impose ice-cream lockdowns, interplanetary travel is forbidden, panic everywhere!

A lab finally announces a vaccine at phase 3!

In phase 3, a vaccine is evaluated using an experiment called randomized control trial

Randomized control trial

<u>Conclusion</u> :

The vaccine works. What a relief for humanity !

Average nb. ice-creams/day (ICD) :

- Group A : $ICD_A = 1.47$
- Group B : $ICD_B = 1.56$

But... maybe humans forgot all about statistics?

- Is the observed difference large enough ?
 - $ICD_A = 1.47$ ice/creams per day
 - $ICD_B = 1.56$ ice/creams per day

$$\delta = ICD_B - ICD_A = 0.09$$

• Maybe the sample is too small or biased

 \rightarrow Affects our conclusion that vaccine (A) better than placebo (B)?

But... maybe humans forgot all about statistics?

- Is the observed difference large enough ?
 - $ICD_A = 1.47$ ice/creams per day
 - $ICD_B = 1.56$ ice/creams per day

$$\delta = ICD_B - ICD_A = 0.09$$

Maybe the sample is too small or biased
 → Affects our conclusion that vaccine (A) better than placebo (B)?

Given the samples, the metrics, and the experiment's conditions : Probability of making a false claim assuming $A \neq B$ in general?

 \rightarrow p-value !

- Incremental research
 - State of the art or Baseline system B (placebo)
 - My own Awesome proposal system A (vaccin)
- How can I check whether A is **better** than B?
- What's the probability of drawing a wrong conclusion?

 \rightarrow Ideally, very low, close to zero

• Methodological framework

ightarrow Take inspiration from health, biology, social siences

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus

- Our Baseline system classifies images
 - \rightarrow Two categories : octopus or not octopus
- Sometimes it makes mistakes

- We developed an Awesome new system !
 - \rightarrow E.g. the new system was trained on more data

- We developed an Awesome new system !
 - \rightarrow E.g. the new system was trained on more data

- We developed an Awesome new system !
 - \rightarrow E.g. the new system was trained on more data
- It seems that it makes less mistakes \implies 🎽

• Is A really better than B?

 $\rightarrow\,$ Testing on a couple examples is not enough !

• Use a test set containing (x,y) pairs

 \rightarrow x - sea animal images

 \rightarrow y - gold/reference octopus / other labels

• The test set was not used to build the system

Images x selected to be in the held-out test set

Reference/gold labels y considered true (e.g. annotated by humans)

Both systems generate predictions \hat{y} for test set instances x

Compare predictions \hat{y}_B and \hat{y}_A to reference y

 $M(B, \mathbf{x}, \mathbf{y}) = \frac{3}{5} = 0.6$

Compare predictions \hat{y}_B and \hat{y}_A to reference y

 $M(A, \mathbf{x}, \mathbf{y}) = \frac{4}{5} = 0.8$

Wooclap time!

• The accuracies of both systems are :

$$M(B, x, y) = \frac{3}{5} = 0.6$$

 $M(A, x, y) = \frac{4}{5} = 0.8$

- It seems like A is better than B
- The difference (delta) is positive

$$\delta_{A-B}(\mathbf{x},\mathbf{y}) = M(B,\mathbf{x},\mathbf{y}) - M(A,\mathbf{x},\mathbf{y}) = 0.8 - 0.6 = 0.2$$

System comparison : example

We obtained a much larger test set x',y'

We compare A and B again and obtain :

System comparison : example

We obtained a much larger test set x',y'

We compare A and B again and obtain :

$$\delta_{A-B}(x', y') = M(B, x', y') - M(A, x', y')$$

= 0.7612 - 0.7586
= 0.0026

System comparison : example

We obtained a much larger test set x',y'

We compare A and B again and obtain :

$$\delta_{A-B}(x', y') = M(B, x', y') - M(A, x', y')$$

= 0.7612 - 0.7586
= 0.0026

- Can we still affirm that A is better than B?
- If we add or remove a couple of images, could the result flip?

$$\delta_{A-B}(x, y) = M(A, x, y) - M(B, x, y)$$

- Delta allows us to translate the comparison into maths
 - \rightarrow A better than $\mathsf{B} \rightarrow \delta_{A-B}(x, y) > 0$
 - \rightarrow A equivalent to $\mathsf{B} \rightarrow \delta_{A-B}(x, y) = 0$
 - \rightarrow A worse ² than B $\rightarrow \delta_{A-B}(x, y) < 0$
- In some disciplines, $\delta_{A-B}(x, y)$ is called effect

^{2.} Yes, the old Baseline may beat the new Awesome system !

- 1. We develop a system A supposed to be better than B
- 2. To verify this, we apply both systems to the same test set :

 \rightarrow Get output of system A on the test set (x, y)

 \rightarrow Get output of system B on the test set (x, y)

3. Calculate the evaluation metric $M(\cdot)$ for both outputs

$$\delta_{A-B}(x,y) = M(A,x,y) - M(B,x,y)$$

- 4. Large positive $\delta_{A-B}(x,y) \implies \not>$
- 5. In practice, $\delta_{A-B}(x, y)$ is often small $\stackrel{1}{\cong}$

Test sets as random samples

• Could the observed $\delta_{A-B}(x, y) > 0$ be due to chance? $\rightarrow (x, y)$ is a sample of joint random variables (X, Y)

 \rightarrow What effect/difference would be observed for sample (x', y')?

• What is the probability that A is actually no better than $B \rightarrow$ If we ever had access to the "real" distribution of (X, Y)?

- We obtain a single $\delta_{A-B}(x, y)$ value
- This value depends on the test set (x, y), which is a sample
- We can see δ_{A-B}(x, y) as a sampled value of a random variable

- **P-value** : probability of obtaining at least $\delta_{A-B}(x, y)$
 - When in reality, A is no better than B
- In short : p-value = probability that your conclusion is wrong !

Wooclap time!

We have one value obtained on the large dataset (x', y')

 $\delta_{A-B}(\mathbf{x'},\mathbf{y'}) = 0.0026$

We have one value obtained on the large dataset (x', y')

$$\delta_{A-B}(\mathbf{x}',\mathbf{y}')=0.0026$$

If we had all possible images of sea creatures X and their classes

- \rightarrow Imagine we have access to the real distribution $\delta_{A-B}(X, Y)$
- Probability of obtaining 0.0026 difference (or more)
- If A is actually no better than B

- $H_0: \delta_{A-B}(X, Y) \leq 0 \implies$ if true, then A not better than B
- $H_1: \delta_{A-B}(X, Y) > 0$
- Goal : reject H₀

 \rightarrow Conclusion : significant difference between the systems

Remember

- $H_0: \delta_{A-B}(X, Y) \leq 0$
- $H_1: \delta_{A-B}(X, Y) > 0$
- **P-value** : probability of observing $\delta_{A-B}(x, y)$ while H_0 true \rightarrow Intuituion : if H_0 was true, large $\delta_{A-B}(x, y)$ are unlikely
- In mathematical notation :

$$p-value = P\{\delta_{A-B}(X, Y) \ge \delta_{A-B}(x, y) \mid H_0\}$$

Hypothesis testing : example

 $p-value = P\{\delta_{A-B}(X, Y) \ge 0.0026 \mid \delta_{A-B}(X, Y) \le 0\}$

Estimate p-value, if small enough \implies A better than B

106/136

Type I errors

- Type I error : false positive
 - \rightarrow Rejecting H_0 when it is actually true

Conclusion of the test :

is better than

Reality : But it isn't better!

Type II errors

• Type II error : false negative

 \rightarrow Not rejecting ${\it H}_0$ when it is actually false

Conclusion of the test :

Reality : But it is better!

Goal

- Probability of type-I error is upper bounded by α $\rightarrow \alpha$ is called the significance level or threshold
- Probability of type-II error is as low as possible

 \rightarrow Test power : ability to avoid type-II errors

p-value $< \alpha \implies$ statistically significant ! \swarrow

- p-value : probability of extreme outcome
- α : significance threshold

 \rightarrow Usual "magic" value : $\alpha = 0.05$

p-value $< \alpha \implies$ statistically significant ! \swarrow

- p-value : probability of extreme outcome
- α : significance threshold

 \rightarrow Usual "magic" value : $\alpha = 0.05$

The word significant should not be used to anything else

- P-value depends on $\delta_{A-B}(X, Y)$ probability distribution
- Which in turn depends on M(A, x, y) and M(B, x, y) \rightarrow Remember : $M(\cdot)$ is our evaluation metric
- M(·)'s distribution determines that of δ (if we're lucky)
 ⇒ Study the probability distribution of M(·)!

Wooclap time!

Accuracy is an average

113/136

Accuracy is an average

 \rightarrow Normally distributed !

The t-test for paired samples

- T-test : hypothesis testing for normally distributed variables
- Based on Student's t distribution

 \rightarrow Looks like normal distribution for large samples

$$\mathsf{t}\text{-}\mathsf{stat} = \frac{M(A, x, y) - M(B, x, y)}{SE/\sqrt{m}}$$

- m : size of the paired sample (x, y)
- SE : standard deviation of the difference $\hat{y}_A \hat{y}_B$

The t-test for paired samples

- T-test : hypothesis testing for normally distributed variables
- Based on Student's t distribution

 \rightarrow Looks like normal distribution for large samples

$$\mathsf{t}\text{-}\mathsf{stat} = \frac{M(A, x, y) - M(B, x, y)}{SE/\sqrt{m}}$$

- m : size of the paired sample (x, y)
- SE : standard deviation of the difference $\hat{y}_A \hat{y}_B$
- P-value : check Student's t table, m-1 degrees of freedom

Precision is not an average

- Recall $\left(\frac{tp}{tp+fn}\right)$ can be seen as an average like accuracy $\rightarrow tp + fn$ does not depend on the system
- Precision $\left(\frac{tp}{tp+fp}\right)$ cannot be seen as an average

ightarrow *tp* + *fp* depends on the system

- \rightarrow System class distribution is unpredictable
- \implies F-score cannot be assumed to be normally distributed

- Problem of *t*-test : assumes $M(A, x, y) \sim$ normally distributed
- Other metrics :
 - Recall $R = \frac{tp}{tp+fn}$, tp + fn constant $\rightarrow t$ -test OK \checkmark
 - Precision $P = \frac{tp}{tp+fp}$ depends on tp + fp, unknown distribution $\rightarrow t$ -test not OK X
 - F-score 2PR/(P+R) depends on *P*, unknown distribution $\rightarrow t$ -test not OK X

Many authors use the terms parametric vs. non parametric tests

- What does it mean?
- Most of the time, by "parametric" we mean "the random variable normally distributed"

Non parametric tests

- Alternative : non parametric tests
 - 1. No sampling
 - Fast
 - Conservative, will not state A better than B for small δ (not powerful)
 - E.g. sign test, McNemar's test, Wilcoxon
 - 2. With sampling
 - Slow
 - Powerful, low type-II error probability
 - E.g. randomised approximaiton, bootstrap test

Source : Yeh (2000) https://aclanthology.org/C00-2137/

Idea : estimate M distribution by random re-sampling in x, y

https://bookdown.org/gregcox7/ims_psych/foundations-bootstrapping.html

119/136

Why comparing with 2 \times deltaobs?

https://www.youtube.com/watch?v=N4ZQQqyIf6k

122/136

Which test to apply?

Source: Dror et al. (2018) https://aclanthology.org/P18-1128/

Evaluation metric M distribution vs. test

- Parametric test (M(A, x, y) from known distribution)
 - Paired Student's t-test
- Non-parametric tests (M(A, x, y) from unknown distribution)
 - No sampling (less powerful)
 - Sign test
 - McNemar's test
 - Wilcoxon signed rank test
 - Sampling (computationally expensive)
 - Permutation (randomized approximation) test
 - Bootstrap test

- Multiple comparisons : probability of false claims increases
- Bonferroni's correction
 - Divide significance level α by the number of tests N
- Replicability analysis (Dror et al. 2020)

P-hacking

- A significant *p*-value can always be obtained
 - ightarrow As long as the sample is large enough
 - \rightarrow https://www.youtube.com/watch?v=HDCOUXE3HMM

P-hacking

A significant *p*-value can always be obtained

- \rightarrow As long as the sample is large enough
- \rightarrow https://www.youtube.com/watch?v=HDCOUXE3HMM

Source: https://xkcd.com/1478/

Unpaired samples

- We only covered significance for paired samples
 - \rightarrow Two systems A and B, same dataset items (x,y)
 - \rightarrow Other tests for unpaired samples

127/136 Source: https://doi.org/10.1017/S1351324922000535, thanks to Elie Antoine

Introduction

Statistics in a nutshell

Correlation

Significance

Discussion

128/136

Community's practice

NLP conferences (ACL) and journals (TACL)

General Statistics	ACL '17	TACL '17
Total number of pa-	196	37
pers		
# papers that do not	117	15
report significance		
# papers that report	63	18
significance		
# papers that report	6	0
significance but use		
the wrong statistical		
test		
# papers that report	21	3
significance but do not		
mention the test name		

Source: Dror et al. 2018

- Visual : Excel, Libreoffice, ...
- Python : matplotlib, numpy, scipy, sklearn, ...
- R : multiple libraries including linear models
- Proprietary : Matlab, SPSS, ...

- Characterise the errors in our system's output
- Scripts to print characteristics of errors
 - \rightarrow Frequency, length, resolution, predicted/gold class, \ldots
 - \rightarrow Example : compounds predicted in wrongest positions
- Manual error annotation : taxonomies, guidelines
 - \rightarrow Gain insight on most promising improvements

Interpretability analysis

Try to understand why systems generate a prediction

Feature-based methods (SHAP, LIME)

 \rightarrow Which parts of the inputs influence prediction?

- Visualisation
 - \rightarrow Attention salience, 2-D projection (UMAP, t-SNE, topology)
- Adversarial examples, perturbations

 \rightarrow Difficult minimal pairs

(a) Original Image

(b) Explaining Electric guitar (c) Explaining Acoustic guitar

(d) Explaining Labrador

Source: https://homes.cs.washington.edu/~marcotcr/blog/lime/

- Remember Goodhart's law (metric \neq objective)
- Beating state of the art is good
- Learning something interesting about the problem is better
- From time to time : remember the research question

- \bullet Well designed hypotheses \rightarrow interesting "negative" results
- Experiments require persistence and somea faith
- Source of frustration : publish or perish

 \rightarrow Is it a problem with my results or with the system ?

• Negative results are publishable if sound experimental design

Confirmation bias

- Tendency to favour interpretations that confirm initial beliefs
- May lead to cognitive dissonance, well studied in psychology
- Tip : try to demonstrate the opposite of the initial hypothesis
 - \rightarrow If you fail for long enough, maybe the initial hypothesis is true

Source: https://moveyourcompanyforward.com/2020/11/03/

four-ways-to-overcome-confirmation-bias/

- Cours d'Adeline Paiement
- Statistical Significance Testing for NLP (Dror et al. 2020)
- https://bodo-winter.net/tutorials.html (thanks Leonardo Pinto Arata)
- Wikipedia
- Google images
- StatQuest Youtube :

https://www.youtube.com/@statquest

Backup slides

Random variables : formal definition i

- Experiment : flip 3 different coins, note head (H) or tail (T)
- The sample space S contains all possible experiment outcomes \rightarrow The subsets of S are called events E_i
- The random variable X denots the number of heads (H)
 - A variable whose exact value is unknown or irrelevant
 - We know (or estimate) its probability distribution $P\{X = x_i\}$

Ei	<i>{HHH}</i>	$\{THH, HTH, HHT\}$	$\{TTH, THT, HTT\}$	$\{TTT\}$
$P(E_i)$	1/8	1/8 + 1/8 + 1/8	1/8 + 1/8 + 1/8	1/8
X	0	1	2	3
$P\{X=x_i\}$	1/8	3/8	3/8	1/8

Random variables : formal definition ii

Formalisation

A random variable is a function $X : S \to \mathbb{R}$ such that :

- 1. Discrete random variable :
 - \rightarrow Its set of possible values $X(S) = \{x_i, i \in \mathbb{N}^*\}$ is countable
 - $\rightarrow \text{ For all } x_i \in X(S): \{X = x_i\} \Leftrightarrow \{e_i \in S | X(e_i) = x_i\} \in \mathcal{F}$
 - \rightarrow ${\cal F}$ is the set of all possible events (subsets) of S
 - $\rightarrow p(x_i) = P\{X = x_i\}$ is the probability mass function of X
- 2. Continuous random variable :

 \rightarrow \forall value $x \in (-\infty, +\infty), \ \forall$ interval $B \in \mathbb{R}$

 \rightarrow A non-negative function $P\{X \in B\} = \int_B f(x) dx$ exists

 \rightarrow f(x) is the probability density function of X

Types of probability distributions

- Discrete random variables
 - \rightarrow Bar graphic, finite set of values

- Continuous random variables
 - \rightarrow Line graphic, uncountable set of values (real numbers)

Random sample or i.i.d. variables?

- Sampled items can be seen as *n* random variables $X_1 \dots X_n$ \rightarrow For instance, tossing a coin *n* times
- We assume that all variables have the same distribution
- We assume that all items are independent ³
- This is often stated as independent and identically distributed

 \rightarrow The acronym i.i.d. is usually employed in probability

3. Formally : $\forall X_i \neq X_j, \forall a, b \in X_i(S) \ P\{X_i = a | X_j = b\} = P\{X_i = a\}$

Random sample or i.i.d. variables?

- Sampled items can be seen as *n* random variables $X_1 \dots X_n$ \rightarrow For instance, tossing a coin *n* times
- We assume that all variables have the same distribution
- We assume that all items are independent ³
- This is often stated as independent and identically distributed
 → The acronym i.i.d. is usually employed in probability

Random sample = set of *n* values of i.i.d. variables $X_1 \dots X_n$

3. Formally :
$$\forall X_i \neq X_j, \forall a, b \in X_i(S) \ P\{X_i = a | X_j = b\} = P\{X_i = a\}$$

- A simple transformation of r can be proved following a Student T distribution
- One can know quite straightforward if a correlation is significantly different from 0
- Most libraries provide this p-value by default
- More details : Dror et al. <u>Significativity tests for NLP M&C</u> <u>book</u>

Kendall-tau correlation

- Rank correlation, distinguishes local/distant mismatches
 - ightarrow Ranking an item 5 instead of 3 is not too bad
 - ightarrow Ranking an item 58 instead of 3 is really bad
- Consider all possible pairs (x_i, x_j) and (y_i, y_j) with i < j
 - \rightarrow If $x_i < x_j$ and $y_i < y_j \implies$ concordant
 - \rightarrow If $x_i > x_j$ and $y_i > y_j \implies$ concordant

 \rightarrow Else, discordant pairs

$$au = rac{\#(ext{concordant pairs}) - \#(ext{discordant pairs})}{\#(ext{total pairs})} = 1 - rac{2 imes \#(ext{discordant pairs})}{\binom{n}{2}}$$

Example : https://www.statisticshowto.com/kendalls-tau/

- Correlation works well for 2 numerical variables
- What if the variables are categorical?
- What if we have more than 2 variables?

Advanced data analysis

- Correlation works well for 2 numerical variables
- What if the variables are categorical?
- What if we have more than 2 variables?

Further statistical tools

- Information theory
- ANOVA
- Linear models
- Mixed models
- . . .

• Entropy : alternative view of variability/skewness

 $ightarrow H = -\sum p(x_i) \log p(x_i) \quad
ightarrow$ amount of uncertainty

 \rightarrow H = max for uniform distribution (unpredictable)

 \rightarrow H = 0 for highly skewed distribution (predictable)

- Other useful notions :
 - $\rightarrow {\rm Cross\ entropy}$
 - \rightarrow Mutual information
 - \rightarrow Kullbak-Leibler divergence (asymmetric)
 - \rightarrow Jensen–Shannon divergence (symmetric)

Models for categorical variables

- ANOVA : Generalise t-test for more than 2 means
- Linear model : predict a linear regression slope

 \rightarrow Is the slope significantly different from zero?

ightarrow Notation : pitch pprox sex +arepsilon

• Mixed model : more sophisticated for multiple factors

