THE NPIC LIBRARY

Tutorial

Edouard Thiel

26 november 2008

Contents

1 Introduction 5

2 Getting started 7
2.1 First programo e 7
2.2 Compiling 7
2.3 Function receiving a Npic_image, 9
2.4 Function receiving several Npic.image 10

CONTENTS

Chapter 1

Introduction

Npic is a library, that is to say, a set of types and functions, which allows you to write
image analysis programs in C language.

The library provides a type Npic_image for handling bitmap images in memory. Choice is
given for dimension (2 to 6), pixels type (char, long, double, 4 shorts), pixel access (linear
or cartesian coordinates) ; an external border can be added for simplifying programs
working with masks (distance transforms, convolutions, etc).

Npic provides the NPZ compressed file format (extension .npz) which allows to store any
Npic_image to disk. Functions are also given for other formats, such as the 3D VOL
format or the 2D PGM format; the files can be read or write directly gzip compressed,
which save a lot of disk space! A set of command-line tools are given in directory tools/,
which you can call in shell scripts.

Note: this document is not finished, it will be improved a.s.a.p.

CHAPTER 1. INTRODUCTION

Chapter 2

Getting started

2.1 First program

#include <npic.h>
int main ()
int x, y;

Npic_image *npl;
Npic_image_21 *pl;

/* Create a 2L image = 2D image with signed long pixels (4 bytes). height
is ymax=12, width is xmax=20, external borders are ybor=0, xbor=0. */

npl = NpicCreatelImage_21 (12, 20, 0, 0);

if (mpl == NULL) exit (1);

/* Assign values to pixels */

pl = NpicCastImage (npl);

for (y = 0; y < pl->ymax; y++)

for (x = 0; x < pl->xmax; x++)
pl->pixlyl[x] = (x + y) % 16;

/* Print image */
NpicPrintImage (npl);

/* Destroy image */
NpicDestroyImage (npl);
exit (0);

2.2 Compiling

In this section, we show four different ways for compiling a program using libNpic : on
command line, with a shell script, with a basic Makefile, with a more sophisticated one.

For compiling the previous example demol.c, type :
gcc demol.c -o demol ‘/npic_path/npic-cfg --cflags --1libs‘

7

8 CHAPTER 2. GETTING STARTED

The command between backquotes ¢ ¢ allows to recover the options which depend from
Npic installation; you just have to replace /npic_path with the actual absolute path.

Another way for compiling is to use the following sh script :

#! /bin/sh

p=/npic_path # replace with actual path
f=‘basename $1 .c¢

gcc $f.c -o $f ‘$p/npic-cfg --cflags --1libs®

Call this script "ncomp”, save, type ”chmod +x ncomp”. For compiling a file "ex.c”,
type ”. /ncomp ex.c” or 7. /ncomp ex”. For compiling a file and run the program if the
compilation succeed, type ”. /ncomp ex.c && ex”.

Now here is a basic Makefile; one includes the Npic configuration file /npic_path/.config,
where the usefull variables are declared, in particular, $(CC), $(NPIC_CFLAGS) and
$(NPIC_LIBS)

Beware, be sure that the indented lines start with a [TAB].

include /npic_path/.config # replace with actual path

.C.0 ¢
$(CC) -c $(NPIC_CFLAGS) $*.c

exl : exl.o
$(CC) -0 $0@ $0.0 $(NPIC_LIBS)

Finally, the following Makefile allows to compile several programs and to clean up the
directory.

include /npic_path/.config # replace with actual path

.C.0 ¢
$(CC) -c $(NPIC_CFLAGS) $*.c

Add here the name of your programs
EXECS = exl ex2 ex3

help ::
@echo "Options of make : help all clean distclean $(EXECS)"

Add here the dependencies
exl : exl.o
ex2 : ex2.0
ex3 : ex3.0

all :: $(EXECS)

$ (EXECS)

2.3. FUNCTION RECEIVING A NPIC_.IMAGE 9

$(CC) -0 $0 $0.0 $(NPIC_LIBS)

clean ::
\rm -f *.0 core

distclean :: clean
\rm -f $(EXECS)

2.3 Function receiving a Npic_image

#include <npic.h>
void my_draw (Npic_image *npl)

if (NpicImageIsOK (npl func__) != NPIC_SUCCESS)

return;

| J—

switch (npl->type) {

case NPIC_IMAGE_2L : {
Npic_image_21 *pl = NpicCastImage (npl);
int x, y;

for (y = 0; y < pl->ymax; y++)
for (x = 0; x < pl->xmax; x++)

pl->pix[yl[x] = (x + y) % 16;
return;

}

case NPIC_IMAGE_3L : {
Npic_image_31 *pl = NpicCastImage (npl);
int x, y, Z;

for (z = 0; z < pl->zmax; z++)
for (y = 0; y < pl->ymax; y++)
for (x = 0; x < pl->xmax; x++)
pl->pix[z]l[yl[x] = (x + y + 2) % 16;
return;
}
default :

npl->gen.ok = NpicError (__func NPIC_ERR_UNEX_NPIC, "");

}
int main ()
Npic_image *npl;
/* Create a 2L image = 2D image with signed long pixels (4 bytes). height
is ymax=12, width is xmax=20, external borders are ybor=0, xbor=0. */
npl = NpicCreatelImage_21 (12, 20, 0, 0);
if (npl == NULL) exit (1);

/* Assign values to pixels */
my_draw (npl);

/* Print image */
NpicPrintImage (npl);

10

/* Destroy image */

CHAPTER 2. GETTING STARTED

NpicDestroyImage (npl);

exit (0);

2.4 Function receiving several Npic_image

#include <npic.h>

void my_draw (Npic_image *np2, Npic_image #*npl, double cl, double c2)

{

}

if (NpicImageIsOK_DS1 (np2, npil

return;

func__) != NPIC_SUCCESS)

| J—

if (NpicSameImage (np2, npl, NPIC_TYPE | NPIC_SIZE) != NPIC_SUCCESS) {

np2->gen.ok = NpicError (__func

return;

}

switch (np2->type) {

NPIC_ERR_INCOMPAT, "");

——>

case NPIC_IMAGE_2L : {

Npic_image_21 *p2

int x, y;

for (y
for (x

return;

}

NpicCastImage (np2),
NpicCastImage (npl);

*pl

0; y < p2->ymax; y++)
0; x < p2->xmax; x++)
p2->pix [yl [x] = pl->pix[y] [x]*cl + c2;

case NPIC_IMAGE_3L : {

Npic_image_31 *p2

int x, y, z;

for (z =
for (y =
for (x =
p2->p
return;
}
default :

np2->gen.ok = NpicError (__func

int main ()

{

0
0
0
i

)

)

)
X

z
y
X

Npic_image *npl, *np2;
Npic_image_21 *pi;

int x, y;

/* Create a 2L image

NpicCastImage (np2),
NpicCastImage (npl);

*pl

< p2->zmax; z++)
< p2->ymax; y++)
< p2->xmax; x++)

[z] [yl [x] = pi1->pix[z] [y] [x]*cl + c2;

NPIC_ERR_UNEX_NPIC, "");

——

2D image with signed long pixels (4 bytes). height

is ymax=12, width is xmax=20, external borders are ybor=0, xbor=0. */
npl = NpicCreatelImage_21 (12, 20, 0, 0);
if (npl == NULL) exit (1);

2.4. FUNCTION RECEIVING SEVERAL NPIC_IMAGE

/* Assign values to pixels */

pl = NpicCastImage (npl);

for (y = 0; y < pl->ymax; y++)

for (x = 0; x < pl->xmax; x++)
pl->pixlyl[x] = (x + y) % 16;

/* Create a second image with same size and type than npl */
np2 = NpicDupImage (npl);
if (np2 == NULL) exit (1);

/* Compute np2 pixels values */
my_draw (np2, npl, 2, 4);

/* Print image */
NpicPrintImage (np2);

/* Destroy image */
NpicDestroyImage (npl);
NpicDestroyImage (np2);
exit (0);

11

